Coverage Report

Created: 2025-12-28 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/rnd1.cpp
Line
Count
Source
1
#include "models.h"
2
3
// RND1 is a Qwen3Moe AR model converted to diffusion model.
4
0
llm_build_rnd1::llm_build_rnd1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
9
10
0
    ggml_tensor * cur;
11
0
    ggml_tensor * inpL;
12
13
0
    inpL = build_inp_embd(model.tok_embd);
14
15
    // inp_pos - contains the positions
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
    // Non-causal attention for diffusion
19
0
    auto * inp_attn = build_attn_inp_no_cache();
20
21
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
22
23
0
    for (int il = 0; il < n_layer; ++il) {
24
0
        ggml_tensor * inpSA = inpL;
25
26
        // norm
27
0
        cur = build_norm(inpL,
28
0
                model.layers[il].attn_norm, NULL,
29
0
                LLM_NORM_RMS, il);
30
0
        cb(cur, "attn_norm", il);
31
32
        // self_attention
33
0
        {
34
            // compute Q and K and RoPE them
35
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
36
0
            cb(Qcur, "Qcur", il);
37
38
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
0
            cb(Kcur, "Kcur", il);
40
41
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
42
0
            cb(Vcur, "Vcur", il);
43
44
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
45
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
46
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
47
48
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
49
0
            cb(Qcur, "Qcur_normed", il);
50
51
0
            Qcur = ggml_rope_ext(
52
0
                    ctx0, Qcur, inp_pos, nullptr,
53
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
54
0
                    ext_factor, attn_factor, beta_fast, beta_slow
55
0
                    );
56
57
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
58
0
            cb(Kcur, "Kcur_normed", il);
59
60
0
            Kcur = ggml_rope_ext(
61
0
                    ctx0, Kcur, inp_pos, nullptr,
62
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
63
0
                    ext_factor, attn_factor, beta_fast, beta_slow
64
0
                    );
65
66
0
            cb(Qcur, "Qcur", il);
67
0
            cb(Kcur, "Kcur", il);
68
0
            cb(Vcur, "Vcur", il);
69
70
0
            cur = build_attn(inp_attn,
71
0
                    model.layers[il].wo, model.layers[il].bo,
72
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
73
0
        }
74
0
        if (il == n_layer - 1 && inp_out_ids) {
75
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
76
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
77
0
        }
78
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
79
0
        cb(ffn_inp, "ffn_inp", il);
80
81
        // MoE branch
82
0
        cur = build_norm(ffn_inp,
83
0
                model.layers[il].ffn_norm, NULL,
84
0
                LLM_NORM_RMS, il);
85
0
        cb(cur, "ffn_norm", il);
86
87
0
        ggml_tensor * moe_out =
88
0
            build_moe_ffn(cur,
89
0
                    model.layers[il].ffn_gate_inp,
90
0
                    model.layers[il].ffn_up_exps,
91
0
                    model.layers[il].ffn_gate_exps,
92
0
                    model.layers[il].ffn_down_exps,
93
0
                    nullptr,
94
0
                    n_expert, n_expert_used,
95
0
                    LLM_FFN_SILU, true,
96
0
                    false, 0.0,
97
0
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
98
0
                    il);
99
0
        cb(moe_out, "ffn_moe_out", il);
100
0
        cur = moe_out;
101
102
0
        cur = ggml_add(ctx0, cur, ffn_inp);
103
104
0
        cur = build_cvec(cur, il);
105
0
        cb(cur, "l_out", il);
106
107
        // input for next layer
108
0
        inpL = cur;
109
0
    }
110
0
    cur = inpL;
111
112
0
    cur = build_norm(cur,
113
0
            model.output_norm, NULL,
114
0
            LLM_NORM_RMS, -1);
115
116
0
    cb(cur, "result_norm", -1);
117
0
    res->t_embd = cur;
118
119
    // lm_head
120
0
    cur = build_lora_mm(model.output, cur);
121
122
0
    cb(cur, "result_output", -1);
123
0
    res->t_logits = cur;
124
125
0
    ggml_build_forward_expand(gf, cur);
126
0
}