Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/rwkv6qwen2.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_rwkv6qwen2::llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params) : llm_build_rwkv6_base(model, params) {
4
0
    GGML_ASSERT(n_embd == hparams.n_embd_r());
5
6
0
    ggml_tensor * cur;
7
0
    ggml_tensor * inpL;
8
9
0
    inpL = build_inp_embd(model.tok_embd);
10
11
0
    auto * rs_inp = build_rs_inp();
12
13
0
    const auto n_embd = hparams.n_embd;
14
0
    const auto n_seq_tokens = ubatch.n_seq_tokens;
15
0
    const auto n_seqs = ubatch.n_seqs;
16
17
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
18
19
0
    for (int il = 0; il < n_layer; ++il) {
20
0
        const llama_layer * layer = &model.layers[il];
21
0
        inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
22
23
0
        ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il);
24
25
0
        ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
26
0
        cb(att_norm, "attn_norm", il);
27
28
0
        ggml_tensor * x_prev = ggml_concat(
29
0
                ctx0,
30
0
                token_shift,
31
0
                ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
32
0
                1
33
0
                );
34
35
0
        cur = build_rwkv6_time_mix(rs_inp, att_norm, x_prev, ubatch, il);
36
37
0
        token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
38
0
        ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
39
40
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
41
0
        cb(ffn_inp, "ffn_inp", il);
42
43
0
        cur     = ggml_reshape_2d(ctx0, cur,     n_embd, n_tokens);
44
0
        ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens);
45
46
0
        if (il == n_layer - 1 && inp_out_ids) {
47
0
            cur     = ggml_get_rows(ctx0, cur,     inp_out_ids);
48
0
            ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
49
0
        }
50
51
        // feed-forward network
52
0
        cur = build_norm(ffn_inp,
53
0
                model.layers[il].ffn_norm, NULL,
54
0
                LLM_NORM_RMS, il);
55
0
        cb(cur, "ffn_norm", il);
56
57
0
        cur = build_ffn(cur,
58
0
                model.layers[il].ffn_up,   NULL, NULL,
59
0
                model.layers[il].ffn_gate, NULL, NULL,
60
0
                model.layers[il].ffn_down, NULL, NULL,
61
0
                NULL,
62
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
63
0
        cb(cur, "ffn_out", il);
64
65
0
        cur = ggml_add(ctx0, cur, ffn_inp);
66
67
0
        cur = build_cvec(cur, il);
68
0
        cb(cur, "l_out", il);
69
70
        // input for next layer
71
0
        inpL = cur;
72
0
    }
73
74
0
    cur = inpL;
75
0
    cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
76
77
0
    cb(cur, "result_norm", -1);
78
0
    res->t_embd = cur;
79
80
0
    cur = build_lora_mm(model.output, cur);
81
82
0
    cb(cur, "result_output", -1);
83
0
    res->t_logits = cur;
84
85
0
    ggml_build_forward_expand(gf, cur);
86
0
}