Coverage Report

Created: 2025-12-28 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/qwen3vl-moe.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_qwen3vlmoe::llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const size_t n_deepstack_layers = hparams.n_deepstack_layers;
5
0
    const int64_t n_embd = hparams.n_embd;
6
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
10
11
0
    ggml_tensor * cur;
12
0
    ggml_tensor * inpL;
13
14
0
    inpL = build_inp_embd(model.tok_embd);
15
16
0
    int sections[4];
17
0
    std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
18
19
0
    std::vector<ggml_tensor *> deepstack_features(n_deepstack_layers, nullptr);
20
21
0
    if (ubatch.embd) {
22
        // Image input: split main embd and deepstack embds
23
0
        ggml_tensor * inpL_main = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], 0);
24
0
        for (size_t i = 0; i < n_deepstack_layers; i++) {
25
0
            deepstack_features[i] = ggml_view_2d(ctx0, inpL, n_embd, n_tokens, inpL->nb[1], (i + 1) * n_embd * sizeof(float));
26
0
        }
27
0
        inpL = inpL_main;
28
0
    }
29
30
    // inp_pos - contains the positions
31
0
    ggml_tensor * inp_pos = build_inp_pos();
32
33
0
    auto * inp_attn = build_attn_inp_kv();
34
35
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
36
37
0
    for (int il = 0; il < n_layer; ++il) {
38
0
        ggml_tensor * inpSA = inpL;
39
40
        // norm
41
0
        cur = build_norm(inpL,
42
0
                model.layers[il].attn_norm, NULL,
43
0
                LLM_NORM_RMS, il);
44
0
        cb(cur, "attn_norm", il);
45
46
        // self_attention
47
0
        {
48
            // compute Q and K and RoPE them
49
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
50
0
            cb(Qcur, "Qcur", il);
51
52
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
53
0
            cb(Kcur, "Kcur", il);
54
55
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
56
0
            cb(Vcur, "Vcur", il);
57
58
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
59
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
60
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
61
62
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
63
0
            cb(Qcur, "Qcur_normed", il);
64
65
0
            Qcur = ggml_rope_multi(
66
0
                    ctx0, Qcur, inp_pos, nullptr,
67
0
                    n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
68
0
                    ext_factor, attn_factor, beta_fast, beta_slow
69
0
                    );
70
71
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
72
0
            cb(Kcur, "Kcur_normed", il);
73
74
0
            Kcur = ggml_rope_multi(
75
0
                    ctx0, Kcur, inp_pos, nullptr,
76
0
                    n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
77
0
                    ext_factor, attn_factor, beta_fast, beta_slow
78
0
                    );
79
80
0
            cb(Qcur, "Qcur", il);
81
0
            cb(Kcur, "Kcur", il);
82
0
            cb(Vcur, "Vcur", il);
83
84
0
            cur = build_attn(inp_attn,
85
0
                    model.layers[il].wo, model.layers[il].bo,
86
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
87
0
        }
88
89
0
        if (il == n_layer - 1 && inp_out_ids) {
90
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
91
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
92
0
        }
93
94
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
95
0
        cb(ffn_inp, "ffn_inp", il);
96
97
        // MoE branch
98
0
        cur = build_norm(ffn_inp,
99
0
                model.layers[il].ffn_norm, NULL,
100
0
                LLM_NORM_RMS, il);
101
0
        cb(cur, "ffn_norm", il);
102
103
0
        ggml_tensor * moe_out =
104
0
            build_moe_ffn(cur,
105
0
                    model.layers[il].ffn_gate_inp,
106
0
                    model.layers[il].ffn_up_exps,
107
0
                    model.layers[il].ffn_gate_exps,
108
0
                    model.layers[il].ffn_down_exps,
109
0
                    nullptr,
110
0
                    n_expert, n_expert_used,
111
0
                    LLM_FFN_SILU, true,
112
0
                    false, 0.0,
113
0
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
114
0
                    il);
115
0
        cb(moe_out, "ffn_moe_out", il);
116
0
        cur = moe_out;
117
118
0
        cur = ggml_add(ctx0, cur, ffn_inp);
119
120
0
        cur = build_cvec(cur, il);
121
0
        cb(cur, "l_out", il);
122
123
0
        if (ubatch.embd && (size_t)il < n_deepstack_layers) {
124
0
            cur = ggml_add(ctx0, cur, deepstack_features[il]);
125
0
            cb(cur, "deepstack_out", il);
126
0
        }
127
128
        // input for next layer
129
0
        inpL = cur;
130
0
    }
131
132
0
    cur = inpL;
133
134
0
    cur = build_norm(cur,
135
0
            model.output_norm, NULL,
136
0
            LLM_NORM_RMS, -1);
137
138
0
    cb(cur, "result_norm", -1);
139
0
    res->t_embd = cur;
140
141
    // lm_head
142
0
    cur = build_lora_mm(model.output, cur);
143
144
0
    cb(cur, "result_output", -1);
145
0
    res->t_logits = cur;
146
147
0
    ggml_build_forward_expand(gf, cur);
148
0
}
149