Coverage Report

Created: 2025-12-28 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/glm4-moe.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_glm4_moe::llm_build_glm4_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
8
0
    int sections[4];
9
0
    std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
10
11
0
    ggml_tensor * cur;
12
0
    ggml_tensor * inpL;
13
14
0
    inpL = build_inp_embd(model.tok_embd);
15
16
0
    bool use_mrope = hparams.use_mrope();
17
0
    if (ubatch.embd && !use_mrope) {
18
        // unfortunately, we need to forcefully stop here, to avoid users complaining about wrong results
19
0
        GGML_ABORT("This GGUF does not support multimodal. Please reconvert it.");
20
0
    }
21
22
    // inp_pos - contains the positions
23
0
    ggml_tensor * inp_pos = build_inp_pos();
24
25
0
    auto * inp_attn = build_attn_inp_kv();
26
27
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
28
29
    // Only process up to last layer (skip final NextN layer)
30
    // Final layer tensors are loaded but not processed in forward pass
31
0
    const int n_transformer_layers = n_layer - hparams.nextn_predict_layers;
32
0
    for (int il = 0; il < n_transformer_layers; ++il) {
33
0
        ggml_tensor * inpSA = inpL;
34
35
        // Pre-attention norm
36
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
37
0
        cb(cur, "attn_norm", il);
38
39
        // self-attention
40
0
        {
41
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
42
0
            if (model.layers[il].bq) {
43
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
44
0
            }
45
0
            cb(Qcur, "Qcur", il);
46
47
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
48
0
            if (model.layers[il].bk) {
49
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
50
0
            }
51
0
            cb(Kcur, "Kcur", il);
52
53
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
54
0
            if (model.layers[il].bv) {
55
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
56
0
            }
57
0
            cb(Vcur, "Vcur", il);
58
59
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
60
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
61
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
62
63
            // Apply Q/K norm if available (GLM-4.5 355B variant)
64
0
            if (model.layers[il].attn_q_norm) {
65
0
                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
66
0
                cb(Qcur, "Qcur_normed", il);
67
0
            }
68
0
            if (model.layers[il].attn_k_norm) {
69
0
                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
70
0
                cb(Kcur, "Kcur_normed", il);
71
0
            }
72
73
0
            if (use_mrope) {
74
0
                Qcur = ggml_rope_multi(ctx0, Qcur, inp_pos, nullptr,
75
0
                            n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
76
0
                            ext_factor, attn_factor, beta_fast, beta_slow);
77
78
0
                Kcur = ggml_rope_multi(ctx0, Kcur, inp_pos, nullptr,
79
0
                            n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
80
0
                            ext_factor, attn_factor, beta_fast, beta_slow);
81
0
            } else {
82
                // Normal RoPE
83
0
                Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot,
84
0
                                    rope_type, n_ctx_orig, freq_base, freq_scale,
85
0
                                    ext_factor, attn_factor, beta_fast, beta_slow);
86
87
0
                Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot,
88
0
                                    rope_type, n_ctx_orig, freq_base, freq_scale,
89
0
                                    ext_factor, attn_factor, beta_fast, beta_slow);
90
0
            }
91
92
0
            cb(Qcur, "Qcur", il);
93
0
            cb(Kcur, "Kcur", il);
94
0
            cb(Vcur, "Vcur", il);
95
96
0
            cur = build_attn(inp_attn,
97
0
                    model.layers[il].wo, NULL,
98
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
99
0
        }
100
0
        if (il == n_transformer_layers - 1 && inp_out_ids) {
101
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
102
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
103
0
        }
104
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
105
0
        cb(ffn_inp, "ffn_inp", il);
106
107
        // Post-attention norm
108
0
        cur = build_norm(ffn_inp, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
109
0
        cb(cur, "post_attn_norm", il);
110
111
        // Check if this is a dense layer (n_layer_dense_lead=1, so layer 0 is dense)
112
0
        if (static_cast<uint32_t>(il) < hparams.n_layer_dense_lead) {
113
            // Dense FFN layer
114
0
            cur = build_ffn(cur,
115
0
                    model.layers[il].ffn_up,   NULL, NULL,
116
0
                    model.layers[il].ffn_gate, NULL, NULL,
117
0
                    model.layers[il].ffn_down, NULL, NULL,
118
0
                    NULL,
119
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
120
0
            cb(cur, "ffn_out", il);
121
0
        } else {
122
            // Process routed experts using existing MoE infrastructure
123
0
            ggml_tensor * routed_out = build_moe_ffn(cur,
124
0
                    model.layers[il].ffn_gate_inp,
125
0
                    model.layers[il].ffn_up_exps,
126
0
                    model.layers[il].ffn_gate_exps,
127
0
                    model.layers[il].ffn_down_exps,
128
0
                    model.layers[il].ffn_exp_probs_b,
129
0
                    n_expert, n_expert_used,
130
0
                    LLM_FFN_SILU, hparams.expert_weights_norm,
131
0
                    true, hparams.expert_weights_scale,
132
0
                    (llama_expert_gating_func_type) hparams.expert_gating_func,
133
0
                    il);
134
0
            cb(routed_out, "ffn_moe_out", il);
135
136
            // Process shared expert on original input
137
0
            ggml_tensor * shared_out = build_ffn(cur,
138
0
                    model.layers[il].ffn_up_shexp,   NULL, NULL,
139
0
                    model.layers[il].ffn_gate_shexp, NULL, NULL,
140
0
                    model.layers[il].ffn_down_shexp, NULL, NULL,
141
0
                    NULL,
142
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
143
0
            cb(shared_out, "ffn_shexp_out", il);
144
145
            // Final output: routed_output + shared_output
146
0
            cur = ggml_add(ctx0, routed_out, shared_out);
147
0
            cb(cur, "ffn_out", il);
148
0
        }
149
0
        cur = ggml_add(ctx0, cur, ffn_inp);
150
151
0
        cur = build_cvec(cur, il);
152
0
        cb(cur, "l_out", il);
153
154
        // input for next layer
155
0
        inpL = cur;
156
0
    }
157
0
    cur = inpL;
158
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
159
160
0
    cb(cur, "result_norm", -1);
161
0
    res->t_embd = cur;
162
163
    // lm_head
164
0
    cur = build_lora_mm(model.output, cur);
165
166
0
    cb(cur, "result_output", -1);
167
0
    res->t_logits = cur;
168
169
0
    ggml_build_forward_expand(gf, cur);
170
0
}