/src/llama.cpp/src/llama-kv-cache.cpp
Line | Count | Source |
1 | | #include "llama-kv-cache.h" |
2 | | |
3 | | #include "llama-impl.h" |
4 | | #include "llama-io.h" |
5 | | #include "llama-model.h" |
6 | | #include "llama-context.h" |
7 | | |
8 | | #include <algorithm> |
9 | | #include <cassert> |
10 | | #include <cmath> |
11 | | #include <cstring> |
12 | | #include <limits> |
13 | | #include <map> |
14 | | #include <stdexcept> |
15 | | |
16 | | // |
17 | | // llama_kv_cache |
18 | | // |
19 | | |
20 | | llama_kv_cache::llama_kv_cache( |
21 | | const llama_model & model, |
22 | | ggml_type type_k, |
23 | | ggml_type type_v, |
24 | | bool v_trans, |
25 | | bool offload, |
26 | | bool unified, |
27 | | uint32_t kv_size, |
28 | | uint32_t n_seq_max, |
29 | | uint32_t n_pad, |
30 | | uint32_t n_swa, |
31 | | llama_swa_type swa_type, |
32 | | const layer_filter_cb & filter, |
33 | | const layer_reuse_cb & reuse) : |
34 | 0 | model(model), hparams(model.hparams), v_trans(v_trans), |
35 | 0 | n_seq_max(n_seq_max), n_stream(unified ? 1 : n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) { |
36 | |
|
37 | 0 | GGML_ASSERT(kv_size % n_pad == 0); |
38 | |
|
39 | 0 | const uint32_t n_layer_kv = hparams.n_layer_kv(); |
40 | | |
41 | | // define a comparator for the buft -> ctx map to ensure that the order is well-defined: |
42 | 0 | struct ggml_backend_buft_comparator { |
43 | 0 | bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const { |
44 | 0 | return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0; |
45 | 0 | } |
46 | 0 | }; |
47 | 0 | std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map; |
48 | | |
49 | | // create a context for each buffer type |
50 | 0 | auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { |
51 | 0 | auto it = ctx_map.find(buft); |
52 | 0 | if (it == ctx_map.end()) { |
53 | 0 | ggml_init_params params = { |
54 | 0 | /*.mem_size =*/ size_t(2u*(1 + n_stream)*n_layer_kv*ggml_tensor_overhead()), |
55 | 0 | /*.mem_buffer =*/ NULL, |
56 | 0 | /*.no_alloc =*/ true, |
57 | 0 | }; |
58 | |
|
59 | 0 | ggml_context * ctx = ggml_init(params); |
60 | 0 | if (!ctx) { |
61 | 0 | return nullptr; |
62 | 0 | } |
63 | | |
64 | 0 | ctx_map.emplace(buft, ctx); |
65 | |
|
66 | 0 | return ctx; |
67 | 0 | } |
68 | | |
69 | 0 | return it->second.get(); |
70 | 0 | }; |
71 | |
|
72 | 0 | GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max); |
73 | |
|
74 | 0 | v_heads.resize(n_stream); |
75 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
76 | 0 | v_heads[s] = 0; |
77 | 0 | } |
78 | |
|
79 | 0 | v_cells.resize(n_stream); |
80 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
81 | 0 | v_cells[s].resize(kv_size); |
82 | 0 | } |
83 | | |
84 | | // by default, all sequence ids are mapped to the 0th stream |
85 | 0 | seq_to_stream.resize(LLAMA_MAX_SEQ, 0); |
86 | |
|
87 | 0 | if (n_stream > 1) { |
88 | 0 | seq_to_stream.resize(n_stream, 0); |
89 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
90 | 0 | seq_to_stream[s] = s; |
91 | 0 | } |
92 | 0 | } |
93 | | |
94 | | // [TAG_V_CACHE_VARIABLE] |
95 | 0 | if (v_trans && hparams.is_n_embd_v_gqa_variable()) { |
96 | 0 | LLAMA_LOG_WARN("%s: the V embeddings have different sizes across layers and FA is not enabled - padding V cache to %d\n", |
97 | 0 | __func__, hparams.n_embd_v_gqa_max()); |
98 | 0 | } |
99 | |
|
100 | 0 | for (uint32_t il = 0; il < hparams.n_layer; il++) { |
101 | 0 | if (!hparams.has_kv(il)) { |
102 | 0 | LLAMA_LOG_DEBUG("%s: layer %3d: does not have KV cache\n", __func__, il); |
103 | 0 | continue; |
104 | 0 | } |
105 | | |
106 | 0 | if (filter && !filter(il)) { |
107 | 0 | LLAMA_LOG_DEBUG("%s: layer %3d: filtered\n", __func__, il); |
108 | 0 | continue; |
109 | 0 | } |
110 | | |
111 | | // [TAG_V_CACHE_VARIABLE] |
112 | 0 | const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); |
113 | 0 | const uint32_t n_embd_v_gqa = !v_trans ? hparams.n_embd_v_gqa(il) : hparams.n_embd_v_gqa_max(); |
114 | |
|
115 | 0 | const char * dev_name = "CPU"; |
116 | |
|
117 | 0 | ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); |
118 | |
|
119 | 0 | if (offload) { |
120 | 0 | auto * dev = model.dev_layer(il); |
121 | 0 | buft = ggml_backend_dev_buffer_type(dev); |
122 | |
|
123 | 0 | dev_name = ggml_backend_dev_name(dev); |
124 | 0 | } |
125 | |
|
126 | 0 | LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name); |
127 | |
|
128 | 0 | ggml_context * ctx = ctx_for_buft(buft); |
129 | 0 | if (!ctx) { |
130 | 0 | throw std::runtime_error("failed to create ggml context for kv cache"); |
131 | 0 | } |
132 | | |
133 | 0 | ggml_tensor * k = ggml_new_tensor_3d(ctx, type_k, n_embd_k_gqa, kv_size, n_stream); |
134 | 0 | ggml_tensor * v = ggml_new_tensor_3d(ctx, type_v, n_embd_v_gqa, kv_size, n_stream); |
135 | |
|
136 | 0 | ggml_format_name(k, "cache_k_l%d", il); |
137 | 0 | ggml_format_name(v, "cache_v_l%d", il); |
138 | |
|
139 | 0 | std::vector<ggml_tensor *> k_stream; |
140 | 0 | std::vector<ggml_tensor *> v_stream; |
141 | |
|
142 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
143 | 0 | k_stream.push_back(ggml_view_2d(ctx, k, n_embd_k_gqa, kv_size, k->nb[1], s*k->nb[2])); |
144 | 0 | v_stream.push_back(ggml_view_2d(ctx, v, n_embd_v_gqa, kv_size, v->nb[1], s*v->nb[2])); |
145 | 0 | } |
146 | |
|
147 | 0 | map_layer_ids[il] = layers.size(); |
148 | |
|
149 | 0 | layers.push_back({ il, k, v, k_stream, v_stream, }); |
150 | 0 | } |
151 | | |
152 | 0 | if (reuse) { |
153 | 0 | LLAMA_LOG_DEBUG("%s: reusing layers:\n", __func__); |
154 | |
|
155 | 0 | for (uint32_t il = 0; il < hparams.n_layer; il++) { |
156 | 0 | const int32_t il_reuse = reuse(il); |
157 | |
|
158 | 0 | if (il_reuse < 0) { |
159 | 0 | LLAMA_LOG_DEBUG("%s: - layer %3d: no reuse\n", __func__, il); |
160 | 0 | continue; |
161 | 0 | } |
162 | | |
163 | 0 | if (filter && !filter(il)) { |
164 | 0 | LLAMA_LOG_DEBUG("%s: - layer %3d: filtered\n", __func__, il); |
165 | 0 | continue; |
166 | 0 | } |
167 | | |
168 | 0 | GGML_ASSERT(map_layer_ids.find(il_reuse) != map_layer_ids.end()); |
169 | |
|
170 | 0 | map_layer_ids[il] = map_layer_ids[il_reuse]; |
171 | |
|
172 | 0 | LLAMA_LOG_DEBUG("%s: - layer %3d: reuse layer %d, is_swa = %d\n", __func__, il, il_reuse, hparams.is_swa(il)); |
173 | 0 | } |
174 | 0 | } |
175 | | |
176 | | // allocate tensors and initialize the buffers to avoid NaNs in the padding |
177 | 0 | for (auto & [buft, ctx] : ctx_map) { |
178 | 0 | ggml_backend_buffer_t buf; |
179 | 0 | if (model.hparams.no_alloc) { |
180 | 0 | buf = ggml_backend_buft_alloc_buffer(buft, /*size =*/ 0); // dummy buffer |
181 | 0 | for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) { |
182 | 0 | t->buffer = buf; // set dummy buffer for KV cache so that the backend scheduler won't try to allocate it |
183 | 0 | } |
184 | 0 | } else { |
185 | 0 | buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft); // real buffer |
186 | 0 | } |
187 | 0 | if (!buf) { |
188 | 0 | throw std::runtime_error("failed to allocate buffer for kv cache"); |
189 | 0 | } |
190 | | |
191 | 0 | LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); |
192 | |
|
193 | 0 | ggml_backend_buffer_clear(buf, 0); |
194 | 0 | ctxs_bufs.emplace_back(std::move(ctx), buf); |
195 | 0 | } |
196 | | |
197 | 0 | { |
198 | 0 | const size_t memory_size_k = size_k_bytes(); |
199 | 0 | const size_t memory_size_v = size_v_bytes(); |
200 | |
|
201 | 0 | LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u/%u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, |
202 | 0 | (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, n_stream, |
203 | 0 | ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), |
204 | 0 | ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); |
205 | 0 | } |
206 | |
|
207 | 0 | const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG"); |
208 | 0 | debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0; |
209 | 0 | } |
210 | | |
211 | 0 | void llama_kv_cache::clear(bool data) { |
212 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
213 | 0 | v_cells[s].reset(); |
214 | 0 | v_heads[s] = 0; |
215 | 0 | } |
216 | |
|
217 | 0 | if (data) { |
218 | 0 | for (auto & [_, buf] : ctxs_bufs) { |
219 | 0 | ggml_backend_buffer_clear(buf.get(), 0); |
220 | 0 | } |
221 | 0 | } |
222 | 0 | } |
223 | | |
224 | 0 | bool llama_kv_cache::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { |
225 | 0 | GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size())); |
226 | |
|
227 | 0 | if (p0 < 0) { |
228 | 0 | p0 = 0; |
229 | 0 | } |
230 | |
|
231 | 0 | if (p1 < 0) { |
232 | 0 | p1 = std::numeric_limits<llama_pos>::max(); |
233 | 0 | } |
234 | |
|
235 | 0 | if (seq_id >= 0) { |
236 | 0 | auto & cells = v_cells[seq_to_stream[seq_id]]; |
237 | 0 | auto & head = v_heads[seq_to_stream[seq_id]]; |
238 | |
|
239 | 0 | uint32_t new_head = cells.size(); |
240 | |
|
241 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
242 | 0 | if (!cells.pos_in(i, p0, p1)) { |
243 | 0 | continue; |
244 | 0 | } |
245 | | |
246 | 0 | if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) { |
247 | 0 | if (new_head == cells.size()) { |
248 | 0 | new_head = i; |
249 | 0 | } |
250 | 0 | } |
251 | 0 | } |
252 | | |
253 | | // If we freed up a slot, set head to it so searching can start there. |
254 | 0 | if (new_head != cells.size() && new_head < head) { |
255 | 0 | head = new_head; |
256 | 0 | } |
257 | 0 | } else { |
258 | | // match any sequence |
259 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
260 | 0 | auto & cells = v_cells[s]; |
261 | 0 | auto & head = v_heads[s]; |
262 | |
|
263 | 0 | uint32_t new_head = cells.size(); |
264 | |
|
265 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
266 | 0 | if (!cells.pos_in(i, p0, p1)) { |
267 | 0 | continue; |
268 | 0 | } |
269 | | |
270 | 0 | cells.rm(i); |
271 | |
|
272 | 0 | if (new_head == cells.size()) { |
273 | 0 | new_head = i; |
274 | 0 | } |
275 | 0 | } |
276 | | |
277 | | // If we freed up a slot, set head to it so searching can start there. |
278 | 0 | if (new_head != cells.size() && new_head < head) { |
279 | 0 | head = new_head; |
280 | 0 | } |
281 | 0 | } |
282 | 0 | } |
283 | |
|
284 | 0 | return true; |
285 | 0 | } |
286 | | |
287 | 0 | void llama_kv_cache::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { |
288 | 0 | GGML_ASSERT(seq_id_src >= 0 && (size_t) seq_id_src < seq_to_stream.size()); |
289 | 0 | GGML_ASSERT(seq_id_dst >= 0 && (size_t) seq_id_dst < seq_to_stream.size()); |
290 | |
|
291 | 0 | const auto s0 = seq_to_stream[seq_id_src]; |
292 | 0 | const auto s1 = seq_to_stream[seq_id_dst]; |
293 | |
|
294 | 0 | if (s0 == s1) { |
295 | | // since both sequences are in the same stream, no data copy is necessary |
296 | | // we just have to update the cells meta data |
297 | |
|
298 | 0 | auto & cells = v_cells[s0]; |
299 | |
|
300 | 0 | if (seq_id_src == seq_id_dst) { |
301 | 0 | return; |
302 | 0 | } |
303 | | |
304 | 0 | if (p0 < 0) { |
305 | 0 | p0 = 0; |
306 | 0 | } |
307 | |
|
308 | 0 | if (p1 < 0) { |
309 | 0 | p1 = std::numeric_limits<llama_pos>::max(); |
310 | 0 | } |
311 | |
|
312 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
313 | 0 | if (!cells.pos_in(i, p0, p1)) { |
314 | 0 | continue; |
315 | 0 | } |
316 | | |
317 | 0 | if (cells.seq_has(i, seq_id_src)) { |
318 | 0 | cells.seq_add(i, seq_id_dst); |
319 | 0 | } |
320 | 0 | } |
321 | |
|
322 | 0 | return; |
323 | 0 | } |
324 | | |
325 | | // cross-stream sequence copies require to copy the actual buffer data |
326 | | |
327 | 0 | bool is_full = true; |
328 | |
|
329 | 0 | if (p0 > 0 && p0 + 1 < (int) get_size()) { |
330 | 0 | is_full = false; |
331 | 0 | } |
332 | |
|
333 | 0 | if (p1 > 0 && p1 + 1 < (int) get_size()) { |
334 | 0 | is_full = false; |
335 | 0 | } |
336 | |
|
337 | 0 | GGML_ASSERT(is_full && "seq_cp() is only supported for full KV buffers"); |
338 | | |
339 | | // enqueue the copy operation - the buffer copy will be performed during the next update |
340 | 0 | sc_info.ssrc.push_back(s0); |
341 | 0 | sc_info.sdst.push_back(s1); |
342 | |
|
343 | 0 | v_cells[s1].reset(); |
344 | 0 | for (uint32_t i = 0; i < v_cells[s0].size(); ++i) { |
345 | 0 | if (v_cells[s0].seq_has(i, seq_id_src)) { |
346 | 0 | llama_pos pos = v_cells[s0].pos_get(i); |
347 | 0 | llama_pos shift = v_cells[s0].get_shift(i); |
348 | |
|
349 | 0 | llama_kv_cell_ext ext = v_cells[s0].ext_get(i); |
350 | |
|
351 | 0 | if (shift != 0) { |
352 | 0 | pos -= shift; |
353 | 0 | assert(pos >= 0); |
354 | 0 | } |
355 | |
|
356 | 0 | v_cells[s1].pos_set(i, pos); |
357 | 0 | v_cells[s1].seq_add(i, seq_id_dst); |
358 | |
|
359 | 0 | if (shift != 0) { |
360 | 0 | v_cells[s1].pos_add(i, shift); |
361 | 0 | } |
362 | |
|
363 | 0 | v_cells[s1].ext_set(i, ext); |
364 | 0 | } |
365 | 0 | } |
366 | |
|
367 | 0 | v_heads[s1] = v_heads[s0]; |
368 | | |
369 | | //for (uint32_t s = 0; s < n_stream; ++s) { |
370 | | // LLAMA_LOG_WARN("%s: seq %d: min = %d, max = %d\n", __func__, s, v_cells[s].seq_pos_min(s), v_cells[s].seq_pos_max(s)); |
371 | | //} |
372 | 0 | } |
373 | | |
374 | 0 | void llama_kv_cache::seq_keep(llama_seq_id seq_id) { |
375 | 0 | GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()); |
376 | |
|
377 | 0 | auto & cells = v_cells[seq_to_stream[seq_id]]; |
378 | 0 | auto & head = v_heads[seq_to_stream[seq_id]]; |
379 | |
|
380 | 0 | uint32_t new_head = cells.size(); |
381 | |
|
382 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
383 | 0 | if (cells.seq_keep(i, seq_id)) { |
384 | 0 | if (new_head == cells.size()) { |
385 | 0 | new_head = i; |
386 | 0 | } |
387 | 0 | } |
388 | 0 | } |
389 | | |
390 | | // If we freed up a slot, set head to it so searching can start there. |
391 | 0 | if (new_head != cells.size() && new_head < head) { |
392 | 0 | head = new_head; |
393 | 0 | } |
394 | 0 | } |
395 | | |
396 | 0 | void llama_kv_cache::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { |
397 | 0 | GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()); |
398 | 0 | GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_add() is only supported for n_pos_per_embd() == 1"); |
399 | |
|
400 | 0 | auto & cells = v_cells[seq_to_stream[seq_id]]; |
401 | 0 | auto & head = v_heads[seq_to_stream[seq_id]]; |
402 | |
|
403 | 0 | if (shift == 0) { |
404 | 0 | return; |
405 | 0 | } |
406 | | |
407 | 0 | uint32_t new_head = cells.size(); |
408 | |
|
409 | 0 | if (p0 < 0) { |
410 | 0 | p0 = 0; |
411 | 0 | } |
412 | |
|
413 | 0 | if (p1 < 0) { |
414 | 0 | p1 = std::numeric_limits<llama_pos>::max(); |
415 | 0 | } |
416 | | |
417 | | // If there is no range then return early to avoid looping over all cells. |
418 | 0 | if (p0 == p1) { |
419 | 0 | return; |
420 | 0 | } |
421 | | |
422 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
423 | 0 | if (!cells.pos_in(i, p0, p1)) { |
424 | 0 | continue; |
425 | 0 | } |
426 | | |
427 | 0 | if (cells.seq_has(i, seq_id)) { |
428 | 0 | if (cells.pos_add(i, shift)) { |
429 | 0 | if (new_head == cells.size()) { |
430 | 0 | new_head = i; |
431 | 0 | } |
432 | 0 | } |
433 | 0 | } |
434 | 0 | } |
435 | | |
436 | | // If we freed up a slot, set head to it so searching can start there. |
437 | | // Otherwise we just start the next search from the beginning. |
438 | 0 | head = new_head != cells.size() ? new_head : 0; |
439 | 0 | } |
440 | | |
441 | 0 | void llama_kv_cache::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { |
442 | 0 | GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()); |
443 | 0 | GGML_ASSERT(hparams.n_pos_per_embd() == 1 && "seq_div() is only supported for n_pos_per_embd() == 1"); |
444 | |
|
445 | 0 | auto & cells = v_cells[seq_to_stream[seq_id]]; |
446 | |
|
447 | 0 | if (d == 1) { |
448 | 0 | return; |
449 | 0 | } |
450 | | |
451 | 0 | if (p0 < 0) { |
452 | 0 | p0 = 0; |
453 | 0 | } |
454 | |
|
455 | 0 | if (p1 < 0) { |
456 | 0 | p1 = std::numeric_limits<llama_pos>::max(); |
457 | 0 | } |
458 | | |
459 | | // If there is no range then return early to avoid looping over the cache. |
460 | 0 | if (p0 == p1) { |
461 | 0 | return; |
462 | 0 | } |
463 | | |
464 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
465 | 0 | if (!cells.pos_in(i, p0, p1)) { |
466 | 0 | continue; |
467 | 0 | } |
468 | | |
469 | 0 | if (cells.seq_has(i, seq_id)) { |
470 | 0 | cells.pos_div(i, d); |
471 | 0 | } |
472 | 0 | } |
473 | 0 | } |
474 | | |
475 | 0 | llama_pos llama_kv_cache::seq_pos_min(llama_seq_id seq_id) const { |
476 | 0 | GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()); |
477 | |
|
478 | 0 | const auto & cells = v_cells[seq_to_stream[seq_id]]; |
479 | |
|
480 | 0 | return cells.seq_pos_min(seq_id); |
481 | 0 | } |
482 | | |
483 | 0 | llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const { |
484 | 0 | GGML_ASSERT(seq_id >= 0 && (size_t) seq_id < seq_to_stream.size()); |
485 | |
|
486 | 0 | const auto & cells = v_cells[seq_to_stream[seq_id]]; |
487 | |
|
488 | 0 | return cells.seq_pos_max(seq_id); |
489 | 0 | } |
490 | | |
491 | 0 | std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const { |
492 | 0 | std::map<ggml_backend_buffer_type_t, size_t> ret; |
493 | 0 | for (const auto & [ctx, buf] : ctxs_bufs) { |
494 | 0 | ggml_backend_buffer_type_t buft = ggml_backend_buffer_get_type(buf.get()); |
495 | |
|
496 | 0 | if (hparams.no_alloc) { |
497 | 0 | GGML_ASSERT(ggml_backend_buffer_get_base(buf.get()) == nullptr); |
498 | 0 | ret[buft] += ggml_backend_alloc_ctx_tensors_from_buft_size(ctx.get(), buft); |
499 | 0 | } else { |
500 | | // GGML_ASSERT(ggml_backend_buffer_get_base(buf.get()) != nullptr); // multi_buffer does not have a defined base |
501 | 0 | ret[buft] += ggml_backend_buffer_get_size(buf.get()); |
502 | 0 | } |
503 | 0 | } |
504 | |
|
505 | 0 | return ret; |
506 | 0 | } |
507 | | |
508 | | llama_memory_context_ptr llama_kv_cache::init_batch( |
509 | | llama_batch_allocr & balloc, |
510 | | uint32_t n_ubatch, |
511 | 0 | bool embd_all) { |
512 | 0 | GGML_UNUSED(embd_all); |
513 | |
|
514 | 0 | do { |
515 | 0 | balloc.split_reset(); |
516 | |
|
517 | 0 | std::vector<llama_ubatch> ubatches; |
518 | 0 | while (true) { |
519 | 0 | auto ubatch = n_stream == 1 ? balloc.split_simple(n_ubatch) : balloc.split_equal(n_ubatch, true); |
520 | |
|
521 | 0 | if (ubatch.n_tokens == 0) { |
522 | 0 | break; |
523 | 0 | } |
524 | | |
525 | 0 | ubatches.push_back(std::move(ubatch)); // NOLINT |
526 | 0 | } |
527 | |
|
528 | 0 | if (balloc.get_n_used() < balloc.get_n_tokens()) { |
529 | | // failed to find a suitable split |
530 | 0 | break; |
531 | 0 | } |
532 | | |
533 | 0 | auto sinfos = prepare(ubatches); |
534 | 0 | if (sinfos.empty()) { |
535 | 0 | break; |
536 | 0 | } |
537 | | |
538 | 0 | return std::make_unique<llama_kv_cache_context>( |
539 | 0 | this, std::move(sinfos), std::move(ubatches)); |
540 | 0 | } while (false); |
541 | | |
542 | 0 | return std::make_unique<llama_kv_cache_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE); |
543 | 0 | } |
544 | | |
545 | 0 | llama_memory_context_ptr llama_kv_cache::init_full() { |
546 | 0 | return std::make_unique<llama_kv_cache_context>(this); |
547 | 0 | } |
548 | | |
549 | 0 | llama_memory_context_ptr llama_kv_cache::init_update(llama_context * lctx, bool optimize) { |
550 | 0 | GGML_UNUSED(optimize); |
551 | |
|
552 | 0 | bool do_shift = get_has_shift(); |
553 | |
|
554 | 0 | return std::make_unique<llama_kv_cache_context>(this, lctx, do_shift, std::move(sc_info)); |
555 | 0 | } |
556 | | |
557 | 0 | llama_kv_cache::slot_info_vec_t llama_kv_cache::prepare(const std::vector<llama_ubatch> & ubatches) { |
558 | 0 | llama_kv_cache::slot_info_vec_t res; |
559 | |
|
560 | 0 | struct state_t { |
561 | 0 | slot_info sinfo; // slot info for the ubatch |
562 | |
|
563 | 0 | std::vector<uint32_t> v_heads_old; // old positions of the heads, before placing the ubatch |
564 | |
|
565 | 0 | std::vector<llama_kv_cells> v_cells; // copy of the old cells, before placing the ubatch |
566 | 0 | }; |
567 | | |
568 | | // remember the old state of the cells so we can restore it in the end |
569 | 0 | std::vector<state_t> states; |
570 | |
|
571 | 0 | bool success = true; |
572 | |
|
573 | 0 | for (const auto & ubatch : ubatches) { |
574 | | // only find a suitable slot for the ubatch. don't modify the cells yet |
575 | 0 | const auto sinfo_new = find_slot(ubatch, false); |
576 | 0 | if (sinfo_new.empty()) { |
577 | 0 | success = false; |
578 | 0 | break; |
579 | 0 | } |
580 | | |
581 | | // remeber the position that we found |
582 | 0 | res.push_back(sinfo_new); |
583 | | |
584 | | // store the old state of the cells in the recovery stack |
585 | 0 | { |
586 | 0 | state_t state = { sinfo_new, v_heads, {} }; |
587 | |
|
588 | 0 | for (uint32_t s = 0; s < sinfo_new.n_stream(); ++s) { |
589 | 0 | auto & cells = v_cells[sinfo_new.strm[s]]; |
590 | |
|
591 | 0 | state.v_cells.push_back(cells.cp(sinfo_new.idxs[s])); |
592 | 0 | } |
593 | |
|
594 | 0 | states.push_back(std::move(state)); |
595 | 0 | } |
596 | | |
597 | | // now emplace the ubatch |
598 | 0 | apply_ubatch(sinfo_new, ubatch); |
599 | 0 | } |
600 | |
|
601 | 0 | GGML_ASSERT(!states.empty() || !success); |
602 | | |
603 | | // iterate backwards and restore the cells to their original state |
604 | 0 | for (auto it = states.rbegin(); it != states.rend(); ++it) { |
605 | 0 | const auto & sinfo = it->sinfo; |
606 | |
|
607 | 0 | for (uint32_t s = 0; s < sinfo.n_stream(); ++s) { |
608 | 0 | auto & cells = v_cells[sinfo.strm[s]]; |
609 | 0 | auto & head = v_heads[sinfo.strm[s]]; |
610 | |
|
611 | 0 | cells.set(sinfo.idxs[s], it->v_cells[s]); |
612 | 0 | head = it->v_heads_old[s]; |
613 | 0 | } |
614 | 0 | } |
615 | |
|
616 | 0 | if (!success) { |
617 | 0 | return {}; |
618 | 0 | } |
619 | | |
620 | 0 | return res; |
621 | 0 | } |
622 | | |
623 | 0 | bool llama_kv_cache::update(llama_context * lctx, bool do_shift, const stream_copy_info & sc_info) { |
624 | 0 | bool updated = false; |
625 | |
|
626 | 0 | auto * sched = lctx->get_sched(); |
627 | |
|
628 | 0 | if (!sc_info.empty()) { |
629 | 0 | assert(n_stream > 1 && "stream copy should never happen with a single stream"); |
630 | |
|
631 | 0 | llama_synchronize(lctx); |
632 | |
|
633 | 0 | const size_t n_copy = sc_info.ssrc.size(); |
634 | |
|
635 | 0 | for (size_t i = 0; i < n_copy; ++i) { |
636 | 0 | const auto ssrc = sc_info.ssrc[i]; |
637 | 0 | const auto sdst = sc_info.sdst[i]; |
638 | |
|
639 | 0 | assert(ssrc < n_stream); |
640 | 0 | assert(sdst < n_stream); |
641 | |
|
642 | 0 | LLAMA_LOG_DEBUG("%s: copying KV buffer: stream %d to stream %d\n", __func__, ssrc, sdst); |
643 | |
|
644 | 0 | assert(ssrc != sdst); |
645 | |
|
646 | 0 | for (uint32_t il = 0; il < layers.size(); ++il) { |
647 | 0 | const auto & layer = layers[il]; |
648 | |
|
649 | 0 | ggml_backend_tensor_copy(layer.k_stream[ssrc], layer.k_stream[sdst]); |
650 | 0 | ggml_backend_tensor_copy(layer.v_stream[ssrc], layer.v_stream[sdst]); |
651 | 0 | } |
652 | 0 | } |
653 | 0 | } |
654 | |
|
655 | 0 | if (do_shift) { |
656 | 0 | if (!get_can_shift()) { |
657 | 0 | GGML_ABORT("The current KV cache / model configuration does not support K-shift"); |
658 | 0 | } |
659 | |
|
660 | 0 | LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__); |
661 | | |
662 | | // apply K-shift if needed |
663 | 0 | if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { |
664 | 0 | ggml_backend_sched_reset(sched); |
665 | |
|
666 | 0 | auto * res = lctx->get_gf_res_reserve(); |
667 | |
|
668 | 0 | res->reset(); |
669 | |
|
670 | 0 | auto * gf = build_graph_shift(res, lctx); |
671 | 0 | if (!ggml_backend_sched_alloc_graph(sched, gf)) { |
672 | 0 | LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__); |
673 | 0 | return updated; |
674 | 0 | } |
675 | | |
676 | 0 | res->set_inputs(nullptr); |
677 | |
|
678 | 0 | if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) { |
679 | 0 | LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__); |
680 | 0 | return updated; |
681 | 0 | } |
682 | | |
683 | 0 | updated = true; |
684 | 0 | } |
685 | | |
686 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
687 | 0 | auto & cells = v_cells[s]; |
688 | |
|
689 | 0 | cells.reset_shift(); |
690 | 0 | } |
691 | 0 | } |
692 | | |
693 | 0 | return updated; |
694 | 0 | } |
695 | | |
696 | 0 | llama_kv_cache::slot_info llama_kv_cache::find_slot(const llama_ubatch & ubatch, bool cont) const { |
697 | |
|
698 | 0 | if (debug > 0) { |
699 | 0 | for (uint32_t s = 0; s < ubatch.n_seqs_unq; ++s) { |
700 | 0 | const auto seq_id = ubatch.seq_id_unq[s]; |
701 | 0 | const auto stream_id = seq_to_stream[seq_id]; |
702 | 0 | const auto & cells = v_cells[stream_id]; |
703 | 0 | const uint32_t head_cur = v_heads[stream_id]; |
704 | |
|
705 | 0 | LLAMA_LOG_DEBUG("%s: stream[%d], n = %5d, used = %5d, head = %5d, size = %5d, n_swa = %5d\n", |
706 | 0 | __func__, stream_id, cells.used_max_p1(), cells.get_used(), head_cur, get_size(), n_swa); |
707 | |
|
708 | 0 | if ((debug == 2 && n_swa > 0) || debug > 2) { |
709 | 0 | std::string ss; |
710 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
711 | 0 | if (cells.is_empty(i)) { |
712 | 0 | ss += '.'; |
713 | 0 | } else { |
714 | 0 | assert(cells.seq_count(i) >= 1); |
715 | |
|
716 | 0 | if (cells.seq_count(i) == 1) { |
717 | 0 | ss += std::to_string(cells.seq_get(i)); |
718 | 0 | } else { |
719 | 0 | ss += 'M'; |
720 | 0 | } |
721 | 0 | } |
722 | 0 | if (i%256 == 255) { |
723 | 0 | ss += " *"; |
724 | 0 | ss += '\n'; |
725 | 0 | } |
726 | 0 | } |
727 | 0 | LLAMA_LOG_DEBUG("\n%s\n", ss.c_str()); |
728 | 0 | } |
729 | |
|
730 | 0 | if ((debug == 2 && n_swa > 0) || debug > 2) { |
731 | 0 | std::string ss; |
732 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
733 | 0 | std::string cur; |
734 | 0 | if (cells.is_empty(i)) { |
735 | 0 | cur = '.'; |
736 | 0 | } else { |
737 | 0 | cur = std::to_string(cells.pos_get(i)); |
738 | 0 | } |
739 | 0 | const int n = cur.size(); |
740 | 0 | for (int j = 0; j < 5 - n; ++j) { |
741 | 0 | cur += ' '; |
742 | 0 | } |
743 | 0 | ss += cur; |
744 | 0 | if (i%256 == 255) { |
745 | 0 | ss += " *"; |
746 | 0 | } |
747 | 0 | if (i%64 == 63) { |
748 | 0 | ss += '\n'; |
749 | 0 | } |
750 | 0 | } |
751 | 0 | LLAMA_LOG_DEBUG("\n%s\n", ss.c_str()); |
752 | 0 | } |
753 | |
|
754 | 0 | for (int s = 0; s < LLAMA_MAX_SEQ; ++s) { |
755 | 0 | if (cells.seq_pos_min(s) < 0) { |
756 | 0 | continue; |
757 | 0 | } |
758 | | |
759 | 0 | LLAMA_LOG_DEBUG("%s: stream[%d] min[%d] = %5d, max[%d] = %5d\n", __func__, stream_id, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s)); |
760 | 0 | } |
761 | 0 | } |
762 | 0 | } |
763 | |
|
764 | 0 | uint32_t n_tokens = ubatch.n_tokens; |
765 | 0 | uint32_t n_seqs = 1; |
766 | |
|
767 | 0 | if (n_stream > 1) { |
768 | 0 | GGML_ASSERT(n_tokens % ubatch.n_seqs_unq == 0); |
769 | |
|
770 | 0 | n_seqs = ubatch.n_seqs_unq; |
771 | 0 | n_tokens = n_tokens / n_seqs; |
772 | 0 | } |
773 | |
|
774 | 0 | slot_info res = { |
775 | 0 | /*.s0 =*/ LLAMA_MAX_SEQ, |
776 | 0 | /*.s1 =*/ 0, |
777 | 0 | /*.strm =*/ { }, |
778 | 0 | /*.idxs =*/ { }, |
779 | 0 | }; |
780 | |
|
781 | 0 | res.resize(n_seqs); |
782 | |
|
783 | 0 | for (uint32_t s = 0; s < n_seqs; ++s) { |
784 | 0 | const auto seq_id = ubatch.seq_id_unq[s]; |
785 | |
|
786 | 0 | if (n_stream > 1) { |
787 | 0 | GGML_ASSERT(ubatch.n_seq_id[s*n_tokens] == 1); |
788 | 0 | GGML_ASSERT(ubatch.seq_id [s*n_tokens][0] == seq_id); |
789 | 0 | } |
790 | |
|
791 | 0 | res.s0 = std::min<uint32_t>(res.s0, seq_to_stream[seq_id]); |
792 | 0 | res.s1 = std::max<uint32_t>(res.s1, seq_to_stream[seq_id]); |
793 | |
|
794 | 0 | res.strm[s] = seq_to_stream[seq_id]; |
795 | 0 | res.idxs[s].reserve(n_tokens); |
796 | |
|
797 | 0 | const auto & cells = v_cells[seq_to_stream[seq_id]]; |
798 | |
|
799 | 0 | uint32_t head_cur = v_heads[seq_to_stream[seq_id]]; |
800 | | |
801 | | // if we have enough unused cells before the current head -> |
802 | | // better to start searching from the beginning of the cache, hoping to fill it |
803 | 0 | if (head_cur > cells.get_used() + 2*n_tokens) { |
804 | 0 | head_cur = 0; |
805 | 0 | } |
806 | |
|
807 | 0 | if (n_tokens > cells.size()) { |
808 | 0 | LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size()); |
809 | 0 | return { }; |
810 | 0 | } |
811 | | |
812 | 0 | uint32_t n_tested = 0; |
813 | | |
814 | | // for continuous slots, we test that all tokens in the ubatch fit, starting from the current head |
815 | | // for non-continuous slots, we test the tokens one by one |
816 | 0 | const uint32_t n_test = cont ? n_tokens : 1; |
817 | |
|
818 | 0 | while (true) { |
819 | 0 | if (head_cur + n_test > cells.size()) { |
820 | 0 | n_tested += cells.size() - head_cur; |
821 | 0 | head_cur = 0; |
822 | 0 | continue; |
823 | 0 | } |
824 | | |
825 | 0 | for (uint32_t i = 0; i < n_test; i++) { |
826 | 0 | const auto idx = head_cur; |
827 | |
|
828 | 0 | head_cur++; |
829 | 0 | n_tested++; |
830 | | |
831 | | //const llama_pos pos = ubatch.pos[i]; |
832 | | //const llama_seq_id seq_id = ubatch.seq_id[i][0]; |
833 | | |
834 | | // can we use this cell? either: |
835 | | // - the cell is empty |
836 | | // - the cell is occupied only by one sequence: |
837 | | // - (disabled) mask causally, if the sequence is the same as the one we are inserting |
838 | | // - mask SWA, using current max pos for that sequence in the cache |
839 | | // always insert in the cell with minimum pos |
840 | 0 | bool can_use = cells.is_empty(idx); |
841 | |
|
842 | 0 | if (!can_use && cells.seq_count(idx) == 1) { |
843 | 0 | const llama_pos pos_cell = cells.pos_get(idx); |
844 | | |
845 | | // (disabled) causal mask |
846 | | // note: it's better to purge any "future" tokens beforehand |
847 | | //if (cells.seq_has(idx, seq_id)) { |
848 | | // can_use = pos_cell >= pos; |
849 | | //} |
850 | |
|
851 | 0 | if (!can_use) { |
852 | 0 | const llama_seq_id seq_id_cell = cells.seq_get(idx); |
853 | | |
854 | | // SWA mask |
855 | 0 | if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) { |
856 | 0 | can_use = true; |
857 | 0 | } |
858 | 0 | } |
859 | 0 | } |
860 | |
|
861 | 0 | if (can_use) { |
862 | 0 | res.idxs[s].push_back(idx); |
863 | 0 | } else { |
864 | 0 | if (cont) { |
865 | 0 | break; |
866 | 0 | } |
867 | 0 | } |
868 | 0 | } |
869 | |
|
870 | 0 | if (res.idxs[s].size() == n_tokens) { |
871 | 0 | break; |
872 | 0 | } |
873 | | |
874 | 0 | if (cont) { |
875 | 0 | res.idxs[s].clear(); |
876 | 0 | } |
877 | |
|
878 | 0 | if (n_tested >= cells.size()) { |
879 | | //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); |
880 | 0 | return { }; |
881 | 0 | } |
882 | 0 | } |
883 | | |
884 | | // we didn't find a suitable slot - return empty result |
885 | 0 | if (res.idxs[s].size() < n_tokens) { |
886 | 0 | return { }; |
887 | 0 | } |
888 | 0 | } |
889 | | |
890 | 0 | assert(res.s1 >= res.s0); |
891 | |
|
892 | 0 | return res; |
893 | 0 | } |
894 | | |
895 | 0 | void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) { |
896 | | // keep track of the max sequence position that we would overwrite with this ubatch |
897 | | // for non-SWA cache, this would be always empty |
898 | 0 | llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ]; |
899 | 0 | for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) { |
900 | 0 | seq_pos_max_rm[s] = -1; |
901 | 0 | } |
902 | |
|
903 | 0 | assert(ubatch.n_tokens == sinfo.n_stream()*sinfo.size()); |
904 | |
|
905 | 0 | for (uint32_t s = 0; s < sinfo.n_stream(); ++s) { |
906 | 0 | for (uint32_t ii = 0; ii < sinfo.size(); ++ii) { |
907 | 0 | const uint32_t i = s*sinfo.size() + ii; |
908 | |
|
909 | 0 | auto & cells = v_cells[sinfo.strm[s]]; |
910 | |
|
911 | 0 | const auto idx = sinfo.idxs[s][ii]; |
912 | |
|
913 | 0 | if (!cells.is_empty(idx)) { |
914 | 0 | assert(cells.seq_count(idx) == 1); |
915 | |
|
916 | 0 | const llama_seq_id seq_id = cells.seq_get(idx); |
917 | 0 | const llama_pos pos = cells.pos_get(idx); |
918 | |
|
919 | 0 | seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos); |
920 | |
|
921 | 0 | cells.rm(idx); |
922 | 0 | } |
923 | |
|
924 | 0 | cells.pos_set(idx, ubatch.pos[i]); |
925 | |
|
926 | 0 | if (ubatch.is_pos_2d()) { |
927 | 0 | llama_kv_cell_ext ext { |
928 | 0 | /*.x =*/ ubatch.pos[i + ubatch.n_tokens*2], |
929 | 0 | /*.y =*/ ubatch.pos[i + ubatch.n_tokens], |
930 | 0 | }; |
931 | 0 | cells.ext_set(idx, ext); |
932 | 0 | } |
933 | |
|
934 | 0 | for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) { |
935 | 0 | cells.seq_add(idx, ubatch.seq_id[i][s]); |
936 | 0 | } |
937 | 0 | } |
938 | 0 | } |
939 | | |
940 | | // note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence |
941 | | // will be present in the cache. so we have to purge any position which is less than those we would overwrite |
942 | | // ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092 |
943 | 0 | for (uint32_t s = 0; s < LLAMA_MAX_SEQ; ++s) { |
944 | 0 | if (seq_pos_max_rm[s] == -1) { |
945 | 0 | continue; |
946 | 0 | } |
947 | | |
948 | 0 | GGML_ASSERT(s < seq_to_stream.size()); |
949 | |
|
950 | 0 | auto & cells = v_cells[seq_to_stream[s]]; |
951 | |
|
952 | 0 | if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) { |
953 | 0 | LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n", |
954 | 0 | __func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s); |
955 | |
|
956 | 0 | seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1); |
957 | 0 | } |
958 | 0 | } |
959 | | |
960 | | // move the head at the end of the slot |
961 | 0 | for (uint32_t s = 0; s < sinfo.n_stream(); ++s) { |
962 | 0 | auto & head = v_heads[sinfo.strm[s]]; |
963 | |
|
964 | 0 | head = sinfo.idxs[s].back() + 1; |
965 | 0 | } |
966 | 0 | } |
967 | | |
968 | 0 | bool llama_kv_cache::get_can_shift() const { |
969 | 0 | return true; |
970 | 0 | } |
971 | | |
972 | 0 | uint32_t llama_kv_cache::get_size() const { |
973 | 0 | const auto & cells = v_cells[seq_to_stream[0]]; |
974 | |
|
975 | 0 | return cells.size(); |
976 | 0 | } |
977 | | |
978 | 0 | uint32_t llama_kv_cache::get_n_stream() const { |
979 | 0 | return n_stream; |
980 | 0 | } |
981 | | |
982 | 0 | bool llama_kv_cache::get_has_shift() const { |
983 | 0 | bool result = false; |
984 | |
|
985 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
986 | 0 | result |= v_cells[s].get_has_shift(); |
987 | 0 | } |
988 | |
|
989 | 0 | return result; |
990 | 0 | } |
991 | | |
992 | 0 | uint32_t llama_kv_cache::get_n_kv(const slot_info & sinfo) const { |
993 | 0 | uint32_t result = 0; |
994 | | |
995 | | // pad the n_kv value so that the graph remains constant across batches and can be reused |
996 | | // note: this also helps some backends with performance (f.ex https://github.com/ggml-org/llama.cpp/pull/16812#issuecomment-3455112220) |
997 | 0 | const uint32_t n_pad_cur = std::max(n_pad, 256u); |
998 | |
|
999 | 0 | for (uint32_t s = 0; s < sinfo.n_stream(); ++s) { |
1000 | 0 | const auto & cells = v_cells[sinfo.strm[s]]; |
1001 | |
|
1002 | 0 | result = std::max(std::min(cells.size(), std::max(n_pad_cur, GGML_PAD(cells.used_max_p1(), n_pad_cur))), result); |
1003 | 0 | } |
1004 | |
|
1005 | 0 | return result; |
1006 | 0 | } |
1007 | | |
1008 | 0 | ggml_tensor * llama_kv_cache::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const { |
1009 | 0 | const int32_t ikv = map_layer_ids.at(il); |
1010 | |
|
1011 | 0 | auto * k = layers[ikv].k; |
1012 | |
|
1013 | 0 | const uint64_t kv_size = get_size(); |
1014 | 0 | const uint64_t n_embd_k_gqa = k->ne[0]; |
1015 | |
|
1016 | 0 | assert(n_embd_k_gqa == hparams.n_embd_k_gqa(il)); |
1017 | |
|
1018 | 0 | const uint32_t ns = sinfo.s1 - sinfo.s0 + 1; |
1019 | |
|
1020 | 0 | return ggml_view_4d(ctx, k, |
1021 | 0 | hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, ns, |
1022 | 0 | ggml_row_size(k->type, hparams.n_embd_head_k), |
1023 | 0 | ggml_row_size(k->type, n_embd_k_gqa), |
1024 | 0 | ggml_row_size(k->type, n_embd_k_gqa*kv_size), |
1025 | 0 | ggml_row_size(k->type, n_embd_k_gqa*kv_size)*sinfo.s0); |
1026 | 0 | } |
1027 | | |
1028 | 0 | ggml_tensor * llama_kv_cache::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv, const slot_info & sinfo) const { |
1029 | 0 | const int32_t ikv = map_layer_ids.at(il); |
1030 | |
|
1031 | 0 | auto * v = layers[ikv].v; |
1032 | |
|
1033 | 0 | const uint64_t kv_size = get_size(); |
1034 | 0 | const uint64_t n_embd_v_gqa = v->ne[0]; |
1035 | | |
1036 | | // [TAG_V_CACHE_VARIABLE] |
1037 | 0 | assert(n_embd_v_gqa >= hparams.n_embd_v_gqa(il)); |
1038 | |
|
1039 | 0 | const uint32_t ns = sinfo.s1 - sinfo.s0 + 1; |
1040 | |
|
1041 | 0 | if (!v_trans) { |
1042 | | // note: v->nb[1] <= v->nb[2] |
1043 | 0 | return ggml_view_4d(ctx, v, |
1044 | 0 | hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, ns, |
1045 | 0 | ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1] |
1046 | 0 | ggml_row_size(v->type, n_embd_v_gqa), // v->nb[2] |
1047 | 0 | ggml_row_size(v->type, n_embd_v_gqa*kv_size), // v->nb[3] |
1048 | 0 | ggml_row_size(v->type, n_embd_v_gqa*kv_size)*sinfo.s0); |
1049 | 0 | } |
1050 | | |
1051 | | // note: v->nb[1] > v->nb[2] |
1052 | 0 | return ggml_view_4d(ctx, v, |
1053 | 0 | n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, ns, |
1054 | 0 | ggml_row_size(v->type, kv_size*hparams.n_embd_head_v), // v->nb[1] |
1055 | 0 | ggml_row_size(v->type, kv_size), // v->nb[2] |
1056 | 0 | ggml_row_size(v->type, kv_size*n_embd_v_gqa), // v->nb[3] |
1057 | 0 | ggml_row_size(v->type, kv_size*n_embd_v_gqa)*sinfo.s0); |
1058 | 0 | } |
1059 | | |
1060 | 0 | ggml_tensor * llama_kv_cache::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const { |
1061 | 0 | GGML_UNUSED(sinfo); |
1062 | |
|
1063 | 0 | const int32_t ikv = map_layer_ids.at(il); |
1064 | |
|
1065 | 0 | ggml_tensor * k = layers[ikv].k; |
1066 | |
|
1067 | 0 | const int64_t n_embd_head = k_cur->ne[0]; |
1068 | 0 | const int64_t n_head = k_cur->ne[1]; |
1069 | 0 | const int64_t n_tokens = k_cur->ne[2]; |
1070 | |
|
1071 | 0 | const int64_t n_embd_gqa = n_embd_head*n_head; |
1072 | | |
1073 | | // we can merge dims 0 and 1 |
1074 | | // TODO: add ggml helper function for this? |
1075 | 0 | GGML_ASSERT(ggml_row_size(k_cur->type, n_embd_head) == k_cur->nb[1]); |
1076 | |
|
1077 | 0 | k_cur = ggml_view_2d(ctx, k_cur, n_embd_gqa, n_tokens, k_cur->nb[2], 0); |
1078 | |
|
1079 | 0 | const int64_t n_stream = k->ne[2]; |
1080 | |
|
1081 | 0 | if (n_stream > 1) { |
1082 | 0 | const int64_t kv_size = get_size(); |
1083 | |
|
1084 | 0 | assert(n_embd_gqa == k->ne[0]); |
1085 | 0 | assert(kv_size == k->ne[1]); |
1086 | | |
1087 | | // merge the buffer across all streams because the idxs are global |
1088 | 0 | k = ggml_reshape_2d(ctx, k, n_embd_gqa, kv_size*n_stream); |
1089 | 0 | } |
1090 | | |
1091 | | // store the current K values into the cache |
1092 | 0 | return ggml_set_rows(ctx, k, k_cur, k_idxs); |
1093 | 0 | } |
1094 | | |
1095 | 0 | ggml_tensor * llama_kv_cache::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const { |
1096 | 0 | GGML_UNUSED(sinfo); |
1097 | |
|
1098 | 0 | const int32_t ikv = map_layer_ids.at(il); |
1099 | |
|
1100 | 0 | auto * v = layers[ikv].v; |
1101 | |
|
1102 | 0 | const int64_t n_embd_head = v_cur->ne[0]; |
1103 | 0 | const int64_t n_head = v_cur->ne[1]; |
1104 | 0 | const int64_t n_tokens = v_cur->ne[2]; |
1105 | |
|
1106 | 0 | const int64_t n_embd_gqa = n_embd_head*n_head; |
1107 | | |
1108 | | // we can merge dims 0 and 1 |
1109 | 0 | GGML_ASSERT(ggml_row_size(v_cur->type, n_embd_head) == v_cur->nb[1]); |
1110 | |
|
1111 | 0 | const int64_t n_stream = v->ne[2]; |
1112 | | |
1113 | | // take this branch when FA is enabled (the V cache is not transposed) |
1114 | 0 | if (!v_trans) { |
1115 | 0 | v_cur = ggml_view_2d(ctx, v_cur, n_embd_gqa, n_tokens, v_cur->nb[2], 0); |
1116 | |
|
1117 | 0 | if (n_stream > 1) { |
1118 | 0 | const int64_t kv_size = get_size(); |
1119 | |
|
1120 | 0 | assert(n_embd_gqa == v->ne[0]); |
1121 | 0 | assert(kv_size == v->ne[1]); |
1122 | | |
1123 | | // merge the buffer across all streams because the idxs are global |
1124 | 0 | v = ggml_reshape_2d(ctx, v, n_embd_gqa, kv_size*n_stream); |
1125 | 0 | } |
1126 | |
|
1127 | 0 | return ggml_set_rows(ctx, v, v_cur, v_idxs); |
1128 | 0 | } |
1129 | | |
1130 | 0 | if (ggml_row_size(v_cur->type, n_embd_gqa) == v_cur->nb[2]) { |
1131 | | // we can merge dims 0, 1 and 2 |
1132 | 0 | v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_gqa, n_tokens); |
1133 | 0 | } else { |
1134 | | // otherwise -> make a copy to get contiguous data |
1135 | 0 | v_cur = ggml_cont_2d (ctx, v_cur, n_embd_gqa, n_tokens); |
1136 | 0 | } |
1137 | | |
1138 | | // [TAG_V_CACHE_VARIABLE] |
1139 | 0 | if (n_embd_gqa < v->ne[0]) { |
1140 | 0 | v_cur = ggml_pad(ctx, v_cur, v->ne[0] - n_embd_gqa, 0, 0, 0); |
1141 | 0 | } |
1142 | | |
1143 | | // in this branch the v_idxs are constructed in such a way that each row is a single head element |
1144 | 0 | ggml_tensor * v_view = ggml_reshape_2d(ctx, v, 1, ggml_nelements(v)); |
1145 | |
|
1146 | 0 | v_cur = ggml_reshape_2d(ctx, v_cur, 1, ggml_nelements(v_cur)); |
1147 | |
|
1148 | 0 | return ggml_set_rows(ctx, v_view, v_cur, v_idxs); |
1149 | 0 | } |
1150 | | |
1151 | 0 | ggml_tensor * llama_kv_cache::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const { |
1152 | 0 | const uint32_t n_tokens = ubatch.n_tokens; |
1153 | |
|
1154 | 0 | ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens); |
1155 | |
|
1156 | 0 | ggml_set_input(k_idxs); |
1157 | |
|
1158 | 0 | return k_idxs; |
1159 | 0 | } |
1160 | | |
1161 | 0 | ggml_tensor * llama_kv_cache::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const { |
1162 | 0 | const uint32_t n_tokens = ubatch.n_tokens; |
1163 | |
|
1164 | 0 | ggml_tensor * v_idxs; |
1165 | |
|
1166 | 0 | if (!v_trans) { |
1167 | 0 | v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens); |
1168 | 0 | } else { |
1169 | 0 | v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens*hparams.n_embd_v_gqa_max()); |
1170 | 0 | } |
1171 | |
|
1172 | 0 | ggml_set_input(v_idxs); |
1173 | |
|
1174 | 0 | return v_idxs; |
1175 | 0 | } |
1176 | | |
1177 | 0 | void llama_kv_cache::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const { |
1178 | 0 | const uint32_t n_tokens = ubatch->n_tokens; |
1179 | 0 | GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream()); |
1180 | |
|
1181 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); |
1182 | 0 | int64_t * data = (int64_t *) dst->data; |
1183 | |
|
1184 | 0 | for (uint32_t s = 0; s < sinfo.n_stream(); ++s) { |
1185 | 0 | const int64_t offs = sinfo.strm[s]*get_size(); |
1186 | |
|
1187 | 0 | for (uint32_t i = 0; i < sinfo.size(); ++i) { |
1188 | 0 | data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i]; |
1189 | 0 | } |
1190 | 0 | } |
1191 | 0 | } |
1192 | | |
1193 | 0 | void llama_kv_cache::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const { |
1194 | 0 | const uint32_t n_tokens = ubatch->n_tokens; |
1195 | 0 | GGML_ASSERT(n_tokens == (int64_t) sinfo.size()*sinfo.n_stream()); |
1196 | |
|
1197 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); |
1198 | 0 | int64_t * data = (int64_t *) dst->data; |
1199 | |
|
1200 | 0 | if (!v_trans) { |
1201 | 0 | for (uint32_t s = 0; s < sinfo.n_stream(); ++s) { |
1202 | 0 | const int64_t offs = sinfo.strm[s]*get_size(); |
1203 | |
|
1204 | 0 | for (uint32_t i = 0; i < sinfo.size(); ++i) { |
1205 | 0 | data[s*sinfo.size() + i] = offs + sinfo.idxs[s][i]; |
1206 | 0 | } |
1207 | 0 | } |
1208 | 0 | } else { |
1209 | | // note: the V cache is transposed when not using flash attention |
1210 | 0 | const int64_t kv_size = get_size(); |
1211 | |
|
1212 | 0 | const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa_max(); |
1213 | |
|
1214 | 0 | for (uint32_t s = 0; s < sinfo.n_stream(); ++s) { |
1215 | 0 | const int64_t offs = sinfo.strm[s]*kv_size*n_embd_v_gqa; |
1216 | |
|
1217 | 0 | for (uint32_t i = 0; i < sinfo.size(); ++i) { |
1218 | 0 | for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { |
1219 | 0 | data[s*sinfo.size()*n_embd_v_gqa + i*n_embd_v_gqa + j] = offs + j*kv_size + sinfo.idxs[s][i]; |
1220 | 0 | } |
1221 | 0 | } |
1222 | 0 | } |
1223 | 0 | } |
1224 | 0 | } |
1225 | | |
1226 | 0 | void llama_kv_cache::set_input_k_shift(ggml_tensor * dst) const { |
1227 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); |
1228 | |
|
1229 | 0 | int32_t * data = (int32_t *) dst->data; |
1230 | |
|
1231 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
1232 | 0 | const auto & cells = v_cells[s]; |
1233 | |
|
1234 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
1235 | 0 | data[s*cells.size() + i] = cells.is_empty(i) ? 0 : cells.get_shift(i); |
1236 | 0 | } |
1237 | 0 | } |
1238 | 0 | } |
1239 | | |
1240 | 0 | void llama_kv_cache::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { |
1241 | 0 | const uint32_t n_tokens = ubatch->n_tokens; |
1242 | |
|
1243 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); |
1244 | 0 | float * data = (float *) dst->data; |
1245 | |
|
1246 | 0 | const int64_t n_kv = dst->ne[0]; |
1247 | 0 | const int64_t n_stream = dst->ne[3]; // num streams in the current ubatch |
1248 | |
|
1249 | 0 | GGML_ASSERT(n_tokens%n_stream == 0); |
1250 | | |
1251 | | // n_tps == n_tokens_per_stream |
1252 | 0 | const int64_t n_tps = n_tokens/n_stream; |
1253 | |
|
1254 | 0 | std::fill(data, data + ggml_nelements(dst), -INFINITY); |
1255 | | |
1256 | | // Use only the previous KV cells of the correct sequence for each token of the ubatch. |
1257 | | // It's assumed that if a token in the batch has multiple sequences, they are equivalent. |
1258 | | // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch: |
1259 | | // Causal mask: |
1260 | | // xxx------- |
1261 | | // xxxx------ |
1262 | | // xxxxx----- |
1263 | | // Non-causal mask: |
1264 | | // xxxxx----- |
1265 | | // xxxxx----- |
1266 | | // xxxxx----- |
1267 | | // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615 |
1268 | | // TODO: optimize this section |
1269 | 0 | for (uint32_t h = 0; h < 1; ++h) { |
1270 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
1271 | 0 | for (uint32_t ii = 0; ii < n_tps; ++ii) { |
1272 | 0 | const uint32_t i = s*n_tps + ii; |
1273 | |
|
1274 | 0 | const llama_seq_id seq_id = ubatch->seq_id[i][0]; |
1275 | |
|
1276 | 0 | const auto & cells = v_cells[seq_to_stream[seq_id]]; |
1277 | |
|
1278 | 0 | const llama_pos p1 = ubatch->pos[i]; |
1279 | | |
1280 | | // for M-RoPE |
1281 | 0 | const bool is_2d = ubatch->is_pos_2d(); |
1282 | 0 | const llama_pos p1_x = is_2d ? ubatch->pos[i + ubatch->n_tokens*2] : 0; |
1283 | 0 | const llama_pos p1_y = is_2d ? ubatch->pos[i + ubatch->n_tokens] : 0; |
1284 | |
|
1285 | 0 | const uint64_t idst = n_kv*(h*n_stream*n_tps + s*n_tps + ii); |
1286 | |
|
1287 | 0 | for (uint32_t j = 0; j < n_kv; ++j) { |
1288 | 0 | if (cells.is_empty(j)) { |
1289 | 0 | continue; |
1290 | 0 | } |
1291 | | |
1292 | | // mask the token if not the same sequence |
1293 | 0 | if (!cells.seq_has(j, seq_id)) { |
1294 | 0 | continue; |
1295 | 0 | } |
1296 | | |
1297 | 0 | const llama_pos p0 = cells.pos_get(j); |
1298 | | |
1299 | | // mask future tokens |
1300 | 0 | if (causal_attn && p0 > p1) { |
1301 | 0 | continue; |
1302 | 0 | } |
1303 | | |
1304 | | // M-RoPE causal mask |
1305 | 0 | if (causal_attn && is_2d && p0 == p1) { |
1306 | 0 | const auto & p0_ext = cells.ext_get(j); |
1307 | 0 | if (p0_ext.is_2d_gt(p1_x, p1_y)) { |
1308 | 0 | continue; |
1309 | 0 | } |
1310 | 0 | } |
1311 | | |
1312 | | // apply SWA if any |
1313 | 0 | if (is_masked_swa(p0, p1)) { |
1314 | 0 | continue; |
1315 | 0 | } |
1316 | | |
1317 | 0 | data[idst + j] = hparams.use_alibi ? -std::abs(p0 - p1) : 0.0f; |
1318 | 0 | } |
1319 | 0 | } |
1320 | 0 | } |
1321 | 0 | } |
1322 | 0 | } |
1323 | | |
1324 | 0 | void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { |
1325 | 0 | const int64_t n_tokens = ubatch->n_tokens; |
1326 | |
|
1327 | 0 | GGML_ASSERT(n_stream == 1 && "TODO: support multiple streams"); |
1328 | 0 | const auto & cells = v_cells[0]; |
1329 | |
|
1330 | 0 | GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); |
1331 | 0 | GGML_ASSERT(!ubatch->equal_seqs()); // TODO: use ubatch->n_seqs instead of failing |
1332 | |
|
1333 | 0 | int32_t * data = (int32_t *) dst->data; |
1334 | |
|
1335 | 0 | const int32_t n_kv = dst->ne[0]; |
1336 | |
|
1337 | 0 | for (int h = 0; h < 1; ++h) { |
1338 | 0 | for (int i = 0; i < n_tokens; ++i) { |
1339 | 0 | for (int j = 0; j < n_kv; ++j) { |
1340 | | // the position when the cells is empty is irrelevant - it will be masked out later in the attention |
1341 | 0 | const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j); |
1342 | |
|
1343 | 0 | data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false); |
1344 | 0 | } |
1345 | 0 | } |
1346 | 0 | } |
1347 | 0 | } |
1348 | | |
1349 | 0 | size_t llama_kv_cache::total_size() const { |
1350 | 0 | size_t size = 0; |
1351 | |
|
1352 | 0 | for (const auto & [_, buf] : ctxs_bufs) { |
1353 | 0 | size += ggml_backend_buffer_get_size(buf.get()); |
1354 | 0 | } |
1355 | |
|
1356 | 0 | return size; |
1357 | 0 | } |
1358 | | |
1359 | 0 | size_t llama_kv_cache::size_k_bytes() const { |
1360 | 0 | size_t size_k_bytes = 0; |
1361 | |
|
1362 | 0 | for (const auto & layer : layers) { |
1363 | 0 | size_k_bytes += ggml_nbytes(layer.k); |
1364 | 0 | } |
1365 | |
|
1366 | 0 | return size_k_bytes; |
1367 | 0 | } |
1368 | | |
1369 | 0 | size_t llama_kv_cache::size_v_bytes() const { |
1370 | 0 | size_t size_v_bytes = 0; |
1371 | |
|
1372 | 0 | for (const auto & layer : layers) { |
1373 | 0 | size_v_bytes += ggml_nbytes(layer.v); |
1374 | 0 | } |
1375 | |
|
1376 | 0 | return size_v_bytes; |
1377 | 0 | } |
1378 | | |
1379 | | ggml_tensor * llama_kv_cache::build_rope_shift( |
1380 | | const llama_cparams & cparams, |
1381 | | ggml_context * ctx, |
1382 | | ggml_tensor * cur, |
1383 | | ggml_tensor * shift, |
1384 | | ggml_tensor * factors, |
1385 | | float freq_base, |
1386 | 0 | float freq_scale) const { |
1387 | 0 | const auto & n_ctx_orig = cparams.n_ctx_orig_yarn; |
1388 | |
|
1389 | 0 | const auto & yarn_ext_factor = cparams.yarn_ext_factor; |
1390 | 0 | const auto & yarn_beta_fast = cparams.yarn_beta_fast; |
1391 | 0 | const auto & yarn_beta_slow = cparams.yarn_beta_slow; |
1392 | 0 | const auto & yarn_attn_factor = cparams.yarn_attn_factor; |
1393 | |
|
1394 | 0 | const auto & n_rot = hparams.n_rot; |
1395 | 0 | const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE || hparams.rope_type == LLAMA_ROPE_TYPE_IMROPE |
1396 | | // @ngxson : this is a workaround |
1397 | | // for M-RoPE, we want to rotate the whole vector when doing KV shift |
1398 | | // a normal RoPE should work, we just need to use the correct ordering |
1399 | | // ref: https://github.com/ggml-org/llama.cpp/pull/13870 |
1400 | 0 | ? LLAMA_ROPE_TYPE_NEOX |
1401 | 0 | : hparams.rope_type; |
1402 | |
|
1403 | 0 | ggml_tensor * tmp; |
1404 | |
|
1405 | 0 | if (ggml_is_quantized(cur->type)) { |
1406 | | // dequantize to f32 -> RoPE -> quantize back |
1407 | 0 | tmp = ggml_cast(ctx, cur, GGML_TYPE_F32); |
1408 | |
|
1409 | 0 | tmp = ggml_rope_ext(ctx, tmp, |
1410 | 0 | shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
1411 | 0 | yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); |
1412 | |
|
1413 | 0 | tmp = ggml_cpy(ctx, tmp, cur); |
1414 | 0 | } else { |
1415 | | // we rotate only the first n_rot dimensions |
1416 | 0 | tmp = ggml_rope_ext_inplace(ctx, cur, |
1417 | 0 | shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
1418 | 0 | yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); |
1419 | 0 | } |
1420 | |
|
1421 | 0 | return tmp; |
1422 | 0 | } |
1423 | | |
1424 | | class llm_graph_input_k_shift : public llm_graph_input_i { |
1425 | | public: |
1426 | 0 | llm_graph_input_k_shift(const llama_kv_cache * kv_self) : kv_self(kv_self) {} |
1427 | | virtual ~llm_graph_input_k_shift() = default; |
1428 | | |
1429 | | void set_input(const llama_ubatch * ubatch) override; |
1430 | | |
1431 | | ggml_tensor * k_shift; // I32 [kv_size*n_stream] |
1432 | | |
1433 | | const llama_kv_cache * kv_self; |
1434 | | }; |
1435 | | |
1436 | 0 | void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) { |
1437 | 0 | GGML_UNUSED(ubatch); |
1438 | |
|
1439 | 0 | if (k_shift) { |
1440 | 0 | kv_self->set_input_k_shift(k_shift); |
1441 | 0 | } |
1442 | 0 | } |
1443 | | |
1444 | 0 | ggml_cgraph * llama_kv_cache::build_graph_shift(llm_graph_result * res, llama_context * lctx) const { |
1445 | 0 | auto * ctx = res->get_ctx(); |
1446 | 0 | auto * gf = res->get_gf(); |
1447 | |
|
1448 | 0 | const auto & n_embd_head_k = hparams.n_embd_head_k; |
1449 | | //const auto & n_embd_head_v = hparams.n_embd_head_v; |
1450 | |
|
1451 | 0 | auto inp = std::make_unique<llm_graph_input_k_shift>(this); |
1452 | |
|
1453 | 0 | inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, (int64_t) get_size()*n_stream); |
1454 | 0 | ggml_set_input(inp->k_shift); |
1455 | |
|
1456 | 0 | const auto & cparams = lctx->get_cparams(); |
1457 | |
|
1458 | 0 | for (const auto & layer : layers) { |
1459 | 0 | const uint32_t il = layer.il; |
1460 | |
|
1461 | 0 | const int64_t n_head_kv = hparams.n_head_kv(il); |
1462 | 0 | const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); |
1463 | |
|
1464 | 0 | const float freq_base_l = model.get_rope_freq_base (cparams, il); |
1465 | 0 | const float freq_scale_l = model.get_rope_freq_scale(cparams, il); |
1466 | |
|
1467 | 0 | ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); |
1468 | |
|
1469 | 0 | ggml_tensor * k = |
1470 | 0 | ggml_view_3d(ctx, layer.k, |
1471 | 0 | n_embd_head_k, n_head_kv, get_size()*n_stream, |
1472 | 0 | ggml_row_size(layer.k->type, n_embd_head_k), |
1473 | 0 | ggml_row_size(layer.k->type, n_embd_k_gqa), |
1474 | 0 | 0); |
1475 | |
|
1476 | 0 | ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l); |
1477 | |
|
1478 | 0 | ggml_build_forward_expand(gf, cur); |
1479 | 0 | } |
1480 | |
|
1481 | 0 | res->add_input(std::move(inp)); |
1482 | |
|
1483 | 0 | return gf; |
1484 | 0 | } |
1485 | | |
1486 | 0 | bool llama_kv_cache::is_masked_swa(llama_pos p0, llama_pos p1) const { |
1487 | 0 | return llama_hparams::is_masked_swa(n_swa, swa_type, p0, p1); |
1488 | 0 | } |
1489 | | |
1490 | 0 | void llama_kv_cache::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const { |
1491 | 0 | GGML_UNUSED(flags); |
1492 | |
|
1493 | 0 | io.write(&n_stream, sizeof(n_stream)); |
1494 | |
|
1495 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
1496 | 0 | cell_ranges_t cr { s, {} }; |
1497 | |
|
1498 | 0 | uint32_t cell_count = 0; |
1499 | |
|
1500 | 0 | const auto & cells = v_cells[s]; |
1501 | | |
1502 | | // Count the number of cells with the specified seq_id |
1503 | | // Find all the ranges of cells with this seq id (or all, when -1) |
1504 | 0 | uint32_t cell_range_begin = cells.size(); |
1505 | |
|
1506 | 0 | for (uint32_t i = 0; i < cells.size(); ++i) { |
1507 | 0 | if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) { |
1508 | 0 | ++cell_count; |
1509 | 0 | if (cell_range_begin == cells.size()) { |
1510 | 0 | cell_range_begin = i; |
1511 | 0 | } |
1512 | 0 | } else { |
1513 | 0 | if (cell_range_begin != cells.size()) { |
1514 | 0 | cr.data.emplace_back(cell_range_begin, i); |
1515 | 0 | cell_range_begin = cells.size(); |
1516 | 0 | } |
1517 | 0 | } |
1518 | 0 | } |
1519 | |
|
1520 | 0 | if (cell_range_begin != cells.size()) { |
1521 | 0 | cr.data.emplace_back(cell_range_begin, cells.size()); |
1522 | 0 | } |
1523 | | |
1524 | | // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count |
1525 | 0 | uint32_t cell_count_check = 0; |
1526 | 0 | for (const auto & range : cr.data) { |
1527 | 0 | cell_count_check += range.second - range.first; |
1528 | 0 | } |
1529 | 0 | GGML_ASSERT(cell_count == cell_count_check); |
1530 | |
|
1531 | 0 | io.write(&cell_count, sizeof(cell_count)); |
1532 | | |
1533 | | // skip empty streams |
1534 | 0 | if (cell_count == 0) { |
1535 | 0 | continue; |
1536 | 0 | } |
1537 | | |
1538 | 0 | state_write_meta(io, cr, seq_id); |
1539 | 0 | state_write_data(io, cr); |
1540 | 0 | } |
1541 | 0 | } |
1542 | | |
1543 | 0 | void llama_kv_cache::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) { |
1544 | 0 | GGML_UNUSED(flags); |
1545 | |
|
1546 | 0 | GGML_ASSERT(seq_id == -1 || (seq_id >= 0 && (size_t) seq_id < seq_to_stream.size())); |
1547 | |
|
1548 | 0 | uint32_t n_stream_cur; |
1549 | 0 | io.read_to(&n_stream_cur, sizeof(n_stream_cur)); |
1550 | 0 | if (n_stream_cur != n_stream) { |
1551 | 0 | throw std::runtime_error("n_stream mismatch"); |
1552 | 0 | } |
1553 | | |
1554 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
1555 | 0 | uint32_t cell_count; |
1556 | 0 | io.read_to(&cell_count, sizeof(cell_count)); |
1557 | |
|
1558 | 0 | if (cell_count == 0) { |
1559 | 0 | continue; |
1560 | 0 | } |
1561 | | |
1562 | 0 | const uint32_t strm = seq_id == -1 ? s : seq_to_stream[seq_id]; |
1563 | |
|
1564 | 0 | slot_info sinfo; |
1565 | |
|
1566 | 0 | bool res = true; |
1567 | 0 | res = res && state_read_meta(io, strm, cell_count, sinfo, seq_id); |
1568 | 0 | res = res && state_read_data(io, strm, cell_count, sinfo); |
1569 | |
|
1570 | 0 | if (!res) { |
1571 | 0 | if (seq_id == -1) { |
1572 | 0 | clear(true); |
1573 | 0 | } else { |
1574 | 0 | seq_rm(seq_id, -1, -1); |
1575 | 0 | } |
1576 | 0 | throw std::runtime_error("failed to restore kv cache"); |
1577 | 0 | } |
1578 | 0 | } |
1579 | 0 | } |
1580 | | |
1581 | 0 | void llama_kv_cache::state_write_meta(llama_io_write_i & io, const cell_ranges_t & cr, llama_seq_id seq_id) const { |
1582 | 0 | const auto & cells = v_cells[cr.strm]; |
1583 | |
|
1584 | 0 | for (const auto & range : cr.data) { |
1585 | 0 | for (uint32_t i = range.first; i < range.second; ++i) { |
1586 | 0 | std::vector<llama_seq_id> seq_ids; |
1587 | |
|
1588 | 0 | for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) { |
1589 | 0 | if (cur == seq_id || seq_id == -1) { |
1590 | 0 | if (cells.seq_has(i, cur)) { |
1591 | 0 | seq_ids.push_back(cur); |
1592 | 0 | } |
1593 | 0 | } |
1594 | 0 | } |
1595 | |
|
1596 | 0 | const llama_pos pos = cells.pos_get(i); |
1597 | 0 | const uint32_t n_seq_id = seq_ids.size(); |
1598 | |
|
1599 | 0 | io.write(&pos, sizeof(pos)); |
1600 | 0 | io.write(&n_seq_id, sizeof(n_seq_id)); |
1601 | | |
1602 | | // TODO: we also need to save llama_kv_cell_ext when apply_ubatch() support loading it |
1603 | | // see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350 |
1604 | |
|
1605 | 0 | for (const auto & seq_id : seq_ids) { |
1606 | 0 | io.write(&seq_id, sizeof(seq_id)); |
1607 | 0 | } |
1608 | 0 | } |
1609 | 0 | } |
1610 | 0 | } |
1611 | | |
1612 | 0 | void llama_kv_cache::state_write_data(llama_io_write_i & io, const cell_ranges_t & cr) const { |
1613 | 0 | const auto & cells = v_cells[cr.strm]; |
1614 | |
|
1615 | 0 | const uint32_t v_trans = this->v_trans ? 1 : 0; |
1616 | 0 | const uint32_t n_layer = layers.size(); |
1617 | |
|
1618 | 0 | io.write(&v_trans, sizeof(v_trans)); |
1619 | 0 | io.write(&n_layer, sizeof(n_layer)); |
1620 | |
|
1621 | 0 | std::vector<uint8_t> tmp_buf; |
1622 | | |
1623 | | // Iterate and write all the keys first, each row is a cell |
1624 | | // Get whole range at a time |
1625 | 0 | for (const auto & layer : layers) { |
1626 | 0 | const uint32_t il = layer.il; |
1627 | |
|
1628 | 0 | const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); |
1629 | |
|
1630 | 0 | auto * k = layer.k_stream[cr.strm]; |
1631 | | |
1632 | | // Write key type |
1633 | 0 | const int32_t k_type_i = (int32_t) k->type; |
1634 | 0 | io.write(&k_type_i, sizeof(k_type_i)); |
1635 | | |
1636 | | // Write row size of key |
1637 | 0 | const uint64_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa); |
1638 | 0 | io.write(&k_size_row, sizeof(k_size_row)); |
1639 | | |
1640 | | // Read each range of cells of k_size length each into tmp_buf and write out |
1641 | 0 | for (const auto & range : cr.data) { |
1642 | 0 | const size_t range_size = range.second - range.first; |
1643 | 0 | const size_t buf_size = range_size * k_size_row; |
1644 | 0 | io.write_tensor(k, range.first * k_size_row, buf_size); |
1645 | 0 | } |
1646 | 0 | } |
1647 | |
|
1648 | 0 | if (!v_trans) { |
1649 | 0 | for (const auto & layer : layers) { |
1650 | 0 | const uint32_t il = layer.il; |
1651 | |
|
1652 | 0 | const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); |
1653 | |
|
1654 | 0 | auto * v = layer.v_stream[cr.strm]; |
1655 | | |
1656 | | // Write value type |
1657 | 0 | const int32_t v_type_i = (int32_t) v->type; |
1658 | 0 | io.write(&v_type_i, sizeof(v_type_i)); |
1659 | | |
1660 | | // Write row size of value |
1661 | 0 | const uint64_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa); |
1662 | 0 | io.write(&v_size_row, sizeof(v_size_row)); |
1663 | | |
1664 | | // Read each range of cells of v_size length each into tmp_buf and write out |
1665 | 0 | for (const auto & range : cr.data) { |
1666 | 0 | const size_t range_size = range.second - range.first; |
1667 | 0 | const size_t buf_size = range_size * v_size_row; |
1668 | 0 | io.write_tensor(v, range.first * v_size_row, buf_size); |
1669 | 0 | } |
1670 | 0 | } |
1671 | 0 | } else { |
1672 | | // When v is transposed, we also need the element size and get the element ranges from each row |
1673 | 0 | const uint32_t kv_size = cells.size(); |
1674 | |
|
1675 | 0 | for (const auto & layer : layers) { |
1676 | 0 | const uint32_t il = layer.il; |
1677 | |
|
1678 | 0 | const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); |
1679 | |
|
1680 | 0 | auto * v = layer.v_stream[cr.strm]; |
1681 | | |
1682 | | // Write value type |
1683 | 0 | const int32_t v_type_i = (int32_t) v->type; |
1684 | 0 | io.write(&v_type_i, sizeof(v_type_i)); |
1685 | | |
1686 | | // Write element size |
1687 | 0 | const uint32_t v_size_el = ggml_type_size(v->type); |
1688 | 0 | io.write(&v_size_el, sizeof(v_size_el)); |
1689 | | |
1690 | | // Write GQA embedding size |
1691 | 0 | io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); |
1692 | | |
1693 | | // For each row, we get the element values of each cell |
1694 | 0 | for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { |
1695 | | // Read each range of cells of v_size_el length each into tmp_buf and write out |
1696 | 0 | for (const auto & range : cr.data) { |
1697 | 0 | const size_t range_size = range.second - range.first; |
1698 | 0 | const size_t src_offset = (range.first + j * kv_size) * v_size_el; |
1699 | 0 | const size_t buf_size = range_size * v_size_el; |
1700 | 0 | io.write_tensor(v, src_offset, buf_size); |
1701 | 0 | } |
1702 | 0 | } |
1703 | 0 | } |
1704 | 0 | } |
1705 | 0 | } |
1706 | | |
1707 | 0 | bool llama_kv_cache::state_read_meta(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, slot_info & sinfo, llama_seq_id dest_seq_id) { |
1708 | 0 | auto & cells = v_cells[strm]; |
1709 | 0 | auto & head = v_heads[strm]; |
1710 | |
|
1711 | 0 | if (dest_seq_id != -1) { |
1712 | | // single sequence |
1713 | 0 | seq_rm(dest_seq_id, -1, -1); |
1714 | |
|
1715 | 0 | llama_batch_allocr balloc(hparams.n_pos_per_embd()); |
1716 | |
|
1717 | 0 | llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1); |
1718 | |
|
1719 | 0 | ubatch.seq_id_unq[0] = dest_seq_id; |
1720 | |
|
1721 | 0 | for (uint32_t i = 0; i < cell_count; ++i) { |
1722 | 0 | llama_pos pos; |
1723 | 0 | uint32_t n_seq_id; |
1724 | |
|
1725 | 0 | io.read_to(&pos, sizeof(pos)); |
1726 | 0 | io.read_to(&n_seq_id, sizeof(n_seq_id)); |
1727 | |
|
1728 | 0 | if (n_seq_id != 1) { |
1729 | 0 | LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); |
1730 | 0 | return false; |
1731 | 0 | } |
1732 | | |
1733 | | // read the sequence id, but directly discard it - we will use dest_seq_id instead |
1734 | 0 | { |
1735 | 0 | llama_seq_id seq_id; |
1736 | 0 | io.read_to(&seq_id, sizeof(seq_id)); |
1737 | 0 | } |
1738 | |
|
1739 | 0 | ubatch.pos[i] = pos; |
1740 | 0 | ubatch.n_seq_id[i] = n_seq_id; |
1741 | 0 | ubatch.seq_id[i] = &dest_seq_id; |
1742 | 0 | } |
1743 | | |
1744 | 0 | sinfo = find_slot(ubatch, false); |
1745 | 0 | if (sinfo.empty()) { |
1746 | 0 | LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); |
1747 | 0 | return false; |
1748 | 0 | } |
1749 | | |
1750 | | // TODO: we cannot yet restore llama_kv_cell_ext as the apply_ubatch() does not support it yet |
1751 | | // see: https://github.com/ggml-org/llama.cpp/pull/16825#issuecomment-3460868350 |
1752 | 0 | apply_ubatch(sinfo, ubatch); |
1753 | |
|
1754 | 0 | LLAMA_LOG_DEBUG("%s: cell_count = %d, dest_seq_id = %d\n", __func__, cell_count, dest_seq_id); |
1755 | | |
1756 | | // DEBUG CHECK: verify that all cells were allocated and have correct seq_id and pos values |
1757 | 0 | GGML_ASSERT(sinfo.n_stream() == 1); |
1758 | 0 | GGML_ASSERT(sinfo.idxs[0].size() == cell_count); |
1759 | 0 | for (uint32_t i = 0; i < cell_count; ++i) { |
1760 | 0 | const uint32_t idx = sinfo.idxs[0][i]; |
1761 | 0 | GGML_ASSERT(cells.pos_get(idx) == ubatch.pos[i]); |
1762 | 0 | GGML_ASSERT(cells.seq_has(idx, dest_seq_id)); |
1763 | 0 | } |
1764 | 0 | } else { |
1765 | | // whole KV cache restore |
1766 | |
|
1767 | 0 | if (cell_count > cells.size()) { |
1768 | 0 | LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); |
1769 | 0 | return false; |
1770 | 0 | } |
1771 | | |
1772 | 0 | clear(true); |
1773 | |
|
1774 | 0 | for (uint32_t i = 0; i < cell_count; ++i) { |
1775 | 0 | llama_pos pos; |
1776 | 0 | uint32_t n_seq_id; |
1777 | |
|
1778 | 0 | io.read_to(&pos, sizeof(pos)); |
1779 | 0 | io.read_to(&n_seq_id, sizeof(n_seq_id)); |
1780 | |
|
1781 | 0 | cells.pos_set(i, pos); |
1782 | |
|
1783 | 0 | for (uint32_t j = 0; j < n_seq_id; ++j) { |
1784 | 0 | llama_seq_id seq_id; |
1785 | 0 | io.read_to(&seq_id, sizeof(seq_id)); |
1786 | |
|
1787 | 0 | if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) { |
1788 | 0 | LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max); |
1789 | 0 | return false; |
1790 | 0 | } |
1791 | | |
1792 | 0 | cells.seq_add(i, seq_id); |
1793 | 0 | } |
1794 | 0 | } |
1795 | | |
1796 | | // Create contiguous slot_info for whole cache restore |
1797 | 0 | sinfo.s0 = strm; |
1798 | 0 | sinfo.s1 = strm; |
1799 | 0 | sinfo.resize(1); |
1800 | 0 | sinfo.strm[0] = strm; |
1801 | 0 | sinfo.idxs[0].resize(cell_count); |
1802 | 0 | for (uint32_t i = 0; i < cell_count; ++i) { |
1803 | 0 | sinfo.idxs[0][i] = i; |
1804 | 0 | } |
1805 | |
|
1806 | 0 | head = 0; |
1807 | 0 | } |
1808 | | |
1809 | 0 | return true; |
1810 | 0 | } |
1811 | | |
1812 | 0 | bool llama_kv_cache::state_read_data(llama_io_read_i & io, uint32_t strm, uint32_t cell_count, const slot_info & sinfo) { |
1813 | 0 | auto & cells = v_cells[strm]; |
1814 | |
|
1815 | 0 | uint32_t v_trans; |
1816 | 0 | uint32_t n_layer; |
1817 | |
|
1818 | 0 | io.read_to(&v_trans, sizeof(v_trans)); |
1819 | 0 | io.read_to(&n_layer, sizeof(n_layer)); |
1820 | |
|
1821 | 0 | if (n_layer != layers.size()) { |
1822 | 0 | LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size()); |
1823 | 0 | return false; |
1824 | 0 | } |
1825 | | |
1826 | 0 | if (cell_count > cells.size()) { |
1827 | 0 | LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size()); |
1828 | 0 | return false; |
1829 | 0 | } |
1830 | | |
1831 | 0 | if (this->v_trans != (bool) v_trans) { |
1832 | 0 | LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); |
1833 | 0 | return false; |
1834 | 0 | } |
1835 | | |
1836 | | // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block |
1837 | 0 | for (const auto & layer : layers) { |
1838 | 0 | const uint32_t il = layer.il; |
1839 | |
|
1840 | 0 | const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); |
1841 | |
|
1842 | 0 | auto * k = layer.k_stream[strm]; |
1843 | | |
1844 | | // Read type of key |
1845 | 0 | int32_t k_type_i_ref; |
1846 | 0 | io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); |
1847 | 0 | const int32_t k_type_i = (int32_t) k->type; |
1848 | 0 | if (k_type_i != k_type_i_ref) { |
1849 | 0 | LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); |
1850 | 0 | return false; |
1851 | 0 | } |
1852 | | |
1853 | | // Read row size of key |
1854 | 0 | uint64_t k_size_row_ref; |
1855 | 0 | io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); |
1856 | 0 | const size_t k_size_row = ggml_row_size(k->type, n_embd_k_gqa); |
1857 | 0 | if (k_size_row != k_size_row_ref) { |
1858 | 0 | LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); |
1859 | 0 | return false; |
1860 | 0 | } |
1861 | | |
1862 | 0 | if (cell_count) { |
1863 | 0 | if (sinfo.is_contiguous()) { |
1864 | | // Fast path: contiguous cells, single memcpy |
1865 | 0 | ggml_backend_tensor_set(k, io.read(cell_count * k_size_row), sinfo.head() * k_size_row, cell_count * k_size_row); |
1866 | 0 | } else { |
1867 | | // Slow path: scatter to non-contiguous positions |
1868 | 0 | const void * src = io.read(cell_count * k_size_row); |
1869 | 0 | for (uint32_t i = 0; i < cell_count; ++i) { |
1870 | 0 | const size_t dst_offset = sinfo.idxs[0][i] * k_size_row; |
1871 | 0 | ggml_backend_tensor_set(k, (const char*)src + i * k_size_row, dst_offset, k_size_row); |
1872 | 0 | } |
1873 | 0 | } |
1874 | 0 | } |
1875 | 0 | } |
1876 | | |
1877 | 0 | if (!this->v_trans) { |
1878 | 0 | for (const auto & layer : layers) { |
1879 | 0 | const uint32_t il = layer.il; |
1880 | |
|
1881 | 0 | const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); |
1882 | |
|
1883 | 0 | auto * v = layer.v_stream[strm]; |
1884 | | |
1885 | | // Read type of value |
1886 | 0 | int32_t v_type_i_ref; |
1887 | 0 | io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); |
1888 | 0 | const int32_t v_type_i = (int32_t) v->type; |
1889 | 0 | if (v_type_i != v_type_i_ref) { |
1890 | 0 | LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); |
1891 | 0 | return false; |
1892 | 0 | } |
1893 | | |
1894 | | // Read row size of value |
1895 | 0 | uint64_t v_size_row_ref; |
1896 | 0 | io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); |
1897 | 0 | const size_t v_size_row = ggml_row_size(v->type, n_embd_v_gqa); |
1898 | 0 | if (v_size_row != v_size_row_ref) { |
1899 | 0 | LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); |
1900 | 0 | return false; |
1901 | 0 | } |
1902 | | |
1903 | 0 | if (cell_count) { |
1904 | 0 | if (sinfo.is_contiguous()) { |
1905 | | // Fast path: contiguous cells, single memcpy |
1906 | 0 | ggml_backend_tensor_set(v, io.read(cell_count * v_size_row), sinfo.head() * v_size_row, cell_count * v_size_row); |
1907 | 0 | } else { |
1908 | | // Slow path: scatter to non-contiguous positions |
1909 | 0 | const void * src = io.read(cell_count * v_size_row); |
1910 | 0 | for (uint32_t i = 0; i < cell_count; ++i) { |
1911 | 0 | const size_t dst_offset = sinfo.idxs[0][i] * v_size_row; |
1912 | 0 | ggml_backend_tensor_set(v, (const char*)src + i * v_size_row, dst_offset, v_size_row); |
1913 | 0 | } |
1914 | 0 | } |
1915 | 0 | } |
1916 | 0 | } |
1917 | 0 | } else { |
1918 | | // For each layer, read the values for each cell (transposed) |
1919 | 0 | for (const auto & layer : layers) { |
1920 | 0 | const uint32_t il = layer.il; |
1921 | |
|
1922 | 0 | const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); |
1923 | |
|
1924 | 0 | auto * v = layer.v_stream[strm]; |
1925 | | |
1926 | | // Read type of value |
1927 | 0 | int32_t v_type_i_ref; |
1928 | 0 | io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); |
1929 | 0 | const int32_t v_type_i = (int32_t) v->type; |
1930 | 0 | if (v_type_i != v_type_i_ref) { |
1931 | 0 | LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); |
1932 | 0 | return false; |
1933 | 0 | } |
1934 | | |
1935 | | // Read element size of value |
1936 | 0 | uint32_t v_size_el_ref; |
1937 | 0 | io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); |
1938 | 0 | const size_t v_size_el = ggml_type_size(v->type); |
1939 | 0 | if (v_size_el != v_size_el_ref) { |
1940 | 0 | LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); |
1941 | 0 | return false; |
1942 | 0 | } |
1943 | | |
1944 | | // Read GQA embedding size |
1945 | 0 | uint32_t n_embd_v_gqa_ref; |
1946 | 0 | io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); |
1947 | 0 | if (n_embd_v_gqa != n_embd_v_gqa_ref) { |
1948 | 0 | LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); |
1949 | 0 | return false; |
1950 | 0 | } |
1951 | | |
1952 | 0 | if (cell_count) { |
1953 | 0 | if (sinfo.is_contiguous()) { |
1954 | | // Fast path: contiguous cells |
1955 | 0 | const uint32_t h = sinfo.head(); |
1956 | 0 | for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { |
1957 | 0 | const size_t dst_offset = (h + j * cells.size()) * v_size_el; |
1958 | 0 | ggml_backend_tensor_set(v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); |
1959 | 0 | } |
1960 | 0 | } else { |
1961 | | // Slow path: scatter to non-contiguous positions |
1962 | 0 | for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { |
1963 | 0 | const void * src = io.read(cell_count * v_size_el); |
1964 | 0 | for (uint32_t i = 0; i < cell_count; ++i) { |
1965 | 0 | const size_t dst_offset = (sinfo.idxs[0][i] + j * cells.size()) * v_size_el; |
1966 | 0 | ggml_backend_tensor_set(v, (const char*)src + i * v_size_el, dst_offset, v_size_el); |
1967 | 0 | } |
1968 | 0 | } |
1969 | 0 | } |
1970 | 0 | } |
1971 | 0 | } |
1972 | 0 | } |
1973 | | |
1974 | 0 | return true; |
1975 | 0 | } |
1976 | | |
1977 | | // |
1978 | | // llama_kv_cache_context |
1979 | | // |
1980 | | |
1981 | 0 | llama_kv_cache_context::llama_kv_cache_context(llama_memory_status status) : status(status) {} |
1982 | | |
1983 | | llama_kv_cache_context::llama_kv_cache_context( |
1984 | 0 | llama_kv_cache * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) { |
1985 | 0 | n_kv = kv->get_size(); |
1986 | |
|
1987 | 0 | const uint32_t n_stream = kv->get_n_stream(); |
1988 | | |
1989 | | // create a dummy slot info - the actual data is irrelevant. we just need to build the graph |
1990 | 0 | sinfos.resize(1); |
1991 | 0 | sinfos[0].s0 = 0; |
1992 | 0 | sinfos[0].s1 = n_stream - 1; |
1993 | 0 | sinfos[0].idxs.resize(n_stream); |
1994 | 0 | for (uint32_t s = 0; s < n_stream; ++s) { |
1995 | 0 | sinfos[0].strm.push_back(s); |
1996 | 0 | sinfos[0].idxs[s].resize(1, 0); |
1997 | 0 | } |
1998 | 0 | } |
1999 | | |
2000 | | llama_kv_cache_context::llama_kv_cache_context( |
2001 | | llama_kv_cache * kv, |
2002 | | llama_context * lctx, |
2003 | | bool do_shift, |
2004 | 0 | stream_copy_info sc_info) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), sc_info(std::move(sc_info)) { |
2005 | 0 | if (!do_shift && this->sc_info.empty()) { |
2006 | 0 | status = LLAMA_MEMORY_STATUS_NO_UPDATE; |
2007 | 0 | } |
2008 | 0 | } |
2009 | | |
2010 | | llama_kv_cache_context::llama_kv_cache_context( |
2011 | | llama_kv_cache * kv, |
2012 | | llama_kv_cache::slot_info_vec_t sinfos, |
2013 | 0 | std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) { |
2014 | 0 | } |
2015 | | |
2016 | 0 | llama_kv_cache_context::~llama_kv_cache_context() = default; |
2017 | | |
2018 | 0 | bool llama_kv_cache_context::next() { |
2019 | 0 | assert(status == LLAMA_MEMORY_STATUS_SUCCESS); |
2020 | |
|
2021 | 0 | if (++i_cur >= ubatches.size()) { |
2022 | 0 | return false; |
2023 | 0 | } |
2024 | | |
2025 | 0 | return true; |
2026 | 0 | } |
2027 | | |
2028 | 0 | bool llama_kv_cache_context::apply() { |
2029 | 0 | assert(!llama_memory_status_is_fail(status)); |
2030 | | |
2031 | | // no ubatches -> this is a KV cache update |
2032 | 0 | if (ubatches.empty()) { |
2033 | 0 | kv->update(lctx, do_shift, sc_info); |
2034 | |
|
2035 | 0 | return true; |
2036 | 0 | } |
2037 | | |
2038 | 0 | kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]); |
2039 | 0 | n_kv = kv->get_n_kv(sinfos[i_cur]); |
2040 | |
|
2041 | 0 | return true; |
2042 | 0 | } |
2043 | | |
2044 | 0 | llama_memory_status llama_kv_cache_context::get_status() const { |
2045 | 0 | return status; |
2046 | 0 | } |
2047 | | |
2048 | 0 | const llama_ubatch & llama_kv_cache_context::get_ubatch() const { |
2049 | 0 | assert(status == LLAMA_MEMORY_STATUS_SUCCESS); |
2050 | |
|
2051 | 0 | return ubatches[i_cur]; |
2052 | 0 | } |
2053 | | |
2054 | 0 | uint32_t llama_kv_cache_context::get_n_kv() const { |
2055 | 0 | return n_kv; |
2056 | 0 | } |
2057 | | |
2058 | 0 | ggml_tensor * llama_kv_cache_context::get_k(ggml_context * ctx, int32_t il) const { |
2059 | 0 | return kv->get_k(ctx, il, n_kv, sinfos[i_cur]); |
2060 | 0 | } |
2061 | | |
2062 | 0 | ggml_tensor * llama_kv_cache_context::get_v(ggml_context * ctx, int32_t il) const { |
2063 | 0 | return kv->get_v(ctx, il, n_kv, sinfos[i_cur]); |
2064 | 0 | } |
2065 | | |
2066 | 0 | ggml_tensor * llama_kv_cache_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const { |
2067 | 0 | return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]); |
2068 | 0 | } |
2069 | | |
2070 | 0 | ggml_tensor * llama_kv_cache_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const { |
2071 | 0 | return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]); |
2072 | 0 | } |
2073 | | |
2074 | 0 | ggml_tensor * llama_kv_cache_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const { |
2075 | 0 | return kv->build_input_k_idxs(ctx, ubatch); |
2076 | 0 | } |
2077 | | |
2078 | 0 | ggml_tensor * llama_kv_cache_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const { |
2079 | 0 | return kv->build_input_v_idxs(ctx, ubatch); |
2080 | 0 | } |
2081 | | |
2082 | 0 | void llama_kv_cache_context::set_input_k_shift(ggml_tensor * dst) const { |
2083 | 0 | kv->set_input_k_shift(dst); |
2084 | 0 | } |
2085 | | |
2086 | 0 | void llama_kv_cache_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const { |
2087 | 0 | kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]); |
2088 | 0 | } |
2089 | | |
2090 | 0 | void llama_kv_cache_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const { |
2091 | 0 | kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]); |
2092 | 0 | } |
2093 | | |
2094 | 0 | void llama_kv_cache_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { |
2095 | 0 | kv->set_input_kq_mask(dst, ubatch, causal_attn); |
2096 | 0 | } |
2097 | | |
2098 | 0 | void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { |
2099 | 0 | kv->set_input_pos_bucket(dst, ubatch); |
2100 | 0 | } |