Coverage Report

Created: 2025-12-28 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/llama-context.h
Line
Count
Source
1
#pragma once
2
3
#include "llama.h"
4
#include "llama-cparams.h"
5
#include "llama-graph.h"
6
#include "llama-adapter.h"
7
8
#include "ggml-cpp.h"
9
#include "ggml-opt.h"
10
11
#include <map>
12
#include <vector>
13
14
struct llama_model;
15
class llama_batch_allocr;
16
17
class llama_io_read_i;
18
class llama_io_write_i;
19
20
// "memory" as in abstract memory for the context
21
struct llama_memory_i;
22
struct llama_memory_context_i;
23
24
// "memory" as in physical memory for a buffer type, in bytes
25
struct llama_memory_breakdown_data {
26
    size_t model   = 0; // memory allocated for the model
27
    size_t context = 0; // memory allocated for the context
28
    size_t compute = 0; // memory allocated for temporary compute buffers
29
30
0
    size_t total() const {
31
0
        return model + context + compute;
32
0
    }
33
};
34
35
struct llama_context {
36
    // init scheduler and compute buffers, reserve worst-case graphs
37
    llama_context(
38
            const llama_model & model,
39
                  llama_context_params params);
40
41
    ~llama_context();
42
43
    void synchronize();
44
45
    const llama_model   & get_model()   const;
46
    const llama_cparams & get_cparams() const;
47
48
    ggml_backend_sched_t get_sched() const;
49
50
    uint32_t n_ctx()     const;
51
    uint32_t n_ctx_seq() const;
52
    uint32_t n_batch()   const;
53
    uint32_t n_ubatch()  const;
54
    uint32_t n_seq_max() const;
55
56
    uint32_t n_threads()       const;
57
    uint32_t n_threads_batch() const;
58
59
    llama_memory_t get_memory() const;
60
61
    // return true if the memory was updated
62
    bool memory_update(bool optimize);
63
64
    enum llama_pooling_type pooling_type() const;
65
66
    float * get_logits();
67
    float * get_logits_ith(int32_t i);
68
69
    float * get_embeddings();
70
    float * get_embeddings_ith(int32_t i);
71
    float * get_embeddings_seq(llama_seq_id seq_id);
72
73
    void attach_threadpool(
74
            ggml_threadpool_t threadpool,
75
            ggml_threadpool_t threadpool_batch);
76
77
    void detach_threadpool();
78
79
    void set_n_threads(int32_t n_threads, int32_t n_threads_batch);
80
81
    void set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data);
82
83
    void set_embeddings (bool value);
84
    void set_causal_attn(bool value);
85
    void set_warmup(bool value);
86
87
    void set_adapter_lora(
88
            llama_adapter_lora * adapter,
89
            float scale);
90
91
    bool rm_adapter_lora(
92
            llama_adapter_lora * adapter);
93
94
    void clear_adapter_lora();
95
96
    bool apply_adapter_cvec(
97
            const float * data,
98
                 size_t   len,
99
                int32_t   n_embd,
100
                int32_t   il_start,
101
                int32_t   il_end);
102
103
    // process a single ubatch with a specific graph type
104
    // if memory_context is provided, it will be applied first to the context's memory
105
    // ret contains the status of the graph computation
106
    // returns nullptr only if ret != GGML_STATUS_SUCCESS
107
    llm_graph_result * process_ubatch(
108
                const llama_ubatch & ubatch,
109
                    llm_graph_type   gtype,
110
            llama_memory_context_i * mctx,
111
                       ggml_status & ret);
112
113
    int encode(const llama_batch & batch_inp);
114
    int decode(const llama_batch & batch_inp);
115
116
    //
117
    // state save/load
118
    //
119
120
    size_t state_get_size();
121
    size_t state_get_data(      uint8_t * dst, size_t size);
122
    size_t state_set_data(const uint8_t * src, size_t size);
123
124
    size_t state_seq_get_size(llama_seq_id seq_id, llama_state_seq_flags flags);
125
    size_t state_seq_get_data(llama_seq_id seq_id,       uint8_t * dst, size_t size, llama_state_seq_flags flags);
126
    size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size, llama_state_seq_flags flags);
127
128
    bool state_load_file(
129
            const char * filepath,
130
           llama_token * tokens_out,
131
                size_t   n_token_capacity,
132
                size_t * n_token_count_out);
133
134
    bool state_save_file(
135
            const char * filepath,
136
     const llama_token * tokens,
137
                size_t   n_token_count);
138
139
    size_t state_seq_load_file(
140
          llama_seq_id   seq_id,
141
            const char * filepath,
142
           llama_token * tokens_out,
143
                size_t   n_token_capacity,
144
                size_t * n_token_count_out);
145
146
    size_t state_seq_save_file(
147
          llama_seq_id   seq_id,
148
            const char * filepath,
149
     const llama_token * tokens,
150
                size_t   n_token_count);
151
152
    //
153
    // perf
154
    //
155
156
    llama_perf_context_data perf_get_data() const;
157
    void perf_reset();
158
159
    std::map<ggml_backend_buffer_type_t, llama_memory_breakdown_data> memory_breakdown() const;
160
161
    //
162
    // training
163
    //
164
165
    void opt_init(struct llama_model * model, struct llama_opt_params lopt_params);
166
167
    // TODO: more flexible combinations of logical/physical batch size and context size
168
    void opt_epoch(
169
            ggml_opt_dataset_t      dataset,
170
            ggml_opt_result_t       result_train,
171
            ggml_opt_result_t       result_eval,
172
            int64_t                 idata_split,
173
            ggml_opt_epoch_callback callback_train,
174
            ggml_opt_epoch_callback callback_eval);
175
176
    void opt_epoch_iter(
177
            ggml_opt_dataset_t               dataset,
178
            ggml_opt_result_t                result,
179
            const std::vector<llama_token> & tokens,
180
            const std::vector<llama_token> & labels_sparse,
181
            llama_batch                    & batch,
182
            ggml_opt_epoch_callback          callback,
183
            bool                             train,
184
            int64_t                          idata_in_loop,
185
            int64_t                          ndata_in_loop,
186
            int64_t                          t_loop_start);
187
188
private:
189
    //
190
    // output
191
    //
192
193
    // Make sure enough space is available for outputs.
194
    // Returns max number of outputs for which space was reserved.
195
    uint32_t output_reserve(int32_t n_outputs);
196
197
    void output_reorder();
198
199
    //
200
    // graph
201
    //
202
203
public:
204
    uint32_t graph_max_nodes(uint32_t n_tokens) const;
205
206
    // can reuse the llm_graph_result instance of the context (for example to update a memory module)
207
    llm_graph_result * get_gf_res_reserve() const;
208
209
    // returns the result of ggml_backend_sched_graph_compute_async execution
210
    ggml_status graph_compute(ggml_cgraph * gf, bool batched);
211
212
    // reserve a graph with a dummy ubatch of the specified size
213
    ggml_cgraph * graph_reserve(
214
        uint32_t n_tokens, uint32_t n_seqs, uint32_t n_outputs, const llama_memory_context_i * mctx, bool split_only = false, size_t * sizes = nullptr);
215
216
private:
217
    llm_graph_params graph_params(
218
                        llm_graph_result * res,
219
                      const llama_ubatch & ubatch,
220
            const llama_memory_context_i * mctx,
221
                          llm_graph_type   gtype) const;
222
223
    llm_graph_cb graph_get_cb() const;
224
225
    // TODO: read/write lora adapters and cvec
226
    size_t state_write_data(llama_io_write_i & io);
227
    size_t state_read_data (llama_io_read_i  & io);
228
229
    size_t state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags);
230
    size_t state_seq_read_data (llama_io_read_i  & io, llama_seq_id seq_id, llama_state_seq_flags flags);
231
232
    //
233
    // members
234
    //
235
236
    const llama_model & model;
237
238
    llama_cparams       cparams;
239
    llama_adapter_cvec  cvec;
240
    llama_adapter_loras loras;
241
242
    llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
243
244
    std::unique_ptr<llama_memory_i> memory;
245
246
    // decode output (2-dimensional array: [n_outputs][n_vocab])
247
    size_t  logits_size = 0; // capacity (of floats) for logits
248
    float * logits      = nullptr;
249
250
    // embeddings output (2-dimensional array: [n_outputs][n_embd])
251
    // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
252
    size_t  embd_size = 0; // capacity (of floats) for embeddings
253
    float * embd      = nullptr;
254
255
    // sequence embeddings output (map of [n_embd] vectors)
256
    // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
257
    std::map<llama_seq_id, std::vector<float>> embd_seq;
258
259
    // reuse the batch_allocr to avoid unnecessary memory allocations
260
    std::unique_ptr<llama_batch_allocr> balloc;
261
262
    uint32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
263
264
    std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
265
266
    struct swap_info {
267
        uint32_t i0;
268
        uint32_t i1;
269
    };
270
271
    std::vector<swap_info> output_swaps;
272
273
    ggml_backend_sched_ptr sched;
274
275
    ggml_backend_t backend_cpu = nullptr;
276
    std::vector<ggml_backend_ptr> backends;
277
278
    // training
279
    ggml_opt_context_t opt_ctx = nullptr;
280
281
    ggml_threadpool_t threadpool       = nullptr;
282
    ggml_threadpool_t threadpool_batch = nullptr;
283
284
    ggml_abort_callback abort_callback      = nullptr;
285
    void *              abort_callback_data = nullptr;
286
287
    std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
288
289
    // pointers and buffer types used for the compute buffer of each backend
290
    std::vector<ggml_backend_t>             backend_ptrs;
291
    std::vector<ggml_backend_buffer_type_t> backend_buft;
292
    std::vector<size_t>                     backend_buf_exp_size; // expected buffer sizes
293
294
    llm_graph_result_ptr gf_res_prev;
295
    llm_graph_result_ptr gf_res_reserve;
296
297
    // host buffer for the model output (logits and embeddings)
298
    ggml_backend_buffer_ptr buf_output;
299
300
    bool has_evaluated_once = false;
301
302
    // env: LLAMA_GRAPH_REUSE_DISABLE
303
    bool graph_reuse_disable = false;
304
305
    // perf
306
    mutable int64_t t_start_us  = 0;
307
    mutable int64_t t_load_us   = 0;
308
    mutable int64_t t_p_eval_us = 0;
309
    mutable int64_t t_eval_us   = 0;
310
311
    mutable int64_t t_compute_start_us = 0;
312
    mutable int64_t n_queued_tokens    = 0;
313
314
    mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
315
    mutable int32_t n_eval   = 0; // number of eval calls
316
317
    mutable int32_t n_reused = 0; // number of times the previous graph was reused
318
};