Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/refact.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_refact::llm_build_refact(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
8
0
    ggml_tensor * cur;
9
0
    ggml_tensor * inpL;
10
11
0
    inpL = build_inp_embd(model.tok_embd);
12
13
0
    auto * inp_attn = build_attn_inp_kv();
14
15
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
16
17
0
    for (int il = 0; il < n_layer; ++il) {
18
0
        ggml_tensor * inpSA = inpL;
19
20
0
        cur = build_norm(inpL,
21
0
                model.layers[il].attn_norm, NULL,
22
0
                LLM_NORM_RMS, il);
23
0
        cb(cur, "attn_norm", il);
24
25
        // self-attention
26
0
        {
27
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
28
0
            cb(Qcur, "Qcur", il);
29
30
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
31
0
            cb(Kcur, "Kcur", il);
32
33
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
34
0
            cb(Vcur, "Vcur", il);
35
36
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
37
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
38
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
39
40
0
            cb(Qcur, "Qcur", il);
41
0
            cb(Kcur, "Kcur", il);
42
0
            cb(Vcur, "Vcur", il);
43
44
0
            cur = build_attn(inp_attn,
45
0
                    model.layers[il].wo, NULL,
46
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
47
0
        }
48
0
        if (il == n_layer - 1 && inp_out_ids) {
49
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
50
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
51
0
        }
52
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
53
0
        cb(ffn_inp, "ffn_inp", il);
54
55
        // feed-forward network
56
0
        {
57
0
            cur = build_norm(ffn_inp,
58
0
                    model.layers[il].ffn_norm, NULL,
59
0
                    LLM_NORM_RMS, il);
60
0
            cb(cur, "ffn_norm", il);
61
62
0
            cur = build_ffn(cur,
63
0
                    model.layers[il].ffn_up,   NULL, NULL,
64
0
                    model.layers[il].ffn_gate, NULL, NULL,
65
0
                    model.layers[il].ffn_down, NULL, NULL,
66
0
                    NULL,
67
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
68
0
            cb(cur, "ffn_out", il);
69
0
        }
70
0
        cur = ggml_add(ctx0, cur, ffn_inp);
71
72
0
        cur = build_cvec(cur, il);
73
0
        cb(cur, "l_out", il);
74
75
        // input for next layer
76
0
        inpL = cur;
77
0
    }
78
0
    cur = inpL;
79
80
0
    cur = build_norm(cur,
81
0
            model.output_norm, NULL,
82
0
            LLM_NORM_RMS, -1);
83
84
0
    cb(cur, "result_norm", -1);
85
0
    res->t_embd = cur;
86
87
    // lm_head
88
0
    cur = build_lora_mm(model.output, cur);
89
90
0
    cb(cur, "result_output", -1);
91
0
    res->t_logits = cur;
92
93
0
    ggml_build_forward_expand(gf, cur);
94
0
}