Coverage Report

Created: 2025-12-28 06:26

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/common/common.h
Line
Count
Source
1
// Various helper functions and utilities
2
3
#pragma once
4
5
#include "ggml-opt.h"
6
#include "llama-cpp.h"
7
8
#include <set>
9
#include <sstream>
10
#include <string>
11
#include <string_view>
12
#include <vector>
13
#include <map>
14
15
#if defined(_WIN32) && !defined(_WIN32_WINNT)
16
#define _WIN32_WINNT 0x0A00
17
#endif
18
19
#ifdef _WIN32
20
#define DIRECTORY_SEPARATOR '\\'
21
#else
22
0
#define DIRECTORY_SEPARATOR '/'
23
#endif // _WIN32
24
25
#define die(msg)          do { fputs("error: " msg "\n", stderr);                exit(1); } while (0)
26
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
27
28
#define print_build_info() do {                                                                     \
29
    fprintf(stderr, "%s: build = %d (%s)\n",      __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT);      \
30
    fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET);    \
31
} while(0)
32
33
struct common_time_meas {
34
    common_time_meas(int64_t & t_acc, bool disable = false);
35
    ~common_time_meas();
36
37
    const int64_t t_start_us;
38
39
    int64_t & t_acc;
40
};
41
42
struct common_adapter_lora_info {
43
    std::string path;
44
    float scale;
45
46
    std::string task_name;
47
    std::string prompt_prefix;
48
49
    struct llama_adapter_lora * ptr;
50
};
51
52
using llama_tokens = std::vector<llama_token>;
53
54
// build info
55
extern int LLAMA_BUILD_NUMBER;
56
extern const char * LLAMA_COMMIT;
57
extern const char * LLAMA_COMPILER;
58
extern const char * LLAMA_BUILD_TARGET;
59
60
struct common_control_vector_load_info;
61
62
//
63
// CPU utils
64
//
65
66
struct cpu_params {
67
    int      n_threads                   = -1;
68
    bool     cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
69
    bool     mask_valid                  = false;   // Default: any CPU
70
    enum ggml_sched_priority  priority   = GGML_SCHED_PRIO_NORMAL;  // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
71
    bool     strict_cpu                  = false;   // Use strict CPU placement
72
    uint32_t poll                        = 50;      // Polling (busywait) level (0 - no polling, 100 - mostly polling)
73
};
74
75
int32_t cpu_get_num_physical_cores();
76
int32_t cpu_get_num_math();
77
78
//
79
// Common params
80
//
81
82
enum llama_example {
83
    LLAMA_EXAMPLE_COMMON,
84
    LLAMA_EXAMPLE_SPECULATIVE,
85
    LLAMA_EXAMPLE_COMPLETION,
86
    LLAMA_EXAMPLE_CLI,
87
    LLAMA_EXAMPLE_EMBEDDING,
88
    LLAMA_EXAMPLE_PERPLEXITY,
89
    LLAMA_EXAMPLE_RETRIEVAL,
90
    LLAMA_EXAMPLE_PASSKEY,
91
    LLAMA_EXAMPLE_IMATRIX,
92
    LLAMA_EXAMPLE_BENCH,
93
    LLAMA_EXAMPLE_SERVER,
94
    LLAMA_EXAMPLE_CVECTOR_GENERATOR,
95
    LLAMA_EXAMPLE_EXPORT_LORA,
96
    LLAMA_EXAMPLE_MTMD,
97
    LLAMA_EXAMPLE_LOOKUP,
98
    LLAMA_EXAMPLE_PARALLEL,
99
    LLAMA_EXAMPLE_TTS,
100
    LLAMA_EXAMPLE_DIFFUSION,
101
    LLAMA_EXAMPLE_FINETUNE,
102
    LLAMA_EXAMPLE_FIT_PARAMS,
103
104
    LLAMA_EXAMPLE_COUNT,
105
};
106
107
enum common_sampler_type {
108
    COMMON_SAMPLER_TYPE_NONE        = 0,
109
    COMMON_SAMPLER_TYPE_DRY         = 1,
110
    COMMON_SAMPLER_TYPE_TOP_K       = 2,
111
    COMMON_SAMPLER_TYPE_TOP_P       = 3,
112
    COMMON_SAMPLER_TYPE_MIN_P       = 4,
113
  //COMMON_SAMPLER_TYPE_TFS_Z       = 5,
114
    COMMON_SAMPLER_TYPE_TYPICAL_P   = 6,
115
    COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
116
    COMMON_SAMPLER_TYPE_XTC         = 8,
117
    COMMON_SAMPLER_TYPE_INFILL      = 9,
118
    COMMON_SAMPLER_TYPE_PENALTIES   = 10,
119
    COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
120
};
121
122
// dimensionality reduction methods, used by cvector-generator
123
enum dimre_method {
124
    DIMRE_METHOD_PCA,
125
    DIMRE_METHOD_MEAN,
126
};
127
128
enum common_conversation_mode {
129
    COMMON_CONVERSATION_MODE_DISABLED = 0,
130
    COMMON_CONVERSATION_MODE_ENABLED  = 1,
131
    COMMON_CONVERSATION_MODE_AUTO     = 2,
132
};
133
134
enum common_grammar_trigger_type {
135
    COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
136
    COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
137
    COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
138
    COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
139
};
140
141
struct common_grammar_trigger {
142
    common_grammar_trigger_type type;
143
    std::string value;
144
    llama_token token = LLAMA_TOKEN_NULL;
145
};
146
147
enum common_params_sampling_config : uint64_t {
148
    COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS        = 1 << 0,
149
    COMMON_PARAMS_SAMPLING_CONFIG_TOP_K           = 1 << 1,
150
    COMMON_PARAMS_SAMPLING_CONFIG_TOP_P           = 1 << 2,
151
    COMMON_PARAMS_SAMPLING_CONFIG_MIN_P           = 1 << 3,
152
    COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
153
    COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD   = 1 << 5,
154
    COMMON_PARAMS_SAMPLING_CONFIG_TEMP            = 1 << 6,
155
    COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N  = 1 << 7,
156
    COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT  = 1 << 8,
157
    COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT        = 1 << 9,
158
    COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU    = 1 << 10,
159
    COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA    = 1 << 11,
160
};
161
162
163
// sampling parameters
164
struct common_params_sampling {
165
    uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
166
167
    int32_t n_prev             = 64;    // number of previous tokens to remember
168
    int32_t n_probs            = 0;     // if greater than 0, output the probabilities of top n_probs tokens.
169
    int32_t min_keep           = 0;     // 0 = disabled, otherwise samplers should return at least min_keep tokens
170
    int32_t top_k              = 40;    // <= 0 to use vocab size
171
    float   top_p              = 0.95f; // 1.0 = disabled
172
    float   min_p              = 0.05f; // 0.0 = disabled
173
    float   xtc_probability    = 0.00f; // 0.0 = disabled
174
    float   xtc_threshold      = 0.10f; // > 0.5 disables XTC
175
    float   typ_p              = 1.00f; // typical_p, 1.0 = disabled
176
    float   temp               = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
177
    float   dynatemp_range     = 0.00f; // 0.0 = disabled
178
    float   dynatemp_exponent  = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
179
    int32_t penalty_last_n     = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
180
    float   penalty_repeat     = 1.00f; // 1.0 = disabled
181
    float   penalty_freq       = 0.00f; // 0.0 = disabled
182
    float   penalty_present    = 0.00f; // 0.0 = disabled
183
    float   dry_multiplier     = 0.0f;  // 0.0 = disabled;      DRY repetition penalty for tokens extending repetition:
184
    float   dry_base           = 1.75f; // 0.0 = disabled;      multiplier * base ^ (length of sequence before token - allowed length)
185
    int32_t dry_allowed_length = 2;     // tokens extending repetitions beyond this receive penalty
186
    int32_t dry_penalty_last_n = -1;    // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
187
    int32_t mirostat           = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
188
    float   top_n_sigma        = -1.00f;// -1.0 = disabled
189
    float   mirostat_tau       = 5.00f; // target entropy
190
    float   mirostat_eta       = 0.10f; // learning rate
191
    bool    ignore_eos         = false;
192
    bool    no_perf            = false; // disable performance metrics
193
    bool    timing_per_token   = false;
194
195
    uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
196
197
    std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"};     // default sequence breakers for DRY
198
199
    std::vector<enum common_sampler_type> samplers = {
200
        COMMON_SAMPLER_TYPE_PENALTIES,
201
        COMMON_SAMPLER_TYPE_DRY,
202
        COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
203
        COMMON_SAMPLER_TYPE_TOP_K,
204
        COMMON_SAMPLER_TYPE_TYPICAL_P,
205
        COMMON_SAMPLER_TYPE_TOP_P,
206
        COMMON_SAMPLER_TYPE_MIN_P,
207
        COMMON_SAMPLER_TYPE_XTC,
208
        COMMON_SAMPLER_TYPE_TEMPERATURE,
209
    };
210
211
    std::string                         grammar; // optional BNF-like grammar to constrain sampling
212
    bool                                grammar_lazy = false;
213
    std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
214
    std::set<llama_token>               preserved_tokens;
215
216
    std::vector<llama_logit_bias> logit_bias;     // logit biases to apply
217
    std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
218
219
0
    bool has_logit_bias() const {
220
0
        return !logit_bias.empty();
221
0
    }
222
223
    // print the parameters into a string
224
    std::string print() const;
225
};
226
227
struct common_params_model {
228
    std::string path        = ""; // model local path                                       // NOLINT
229
    std::string url         = ""; // model url to download                                  // NOLINT
230
    std::string hf_repo     = ""; // HF repo                                                // NOLINT
231
    std::string hf_file     = ""; // HF file                                                // NOLINT
232
    std::string docker_repo = ""; // Docker repo                                            // NOLINT
233
    std::string name        = ""; // in format <user>/<model>[:<tag>] (tag is optional)     // NOLINT
234
};
235
236
struct common_params_speculative {
237
    std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
238
239
    int32_t n_ctx        =     0; // draft context size
240
    int32_t n_max        =    16; // maximum number of tokens to draft during speculative decoding
241
    int32_t n_min        =     0; // minimum number of draft tokens to use for speculative decoding
242
    int32_t n_gpu_layers =    -1; // number of layers to store in VRAM for the draft model (-1 - use default)
243
    float   p_split      =  0.1f; // speculative decoding split probability
244
    float   p_min        = 0.75f; // minimum speculative decoding probability (greedy)
245
    std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
246
    std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
247
248
    ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
249
    ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
250
251
    struct cpu_params cpuparams;
252
    struct cpu_params cpuparams_batch;
253
254
    struct common_params_model model;
255
};
256
257
struct common_params_vocoder {
258
    struct common_params_model model;
259
260
    std::string speaker_file = ""; // speaker file path                                      // NOLINT
261
262
    bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy            // NOLINT
263
};
264
265
struct common_params_diffusion {
266
    int32_t steps         = 128;
267
    bool    visual_mode   = false;
268
269
    float   eps           = 0;        // epsilon for timesteps
270
    int32_t block_length  = 0;        // block length for generation
271
272
    int32_t algorithm     = 4;        // default algorithm: low-confidence
273
    float   alg_temp      = 0.0f;     // algorithm temperature
274
275
    float   cfg_scale     = 0;        // classifier-free guidance scale
276
    bool    add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
277
};
278
279
// reasoning API response format (not to be confused as chat template's reasoning format)
280
enum common_reasoning_format {
281
    COMMON_REASONING_FORMAT_NONE,
282
    COMMON_REASONING_FORMAT_AUTO,            // Same as deepseek, using `message.reasoning_content`
283
    COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
284
    COMMON_REASONING_FORMAT_DEEPSEEK,        // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
285
    // do not extend this enum unless you absolutely have to
286
    // in most cases, use COMMON_REASONING_FORMAT_AUTO
287
    // see: https://github.com/ggml-org/llama.cpp/pull/15408
288
};
289
290
291
struct lr_opt {
292
    float    lr0          = 1e-5; // learning rate at first epoch
293
    float    lr_min       = -1;
294
    float    decay_epochs = -1;   // if >0, the learning rate starts at lr0 and decays to lr_min after this many epochs
295
    float    scale_epoch  = 0;
296
    float    wd           = 0;
297
    unsigned epochs       = 2;
298
299
    unsigned epoch; // set by optimizer outer (epochs) loop
300
    // learning rate decay - constant LR per epoch only for now
301
    float get_lr(float e) const;
302
0
    float get_lr() const { return get_lr(epoch); }
303
    // must call after arg parse, before get_lr
304
    void init();
305
};
306
307
struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
308
309
struct common_params {
310
    int32_t n_predict             =    -1; // max. number of new tokens to predict, -1 == no limit
311
    int32_t n_ctx                 =     0; // context size, 0 == context the model was trained with
312
    int32_t n_batch               =  2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
313
    int32_t n_ubatch              =   512; // physical batch size for prompt processing (must be >=32 to use BLAS)
314
    int32_t n_keep                =     0; // number of tokens to keep from initial prompt
315
    int32_t n_chunks              =    -1; // max number of chunks to process (-1 = unlimited)
316
    int32_t n_parallel            =     1; // number of parallel sequences to decode
317
    int32_t n_sequences           =     1; // number of sequences to decode
318
    int32_t grp_attn_n            =     1; // group-attention factor
319
    int32_t grp_attn_w            =   512; // group-attention width
320
    int32_t n_print               =    -1; // print token count every n tokens (-1 = disabled)
321
    float   rope_freq_base        =  0.0f; // RoPE base frequency
322
    float   rope_freq_scale       =  0.0f; // RoPE frequency scaling factor
323
    float   yarn_ext_factor       = -1.0f; // YaRN extrapolation mix factor
324
    float   yarn_attn_factor      = -1.0f; // YaRN magnitude scaling factor
325
    float   yarn_beta_fast        = -1.0f; // YaRN low correction dim
326
    float   yarn_beta_slow        = -1.0f; // YaRN high correction dim
327
    int32_t yarn_orig_ctx         =     0; // YaRN original context length
328
329
    // offload params
330
    std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
331
332
    int32_t n_gpu_layers       = -1;               // number of layers to store in VRAM, -1 is auto, <= -2 is all
333
    int32_t main_gpu           = 0;                // the GPU that is used for scratch and small tensors
334
    float   tensor_split[128]  = {0};              // how split tensors should be distributed across GPUs
335
    bool    fit_params         = true;             // whether to fit unset model/context parameters to free device memory
336
    size_t  fit_params_target  = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory
337
    int32_t fit_params_min_ctx = 4096;             // minimum context size to set when trying to reduce memory use
338
339
    enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
340
341
    struct cpu_params cpuparams;
342
    struct cpu_params cpuparams_batch;
343
344
    ggml_backend_sched_eval_callback cb_eval = nullptr;
345
    void * cb_eval_user_data                 = nullptr;
346
347
    ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
348
349
    enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
350
    enum llama_pooling_type      pooling_type      = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
351
    enum llama_attention_type    attention_type    = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
352
    enum llama_flash_attn_type   flash_attn_type   = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention
353
354
    struct common_params_sampling    sampling;
355
    struct common_params_speculative speculative;
356
    struct common_params_vocoder     vocoder;
357
    struct common_params_diffusion   diffusion;
358
359
    struct common_params_model model;
360
361
    std::string model_alias          = ""; // model alias                                                   // NOLINT
362
    std::string hf_token             = ""; // HF token                                                      // NOLINT
363
    std::string prompt               = "";                                                                  // NOLINT
364
    std::string system_prompt        = "";                                                                  // NOLINT
365
    std::string prompt_file          = ""; // store the external prompt file name                           // NOLINT
366
    std::string path_prompt_cache    = ""; // path to file for saving/loading prompt eval state             // NOLINT
367
    std::string input_prefix         = ""; // string to prefix user inputs with                             // NOLINT
368
    std::string input_suffix         = ""; // string to suffix user inputs with                             // NOLINT
369
    std::string lookup_cache_static  = ""; // path of static ngram cache file for lookup decoding           // NOLINT
370
    std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding          // NOLINT
371
    std::string logits_file          = ""; // file for saving *all* logits                                  // NOLINT
372
373
    std::vector<std::string> in_files;   // all input files
374
    std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
375
    std::vector<llama_model_kv_override> kv_overrides;
376
    std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
377
378
    bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
379
    std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
380
381
    std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
382
383
    int32_t verbosity                  = 3;  // LOG_LEVEL_INFO
384
    int32_t control_vector_layer_start = -1; // layer range for control vector
385
    int32_t control_vector_layer_end   = -1; // layer range for control vector
386
    bool    offline                    = false;
387
388
    int32_t ppl_stride      = 0;     // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
389
    int32_t ppl_output_type = 0;     // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
390
                                     //                                       (which is more convenient to use for plotting)
391
                                     //
392
    bool   hellaswag        = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
393
    size_t hellaswag_tasks  = 400;   // number of tasks to use when computing the HellaSwag score
394
395
    bool   winogrande       = false; // compute Winogrande score over random tasks from datafile supplied in prompt
396
    size_t winogrande_tasks = 0;     // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
397
398
    bool   multiple_choice  = false;  // compute TruthfulQA score over random tasks from datafile supplied in prompt
399
    size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
400
401
    bool   kl_divergence    = false; // compute KL divergence
402
403
    bool usage             = false; // print usage
404
    bool completion        = false; // print source-able completion script
405
    bool use_color         = false; // use color to distinguish generations and inputs
406
    bool special           = false; // enable special token output
407
    bool interactive       = false; // interactive mode
408
    bool interactive_first = false; // wait for user input immediately
409
    bool prompt_cache_all  = false; // save user input and generations to prompt cache
410
    bool prompt_cache_ro   = false; // open the prompt cache read-only and do not update it
411
412
    bool escape            = true;  // escape "\n", "\r", "\t", "\'", "\"", and "\\"
413
    bool multiline_input   = false; // reverse the usage of `\`
414
    bool simple_io         = false; // improves compatibility with subprocesses and limited consoles
415
    bool cont_batching     = true;  // insert new sequences for decoding on-the-fly
416
    bool no_perf           = false; // disable performance metrics
417
    bool show_timings      = true;  // show timing information on CLI
418
    bool ctx_shift         = false; // context shift on infinite text generation
419
    bool swa_full          = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
420
    bool kv_unified        = false; // enable unified KV cache
421
422
    bool input_prefix_bos  = false; // prefix BOS to user inputs, preceding input_prefix
423
    bool use_mmap          = true;  // use mmap for faster loads
424
    bool use_mlock         = false; // use mlock to keep model in memory
425
    bool verbose_prompt    = false; // print prompt tokens before generation
426
    bool display_prompt    = true;  // print prompt before generation
427
    bool no_kv_offload     = false; // disable KV offloading
428
    bool warmup            = true;  // warmup run
429
    bool check_tensors     = false; // validate tensor data
430
    bool no_op_offload     = false; // globally disable offload host tensor operations to device
431
    bool no_extra_bufts    = false; // disable extra buffer types (used for weight repacking)
432
    bool no_host           = false; // bypass host buffer allowing extra buffers to be used
433
434
    bool single_turn       = false; // single turn chat conversation
435
436
    ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
437
    ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
438
439
    common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
440
441
    // multimodal models (see tools/mtmd)
442
    struct common_params_model mmproj;
443
    bool mmproj_use_gpu = true;     // use GPU for multimodal model
444
    bool no_mmproj = false;         // explicitly disable multimodal model
445
    std::vector<std::string> image; // path to image file(s)
446
    int image_min_tokens = -1;
447
    int image_max_tokens = -1;
448
449
    // finetune
450
    struct lr_opt lr;
451
    enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW;
452
    float val_split = 0.05f; // fraction of the data used for the validation set
453
454
    // embedding
455
    bool embedding         = false; // get only sentence embedding
456
    int32_t embd_normalize = 2;     // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
457
    std::string embd_out   = "";    // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
458
    std::string embd_sep   = "\n";  // separator of embeddings
459
    std::string cls_sep    = "\t";  // separator of classification sequences
460
461
    // server params
462
    int32_t port              = 8080;         // server listens on this network port
463
    int32_t timeout_read      = 600;          // http read timeout in seconds
464
    int32_t timeout_write     = timeout_read; // http write timeout in seconds
465
    int32_t n_threads_http    = -1;           // number of threads to process HTTP requests (TODO: support threadpool)
466
    int32_t n_cache_reuse     = 0;            // min chunk size to reuse from the cache via KV shifting
467
    int32_t n_ctx_checkpoints = 8;            // max number of context checkpoints per slot
468
    int32_t cache_ram_mib     = 8192;         // -1 = no limit, 0 - disable, 1 = 1 MiB, etc.
469
470
    std::string hostname      = "127.0.0.1";
471
    std::string public_path   = "";                                                                         // NOLINT
472
    std::string api_prefix    = "";                                                                         // NOLINT
473
    std::string chat_template = "";                                                                         // NOLINT
474
    bool use_jinja = true;                                                                                  // NOLINT
475
    bool enable_chat_template = true;
476
    common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
477
    int reasoning_budget = -1;
478
    bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
479
    int sleep_idle_seconds = -1;   // if >0, server will sleep after this many seconds of idle time
480
481
    std::vector<std::string> api_keys;
482
483
    std::string ssl_file_key  = "";                                                                         // NOLINT
484
    std::string ssl_file_cert = "";                                                                         // NOLINT
485
486
    std::map<std::string, std::string> default_template_kwargs;
487
488
    // webui configs
489
    bool webui = true;
490
    std::string webui_config_json;
491
492
    // "advanced" endpoints are disabled by default for better security
493
    bool endpoint_slots   = true;
494
    bool endpoint_props   = false; // only control POST requests, not GET
495
    bool endpoint_metrics = false;
496
497
    // router server configs
498
    std::string models_dir    = ""; // directory containing models for the router server
499
    std::string models_preset = ""; // directory containing model presets for the router server
500
    int models_max = 4;             // maximum number of models to load simultaneously
501
    bool models_autoload = true;    // automatically load models when requested via the router server
502
503
    bool log_json = false;
504
505
    std::string slot_save_path;
506
    std::string media_path; // path to directory for loading media files
507
508
    float slot_prompt_similarity = 0.1f;
509
510
    // batched-bench params
511
    bool is_pp_shared   = false;
512
    bool is_tg_separate = false;
513
514
    std::vector<int32_t> n_pp;
515
    std::vector<int32_t> n_tg;
516
    std::vector<int32_t> n_pl;
517
518
    // retrieval params
519
    std::vector<std::string> context_files; // context files to embed
520
521
    int32_t chunk_size = 64; // chunk size for context embedding
522
523
    std::string chunk_separator = "\n"; // chunk separator for context embedding
524
525
    // passkey params
526
    int32_t n_junk = 250; // number of times to repeat the junk text
527
    int32_t i_pos  = -1;  // position of the passkey in the junk text
528
529
    // imatrix params
530
    int32_t n_out_freq  = 10; // output the imatrix every n_out_freq iterations
531
    int32_t n_save_freq =  0; // save the imatrix every n_save_freq iterations
532
    int32_t i_chunk     =  0; // start processing from this chunk
533
    int8_t  imat_dat    =  0; // whether the legacy imatrix.dat format should be output (gguf <= 0 < dat)
534
535
    bool process_output  = false; // collect data for the output tensor
536
    bool compute_ppl     = true;  // whether to compute perplexity
537
    bool show_statistics = false; // show imatrix statistics per tensor
538
    bool parse_special   = false; // whether to parse special tokens during imatrix tokenization
539
540
    // cvector-generator params
541
    int n_pca_batch = 100;
542
    int n_pca_iterations = 1000;
543
    dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
544
    std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
545
    std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
546
547
    bool spm_infill = false; // suffix/prefix/middle pattern for infill
548
549
    // batched-bench params
550
    bool batched_bench_output_jsonl = false;
551
552
    // common params
553
    std::string out_file; // output filename for all example programs
554
    // optional callback for model loading progress and cancellation:
555
    // called with a progress value between 0.0 and 1.0.
556
    // return false from callback to abort model loading or true to continue
557
    llama_progress_callback load_progress_callback = NULL;
558
    void *                  load_progress_callback_user_data = NULL;
559
560
0
    bool has_speculative() const {
561
0
        return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
562
0
    }
563
};
564
565
// call once at the start of a program if it uses libcommon
566
// initializes the logging system and prints info about the build
567
void common_init();
568
569
std::string common_params_get_system_info(const common_params & params);
570
571
bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
572
bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
573
void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
574
bool set_process_priority(enum ggml_sched_priority prio);
575
576
//
577
// String utils
578
//
579
580
#ifdef __GNUC__
581
#    if defined(__MINGW32__) && !defined(__clang__)
582
#        define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
583
#    else
584
#        define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
585
#    endif
586
#else
587
#    define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
588
#endif
589
590
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
591
std::string string_format(const char * fmt, ...);
592
593
std::string string_strip(const std::string & str);
594
std::string string_get_sortable_timestamp();
595
596
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
597
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
598
std::string string_repeat(const std::string & str, size_t n);
599
600
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
601
602
std::string regex_escape(const std::string & s);
603
604
template<class T>
605
static std::vector<T> string_split(const std::string & str, char delim) {
606
    static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
607
    std::vector<T> values;
608
    std::istringstream str_stream(str);
609
    std::string token;
610
    while (std::getline(str_stream, token, delim)) {
611
        T value;
612
        std::istringstream token_stream(token);
613
        token_stream >> value;
614
        values.push_back(value);
615
    }
616
    return values;
617
}
618
619
template<>
620
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
621
0
{
622
0
    std::vector<std::string> parts;
623
0
    size_t begin_pos = 0;
624
0
    size_t separator_pos = input.find(separator);
625
0
    while (separator_pos != std::string::npos) {
626
0
        std::string part = input.substr(begin_pos, separator_pos - begin_pos);
627
0
        parts.emplace_back(part);
628
0
        begin_pos = separator_pos + 1;
629
0
        separator_pos = input.find(separator, begin_pos);
630
0
    }
631
0
    parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
632
0
    return parts;
633
0
}
Unexecuted instantiation: json-schema-to-grammar.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char)
Unexecuted instantiation: common.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char)
Unexecuted instantiation: log.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char)
Unexecuted instantiation: sampling.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char)
634
635
static bool string_starts_with(const std::string & str,
636
0
                               const std::string & prefix) {  // While we wait for C++20's std::string::starts_with...
637
0
    return str.rfind(prefix, 0) == 0;
638
0
}
Unexecuted instantiation: json-schema-to-grammar.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)
Unexecuted instantiation: common.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)
Unexecuted instantiation: log.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)
Unexecuted instantiation: sampling.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&)
639
640
// While we wait for C++20's std::string::ends_with...
641
bool string_ends_with(const std::string_view & str, const std::string_view & suffix);
642
bool string_remove_suffix(std::string & str, const std::string_view & suffix);
643
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop);
644
645
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
646
void string_process_escapes(std::string & input);
647
648
std::string string_from(bool value);
649
std::string string_from(const std::vector<int> & values);
650
std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
651
std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
652
653
//
654
// Filesystem utils
655
//
656
657
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
658
bool fs_create_directory_with_parents(const std::string & path);
659
bool fs_is_directory(const std::string & path);
660
661
std::string fs_get_cache_directory();
662
std::string fs_get_cache_file(const std::string & filename);
663
664
struct common_file_info {
665
    std::string path;
666
    std::string name;
667
    size_t      size = 0; // in bytes
668
    bool        is_dir = false;
669
};
670
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
671
672
//
673
// TTY utils
674
//
675
676
// Auto-detect if colors can be enabled based on terminal and environment
677
bool tty_can_use_colors();
678
679
//
680
// Model utils
681
//
682
683
struct common_sampler;
684
685
// note: defines the model, context, samplers, ets. lifetimes
686
struct common_init_result {
687
    common_init_result(common_params & params);
688
    ~common_init_result();
689
690
    llama_model * model();
691
    llama_context * context();
692
    common_sampler * sampler(llama_seq_id seq_id);
693
694
    std::vector<llama_adapter_lora_ptr> & lora();
695
696
    void free_context();
697
698
private:
699
    struct impl;
700
    std::unique_ptr<impl> pimpl;
701
};
702
703
using common_init_result_ptr = std::unique_ptr<common_init_result>;
704
705
common_init_result_ptr common_init_from_params(common_params & params);
706
707
struct llama_model_params     common_model_params_to_llama  (      common_params & params);
708
struct llama_context_params   common_context_params_to_llama(const common_params & params);
709
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
710
711
// clear LoRA adapters from context, then apply new list of adapters
712
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
713
714
std::string                   get_model_endpoint();
715
716
//
717
// Batch utils
718
//
719
720
void common_batch_clear(struct llama_batch & batch);
721
722
void common_batch_add(
723
                 struct llama_batch & batch,
724
                        llama_token   id,
725
                          llama_pos   pos,
726
    const std::vector<llama_seq_id> & seq_ids,
727
                               bool   logits);
728
729
//
730
// Token utils
731
//
732
733
// longest common prefix
734
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
735
736
// longet common subsequence
737
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
738
739
//
740
// Vocab utils
741
//
742
743
// tokenizes a string into a vector of tokens
744
// should work similar to Python's `tokenizer.encode`
745
std::vector<llama_token> common_tokenize(
746
  const struct llama_context * ctx,
747
           const std::string & text,
748
                        bool   add_special,
749
                        bool   parse_special = false);
750
751
std::vector<llama_token> common_tokenize(
752
    const struct llama_vocab * vocab,
753
           const std::string & text,
754
                        bool   add_special,
755
                        bool   parse_special = false);
756
757
// tokenizes a token into a piece, optionally renders special/control tokens
758
// should work similar to Python's `tokenizer.id_to_piece`
759
std::string common_token_to_piece(
760
        const struct llama_context * ctx,
761
                       llama_token   token,
762
                       bool          special = true);
763
764
std::string common_token_to_piece(
765
          const struct llama_vocab * vocab,
766
                       llama_token   token,
767
                       bool          special = true);
768
769
// detokenizes a vector of tokens into a string
770
// should work similar to Python's `tokenizer.decode`
771
// optionally renders special/control tokens
772
std::string common_detokenize(
773
            const struct llama_context * ctx,
774
        const std::vector<llama_token> & tokens,
775
                                  bool   special = true);
776
777
std::string common_detokenize(
778
              const struct llama_vocab * vocab,
779
        const std::vector<llama_token> & tokens,
780
                                  bool   special = true);
781
782
//
783
// Embedding utils
784
//
785
786
// TODO: repace embd_norm with an enum
787
void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
788
789
float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
790
791
//
792
// Control vector utils
793
//
794
795
struct common_control_vector_data {
796
    int n_embd;
797
798
    // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
799
    std::vector<float> data;
800
};
801
802
struct common_control_vector_load_info {
803
    float strength;
804
805
    std::string fname;
806
};
807
808
// Load control vectors, scale each by strength, and add them together.
809
// On error, returns {-1, empty}
810
common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
811
812
//
813
// Split utils
814
//
815
816
namespace {
817
818
const char * const LLM_KV_SPLIT_NO            = "split.no";
819
const char * const LLM_KV_SPLIT_COUNT         = "split.count";
820
const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
821
822
}
823
824
//
825
// MoE utils
826
//
827
828
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps";
829
830
0
static std::string llm_ffn_exps_block_regex(int idx) {
831
0
    return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX);
832
0
}
Unexecuted instantiation: json-schema-to-grammar.cpp:llm_ffn_exps_block_regex(int)
Unexecuted instantiation: common.cpp:llm_ffn_exps_block_regex(int)
Unexecuted instantiation: log.cpp:llm_ffn_exps_block_regex(int)
Unexecuted instantiation: sampling.cpp:llm_ffn_exps_block_regex(int)
833
834
0
static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() {
835
0
    return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() };
836
0
}
Unexecuted instantiation: json-schema-to-grammar.cpp:llm_ffn_exps_cpu_override()
Unexecuted instantiation: common.cpp:llm_ffn_exps_cpu_override()
Unexecuted instantiation: log.cpp:llm_ffn_exps_cpu_override()
Unexecuted instantiation: sampling.cpp:llm_ffn_exps_cpu_override()
837
838
//
839
// training utils
840
//
841
842
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
843
844
// "adamw" or "sgd" (case insensitive)
845
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char *);