Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/cohere2-iswa.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_cohere2_iswa::llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
8
0
    const float f_logit_scale = hparams.f_logit_scale;
9
10
0
    ggml_tensor * cur;
11
0
    ggml_tensor * inpL;
12
13
0
    inpL = build_inp_embd(model.tok_embd);
14
15
    // inp_pos - contains the positions
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
0
    auto * inp_attn = build_attn_inp_kv_iswa();
19
20
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
21
22
0
    for (int il = 0; il < n_layer; ++il) {
23
0
        const bool is_swa = hparams.is_swa(il);
24
25
        // norm
26
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
27
0
        cb(cur, "attn_norm", il);
28
0
        ggml_tensor * ffn_inp = cur;
29
30
        // self-attention
31
0
        {
32
            // rope freq factors for 128k context
33
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
34
35
            // compute Q and K and RoPE them
36
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
37
0
            cb(Qcur, "Qcur", il);
38
0
            if (model.layers[il].bq) {
39
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
40
0
                cb(Qcur, "Qcur", il);
41
0
            }
42
43
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
44
0
            cb(Kcur, "Kcur", il);
45
0
            if (model.layers[il].bk) {
46
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
47
0
                cb(Kcur, "Kcur", il);
48
0
            }
49
50
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
51
0
            cb(Vcur, "Vcur", il);
52
0
            if (model.layers[il].bv) {
53
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
54
0
                cb(Vcur, "Vcur", il);
55
0
            }
56
57
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
58
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
59
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
60
61
0
            if (is_swa) {
62
0
                Qcur = ggml_rope_ext(
63
0
                        ctx0, Qcur, inp_pos, rope_factors,
64
0
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
65
0
                        ext_factor, attn_factor, beta_fast, beta_slow
66
0
                        );
67
68
0
                Kcur = ggml_rope_ext(
69
0
                        ctx0, Kcur, inp_pos, rope_factors,
70
0
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
71
0
                        ext_factor, attn_factor, beta_fast, beta_slow
72
0
                        );
73
0
            }
74
75
0
            cb(Qcur, "Qcur", il);
76
0
            cb(Kcur, "Kcur", il);
77
0
            cb(Vcur, "Vcur", il);
78
79
0
            cur = build_attn(inp_attn,
80
0
                    model.layers[il].wo, model.layers[il].bo,
81
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
82
0
        }
83
84
0
        if (il == n_layer - 1 && inp_out_ids) {
85
0
            cur     = ggml_get_rows(ctx0, cur, inp_out_ids);
86
0
            inpL    = ggml_get_rows(ctx0, inpL, inp_out_ids);
87
0
            ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
88
0
        }
89
90
0
        ggml_tensor * attn_out = cur;
91
92
        // feed-forward network
93
0
        {
94
0
            cur = build_ffn(ffn_inp,
95
0
                    model.layers[il].ffn_up, NULL, NULL,
96
0
                    model.layers[il].ffn_gate, NULL, NULL,
97
0
                    model.layers[il].ffn_down, NULL, NULL,
98
0
                    NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
99
0
            cb(cur, "ffn_out", il);
100
0
        }
101
102
        // add together residual + FFN + self-attention
103
0
        cur = ggml_add(ctx0, cur, inpL);
104
0
        cur = ggml_add(ctx0, cur, attn_out);
105
106
0
        cur = build_cvec(cur, il);
107
0
        cb(cur, "l_out", il);
108
109
        // input for next layer
110
0
        inpL = cur;
111
0
    }
112
113
0
    cur = inpL;
114
115
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
116
117
0
    cb(cur, "result_norm", -1);
118
0
    res->t_embd = cur;
119
120
    // lm_head
121
0
    cur = build_lora_mm(model.output, cur);
122
123
0
    if (f_logit_scale) {
124
0
        cur = ggml_scale(ctx0, cur, f_logit_scale);
125
0
    }
126
127
0
    cb(cur, "result_output", -1);
128
0
    res->t_logits = cur;
129
130
0
    ggml_build_forward_expand(gf, cur);
131
0
}