Coverage Report

Created: 2025-12-28 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/deepseek.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_deepseek::llm_build_deepseek(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context(params) {
7
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
8
9
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
11
12
0
    ggml_tensor * cur;
13
0
    ggml_tensor * inpL;
14
15
0
    inpL = build_inp_embd(model.tok_embd);
16
17
    // inp_pos - contains the positions
18
0
    ggml_tensor * inp_pos = build_inp_pos();
19
20
0
    auto * inp_attn = build_attn_inp_kv();
21
22
0
    const float kq_scale =
23
0
        hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
24
25
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
26
27
0
    for (int il = 0; il < n_layer; ++il) {
28
0
        ggml_tensor * inpSA = inpL;
29
30
        // norm
31
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
32
0
        cb(cur, "attn_norm", il);
33
34
        // self-attention
35
0
        {
36
            // rope freq factors for llama3; may return nullptr for llama2 and other models
37
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
38
39
            // compute Q and K and RoPE them
40
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
41
0
            cb(Qcur, "Qcur", il);
42
0
            if (model.layers[il].bq) {
43
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
44
0
                cb(Qcur, "Qcur", il);
45
0
            }
46
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
47
0
            cb(Kcur, "Kcur", il);
48
0
            if (model.layers[il].bk) {
49
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
50
0
                cb(Kcur, "Kcur", il);
51
0
            }
52
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
53
0
            cb(Vcur, "Vcur", il);
54
0
            if (model.layers[il].bv) {
55
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
56
0
                cb(Vcur, "Vcur", il);
57
0
            }
58
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
59
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
60
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
61
62
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
63
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
64
65
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
66
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
67
68
0
            cb(Qcur, "Qcur", il);
69
0
            cb(Kcur, "Kcur", il);
70
0
            cb(Vcur, "Vcur", il);
71
72
0
            cur = build_attn(inp_attn,
73
0
                    model.layers[il].wo, model.layers[il].bo,
74
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
75
0
        }
76
0
        if (il == n_layer - 1 && inp_out_ids) {
77
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
78
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
79
0
        }
80
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
81
0
        cb(ffn_inp, "ffn_inp", il);
82
83
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
84
0
        cb(cur, "ffn_norm", il);
85
86
0
        if ((uint32_t) il < hparams.n_layer_dense_lead) {
87
0
            cur = build_ffn(cur,
88
0
                    model.layers[il].ffn_up, NULL, NULL,
89
0
                    model.layers[il].ffn_gate, NULL, NULL,
90
0
                    model.layers[il].ffn_down, NULL, NULL,
91
0
                    NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
92
0
            cb(cur, "ffn_out", il);
93
0
        } else {
94
            // MoE branch
95
0
            ggml_tensor * moe_out = build_moe_ffn(cur,
96
0
                model.layers[il].ffn_gate_inp,
97
0
                model.layers[il].ffn_up_exps,
98
0
                model.layers[il].ffn_gate_exps,
99
0
                model.layers[il].ffn_down_exps,
100
0
                nullptr,
101
0
                n_expert, n_expert_used,
102
0
                LLM_FFN_SILU, false,
103
0
                false, hparams.expert_weights_scale,
104
0
                LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
105
0
                il);
106
0
            cb(moe_out, "ffn_moe_out", il);
107
108
            // FFN shared expert
109
0
            {
110
0
                ggml_tensor * ffn_shexp =
111
0
                    build_ffn(cur,
112
0
                        model.layers[il].ffn_up_shexp, NULL, NULL,
113
0
                        model.layers[il].ffn_gate_shexp, NULL, NULL,
114
0
                        model.layers[il].ffn_down_shexp, NULL, NULL,
115
0
                        NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
116
0
                cb(ffn_shexp, "ffn_shexp", il);
117
118
0
                cur = ggml_add(ctx0, moe_out, ffn_shexp);
119
0
                cb(cur, "ffn_out", il);
120
0
            }
121
0
        }
122
0
        cur = ggml_add(ctx0, cur, ffn_inp);
123
124
0
        cur = build_cvec(cur, il);
125
0
        cb(cur, "l_out", il);
126
127
        // input for next layer
128
0
        inpL = cur;
129
0
    }
130
0
    cur = inpL;
131
132
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
133
134
0
    cb(cur, "result_norm", -1);
135
0
    res->t_embd = cur;
136
137
    // lm_head
138
0
    cur = build_lora_mm(model.output, cur);
139
140
0
    cb(cur, "result_output", -1);
141
0
    res->t_logits = cur;
142
143
0
    ggml_build_forward_expand(gf, cur);
144
0
}