Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/command-r.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_command_r::llm_build_command_r(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context(params) {
7
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
8
9
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10
11
0
    const float f_logit_scale = hparams.f_logit_scale;
12
13
0
    ggml_tensor * cur;
14
0
    ggml_tensor * inpL;
15
16
0
    inpL = build_inp_embd(model.tok_embd);
17
18
    // inp_pos - contains the positions
19
0
    ggml_tensor * inp_pos = build_inp_pos();
20
21
0
    auto * inp_attn = build_attn_inp_kv();
22
23
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
24
25
0
    for (int il = 0; il < n_layer; ++il) {
26
        // norm
27
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
28
0
        cb(cur, "attn_norm", il);
29
30
0
        ggml_tensor * ffn_inp = cur;
31
32
        // self-attention
33
0
        {
34
            // compute Q and K and RoPE them
35
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
36
0
            cb(Qcur, "Qcur", il);
37
0
            if (model.layers[il].bq) {
38
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
39
0
                cb(Qcur, "Qcur", il);
40
0
            }
41
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
42
0
            cb(Kcur, "Kcur", il);
43
0
            if (model.layers[il].bk) {
44
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
45
0
                cb(Kcur, "Kcur", il);
46
0
            }
47
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
48
0
            cb(Vcur, "Vcur", il);
49
0
            if (model.layers[il].bv) {
50
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
51
0
                cb(Vcur, "Vcur", il);
52
0
            }
53
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
54
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
55
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
56
57
0
            if (model.layers[il].attn_q_norm) {
58
0
                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM, il);
59
0
                cb(Qcur, "Qcur", il);
60
0
            }
61
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
62
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
63
64
0
            if (model.layers[il].attn_k_norm) {
65
0
                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM, il);
66
0
                cb(Kcur, "Kcur", il);
67
0
            }
68
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
69
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
70
71
0
            cb(Qcur, "Qcur", il);
72
0
            cb(Kcur, "Kcur", il);
73
0
            cb(Vcur, "Vcur", il);
74
75
0
            cur = build_attn(inp_attn,
76
0
                    model.layers[il].wo, model.layers[il].bo,
77
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
78
0
        }
79
0
        if (il == n_layer - 1 && inp_out_ids) {
80
0
            cur     = ggml_get_rows(ctx0, cur, inp_out_ids);
81
0
            inpL    = ggml_get_rows(ctx0, inpL, inp_out_ids);
82
0
            ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
83
0
        }
84
0
        ggml_tensor * attn_out = cur;
85
86
        // feed-forward network
87
0
        {
88
0
            cur = build_ffn(ffn_inp,
89
0
                    model.layers[il].ffn_up, NULL, NULL,
90
0
                    model.layers[il].ffn_gate, NULL, NULL,
91
0
                    model.layers[il].ffn_down, NULL, NULL,
92
0
                    NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
93
0
            cb(cur, "ffn_out", il);
94
0
        }
95
        // add together residual + FFN + self-attention
96
0
        cur = ggml_add(ctx0, cur, inpL);
97
0
        cur = ggml_add(ctx0, cur, attn_out);
98
99
0
        cur = build_cvec(cur, il);
100
0
        cb(cur, "l_out", il);
101
102
        // input for next layer
103
0
        inpL = cur;
104
0
    }
105
0
    cur = inpL;
106
107
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
108
109
0
    cb(cur, "result_norm", -1);
110
0
    res->t_embd = cur;
111
112
    // lm_head
113
0
    cur = build_lora_mm(model.output, cur);
114
115
0
    if (f_logit_scale) {
116
0
        cur = ggml_scale(ctx0, cur, f_logit_scale);
117
0
    }
118
0
    cb(cur, "result_output", -1);
119
0
    res->t_logits = cur;
120
121
0
    ggml_build_forward_expand(gf, cur);
122
0
}