Coverage Report

Created: 2025-11-28 06:56

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/smollm3.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_smollm3::llm_build_smollm3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
20
21
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
22
23
0
    for (int il = 0; il < n_layer; ++il) {
24
0
        ggml_tensor * inpSA = inpL;
25
26
0
        const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
27
28
        // norm
29
0
        cur = build_norm(inpL,
30
0
                model.layers[il].attn_norm, NULL,
31
0
                LLM_NORM_RMS, il);
32
0
        cb(cur, "attn_norm", il);
33
34
        // self-attention
35
0
        {
36
            // compute Q and K and RoPE them
37
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
38
0
            cb(Qcur, "Qcur", il);
39
0
            if (model.layers[il].bq) {
40
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
41
0
                cb(Qcur, "Qcur", il);
42
0
            }
43
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
44
0
            cb(Kcur, "Kcur", il);
45
0
            if (model.layers[il].bk) {
46
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
47
0
                cb(Kcur, "Kcur", il);
48
0
            }
49
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
50
0
            cb(Vcur, "Vcur", il);
51
0
            if (model.layers[il].bv) {
52
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
53
0
                cb(Vcur, "Vcur", il);
54
0
            }
55
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
56
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
57
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
58
59
0
            if (use_rope) {
60
0
                Qcur = ggml_rope_ext(
61
0
                        ctx0, Qcur, inp_pos, nullptr,
62
0
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
63
0
                        ext_factor, attn_factor, beta_fast, beta_slow
64
0
                        );
65
66
0
                Kcur = ggml_rope_ext(
67
0
                        ctx0, Kcur, inp_pos, nullptr,
68
0
                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
69
0
                        ext_factor, attn_factor, beta_fast, beta_slow
70
0
                        );
71
0
            }
72
0
            cb(Qcur, "Qcur", il);
73
0
            cb(Kcur, "Kcur", il);
74
0
            cb(Vcur, "Vcur", il);
75
76
0
            cur = build_attn(inp_attn,
77
0
                    model.layers[il].wo, model.layers[il].bo,
78
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
79
0
            cb(cur, "attn_out", il);
80
0
        }
81
0
        if (il == n_layer - 1 && inp_out_ids) {
82
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
83
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
84
0
        }
85
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
86
0
        cb(ffn_inp, "ffn_inp", il);
87
88
        // feed-forward network
89
0
        {
90
0
            cur = build_norm(ffn_inp,
91
0
                    model.layers[il].ffn_norm, NULL,
92
0
                    LLM_NORM_RMS, il);
93
0
            cb(cur, "ffn_norm", il);
94
95
0
            cur = build_ffn(cur,
96
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
97
0
                    model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
98
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
99
0
                    NULL,
100
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
101
0
            cb(cur, "ffn_out", il);
102
0
        }
103
0
        cur = ggml_add(ctx0, cur, ffn_inp);
104
0
        cb(cur, "ffn_out", il);
105
106
0
        cur = build_cvec(cur, il);
107
0
        cb(cur, "l_out", il);
108
109
        // input for next layer
110
0
        inpL = cur;
111
0
    }
112
0
    cur = inpL;
113
114
0
    cur = build_norm(cur,
115
0
            model.output_norm, NULL,
116
0
            LLM_NORM_RMS, -1);
117
118
0
    cb(cur, "result_norm", -1);
119
0
    res->t_embd = cur;
120
121
    // lm_head
122
0
    cur = build_lora_mm(model.output, cur);
123
124
0
    cb(cur, "result_output", -1);
125
0
    res->t_logits = cur;
126
127
0
    ggml_build_forward_expand(gf, cur);
128
0
}