/src/llama.cpp/common/common.h
Line | Count | Source |
1 | | // Various helper functions and utilities |
2 | | |
3 | | #pragma once |
4 | | |
5 | | #include "ggml-opt.h" |
6 | | #include "llama-cpp.h" |
7 | | |
8 | | #include <set> |
9 | | #include <sstream> |
10 | | #include <string> |
11 | | #include <string_view> |
12 | | #include <vector> |
13 | | #include <map> |
14 | | |
15 | | #if defined(_WIN32) && !defined(_WIN32_WINNT) |
16 | | #define _WIN32_WINNT 0x0A00 |
17 | | #endif |
18 | | |
19 | | #ifdef _WIN32 |
20 | | #define DIRECTORY_SEPARATOR '\\' |
21 | | #else |
22 | 0 | #define DIRECTORY_SEPARATOR '/' |
23 | | #endif // _WIN32 |
24 | | |
25 | | #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0) |
26 | | #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0) |
27 | | |
28 | | #define print_build_info() do { \ |
29 | | fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \ |
30 | | fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \ |
31 | | } while(0) |
32 | | |
33 | | struct common_time_meas { |
34 | | common_time_meas(int64_t & t_acc, bool disable = false); |
35 | | ~common_time_meas(); |
36 | | |
37 | | const int64_t t_start_us; |
38 | | |
39 | | int64_t & t_acc; |
40 | | }; |
41 | | |
42 | | struct common_adapter_lora_info { |
43 | | std::string path; |
44 | | float scale; |
45 | | |
46 | | std::string task_name; |
47 | | std::string prompt_prefix; |
48 | | |
49 | | struct llama_adapter_lora * ptr; |
50 | | }; |
51 | | |
52 | | using llama_tokens = std::vector<llama_token>; |
53 | | |
54 | | // build info |
55 | | extern int LLAMA_BUILD_NUMBER; |
56 | | extern const char * LLAMA_COMMIT; |
57 | | extern const char * LLAMA_COMPILER; |
58 | | extern const char * LLAMA_BUILD_TARGET; |
59 | | |
60 | | struct common_control_vector_load_info; |
61 | | |
62 | | // |
63 | | // CPU utils |
64 | | // |
65 | | |
66 | | struct cpu_params { |
67 | | int n_threads = -1; |
68 | | bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask. |
69 | | bool mask_valid = false; // Default: any CPU |
70 | | enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime) |
71 | | bool strict_cpu = false; // Use strict CPU placement |
72 | | uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling) |
73 | | }; |
74 | | |
75 | | int32_t cpu_get_num_physical_cores(); |
76 | | int32_t cpu_get_num_math(); |
77 | | |
78 | | // |
79 | | // Common params |
80 | | // |
81 | | |
82 | | enum llama_example { |
83 | | LLAMA_EXAMPLE_COMMON, |
84 | | LLAMA_EXAMPLE_SPECULATIVE, |
85 | | LLAMA_EXAMPLE_COMPLETION, |
86 | | LLAMA_EXAMPLE_CLI, |
87 | | LLAMA_EXAMPLE_EMBEDDING, |
88 | | LLAMA_EXAMPLE_PERPLEXITY, |
89 | | LLAMA_EXAMPLE_RETRIEVAL, |
90 | | LLAMA_EXAMPLE_PASSKEY, |
91 | | LLAMA_EXAMPLE_IMATRIX, |
92 | | LLAMA_EXAMPLE_BENCH, |
93 | | LLAMA_EXAMPLE_SERVER, |
94 | | LLAMA_EXAMPLE_CVECTOR_GENERATOR, |
95 | | LLAMA_EXAMPLE_EXPORT_LORA, |
96 | | LLAMA_EXAMPLE_MTMD, |
97 | | LLAMA_EXAMPLE_LOOKUP, |
98 | | LLAMA_EXAMPLE_PARALLEL, |
99 | | LLAMA_EXAMPLE_TTS, |
100 | | LLAMA_EXAMPLE_DIFFUSION, |
101 | | LLAMA_EXAMPLE_FINETUNE, |
102 | | LLAMA_EXAMPLE_FIT_PARAMS, |
103 | | |
104 | | LLAMA_EXAMPLE_COUNT, |
105 | | }; |
106 | | |
107 | | enum common_sampler_type { |
108 | | COMMON_SAMPLER_TYPE_NONE = 0, |
109 | | COMMON_SAMPLER_TYPE_DRY = 1, |
110 | | COMMON_SAMPLER_TYPE_TOP_K = 2, |
111 | | COMMON_SAMPLER_TYPE_TOP_P = 3, |
112 | | COMMON_SAMPLER_TYPE_MIN_P = 4, |
113 | | //COMMON_SAMPLER_TYPE_TFS_Z = 5, |
114 | | COMMON_SAMPLER_TYPE_TYPICAL_P = 6, |
115 | | COMMON_SAMPLER_TYPE_TEMPERATURE = 7, |
116 | | COMMON_SAMPLER_TYPE_XTC = 8, |
117 | | COMMON_SAMPLER_TYPE_INFILL = 9, |
118 | | COMMON_SAMPLER_TYPE_PENALTIES = 10, |
119 | | COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11, |
120 | | }; |
121 | | |
122 | | // dimensionality reduction methods, used by cvector-generator |
123 | | enum dimre_method { |
124 | | DIMRE_METHOD_PCA, |
125 | | DIMRE_METHOD_MEAN, |
126 | | }; |
127 | | |
128 | | enum common_conversation_mode { |
129 | | COMMON_CONVERSATION_MODE_DISABLED = 0, |
130 | | COMMON_CONVERSATION_MODE_ENABLED = 1, |
131 | | COMMON_CONVERSATION_MODE_AUTO = 2, |
132 | | }; |
133 | | |
134 | | enum common_grammar_trigger_type { |
135 | | COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN, |
136 | | COMMON_GRAMMAR_TRIGGER_TYPE_WORD, |
137 | | COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN, |
138 | | COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL, |
139 | | }; |
140 | | |
141 | | struct common_grammar_trigger { |
142 | | common_grammar_trigger_type type; |
143 | | std::string value; |
144 | | llama_token token = LLAMA_TOKEN_NULL; |
145 | | }; |
146 | | |
147 | | enum common_params_sampling_config : uint64_t { |
148 | | COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0, |
149 | | COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1, |
150 | | COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2, |
151 | | COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3, |
152 | | COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4, |
153 | | COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5, |
154 | | COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6, |
155 | | COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7, |
156 | | COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8, |
157 | | COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9, |
158 | | COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10, |
159 | | COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11, |
160 | | }; |
161 | | |
162 | | |
163 | | // sampling parameters |
164 | | struct common_params_sampling { |
165 | | uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler |
166 | | |
167 | | int32_t n_prev = 64; // number of previous tokens to remember |
168 | | int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. |
169 | | int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens |
170 | | int32_t top_k = 40; // <= 0 to use vocab size |
171 | | float top_p = 0.95f; // 1.0 = disabled |
172 | | float min_p = 0.05f; // 0.0 = disabled |
173 | | float xtc_probability = 0.00f; // 0.0 = disabled |
174 | | float xtc_threshold = 0.10f; // > 0.5 disables XTC |
175 | | float typ_p = 1.00f; // typical_p, 1.0 = disabled |
176 | | float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities |
177 | | float dynatemp_range = 0.00f; // 0.0 = disabled |
178 | | float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler |
179 | | int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) |
180 | | float penalty_repeat = 1.00f; // 1.0 = disabled |
181 | | float penalty_freq = 0.00f; // 0.0 = disabled |
182 | | float penalty_present = 0.00f; // 0.0 = disabled |
183 | | float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition: |
184 | | float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length) |
185 | | int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty |
186 | | int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size) |
187 | | int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 |
188 | | float top_n_sigma = -1.00f;// -1.0 = disabled |
189 | | float mirostat_tau = 5.00f; // target entropy |
190 | | float mirostat_eta = 0.10f; // learning rate |
191 | | bool ignore_eos = false; |
192 | | bool no_perf = false; // disable performance metrics |
193 | | bool timing_per_token = false; |
194 | | |
195 | | uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers |
196 | | |
197 | | std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY |
198 | | |
199 | | std::vector<enum common_sampler_type> samplers = { |
200 | | COMMON_SAMPLER_TYPE_PENALTIES, |
201 | | COMMON_SAMPLER_TYPE_DRY, |
202 | | COMMON_SAMPLER_TYPE_TOP_N_SIGMA, |
203 | | COMMON_SAMPLER_TYPE_TOP_K, |
204 | | COMMON_SAMPLER_TYPE_TYPICAL_P, |
205 | | COMMON_SAMPLER_TYPE_TOP_P, |
206 | | COMMON_SAMPLER_TYPE_MIN_P, |
207 | | COMMON_SAMPLER_TYPE_XTC, |
208 | | COMMON_SAMPLER_TYPE_TEMPERATURE, |
209 | | }; |
210 | | |
211 | | std::string grammar; // optional BNF-like grammar to constrain sampling |
212 | | bool grammar_lazy = false; |
213 | | std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars) |
214 | | std::set<llama_token> preserved_tokens; |
215 | | |
216 | | std::vector<llama_logit_bias> logit_bias; // logit biases to apply |
217 | | std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens |
218 | | |
219 | 0 | bool has_logit_bias() const { |
220 | 0 | return !logit_bias.empty(); |
221 | 0 | } |
222 | | |
223 | | // print the parameters into a string |
224 | | std::string print() const; |
225 | | }; |
226 | | |
227 | | struct common_params_model { |
228 | | std::string path = ""; // model local path // NOLINT |
229 | | std::string url = ""; // model url to download // NOLINT |
230 | | std::string hf_repo = ""; // HF repo // NOLINT |
231 | | std::string hf_file = ""; // HF file // NOLINT |
232 | | std::string docker_repo = ""; // Docker repo // NOLINT |
233 | | std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT |
234 | | }; |
235 | | |
236 | | struct common_params_speculative { |
237 | | std::vector<ggml_backend_dev_t> devices; // devices to use for offloading |
238 | | |
239 | | int32_t n_ctx = 0; // draft context size |
240 | | int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding |
241 | | int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding |
242 | | int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default) |
243 | | float p_split = 0.1f; // speculative decoding split probability |
244 | | float p_min = 0.75f; // minimum speculative decoding probability (greedy) |
245 | | std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements |
246 | | std::vector<llama_model_tensor_buft_override> tensor_buft_overrides; |
247 | | |
248 | | ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K |
249 | | ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V |
250 | | |
251 | | struct cpu_params cpuparams; |
252 | | struct cpu_params cpuparams_batch; |
253 | | |
254 | | struct common_params_model model; |
255 | | }; |
256 | | |
257 | | struct common_params_vocoder { |
258 | | struct common_params_model model; |
259 | | |
260 | | std::string speaker_file = ""; // speaker file path // NOLINT |
261 | | |
262 | | bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT |
263 | | }; |
264 | | |
265 | | struct common_params_diffusion { |
266 | | int32_t steps = 128; |
267 | | bool visual_mode = false; |
268 | | |
269 | | float eps = 0; // epsilon for timesteps |
270 | | int32_t block_length = 0; // block length for generation |
271 | | |
272 | | int32_t algorithm = 4; // default algorithm: low-confidence |
273 | | float alg_temp = 0.0f; // algorithm temperature |
274 | | |
275 | | float cfg_scale = 0; // classifier-free guidance scale |
276 | | bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0 |
277 | | }; |
278 | | |
279 | | // reasoning API response format (not to be confused as chat template's reasoning format) |
280 | | enum common_reasoning_format { |
281 | | COMMON_REASONING_FORMAT_NONE, |
282 | | COMMON_REASONING_FORMAT_AUTO, // Same as deepseek, using `message.reasoning_content` |
283 | | COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode |
284 | | COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas. |
285 | | // do not extend this enum unless you absolutely have to |
286 | | // in most cases, use COMMON_REASONING_FORMAT_AUTO |
287 | | // see: https://github.com/ggml-org/llama.cpp/pull/15408 |
288 | | }; |
289 | | |
290 | | |
291 | | struct lr_opt { |
292 | | float lr0 = 1e-5; // learning rate at first epoch |
293 | | float lr_min = -1; |
294 | | float decay_epochs = -1; // if >0, the learning rate starts at lr0 and decays to lr_min after this many epochs |
295 | | float scale_epoch = 0; |
296 | | float wd = 0; |
297 | | unsigned epochs = 2; |
298 | | |
299 | | unsigned epoch; // set by optimizer outer (epochs) loop |
300 | | // learning rate decay - constant LR per epoch only for now |
301 | | float get_lr(float e) const; |
302 | 0 | float get_lr() const { return get_lr(epoch); } |
303 | | // must call after arg parse, before get_lr |
304 | | void init(); |
305 | | }; |
306 | | |
307 | | struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata); |
308 | | |
309 | | struct common_params { |
310 | | int32_t n_predict = -1; // max. number of new tokens to predict, -1 == no limit |
311 | | int32_t n_ctx = 0; // context size, 0 == context the model was trained with |
312 | | int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) |
313 | | int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) |
314 | | int32_t n_keep = 0; // number of tokens to keep from initial prompt |
315 | | int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) |
316 | | int32_t n_parallel = 1; // number of parallel sequences to decode |
317 | | int32_t n_sequences = 1; // number of sequences to decode |
318 | | int32_t grp_attn_n = 1; // group-attention factor |
319 | | int32_t grp_attn_w = 512; // group-attention width |
320 | | int32_t n_print = -1; // print token count every n tokens (-1 = disabled) |
321 | | float rope_freq_base = 0.0f; // RoPE base frequency |
322 | | float rope_freq_scale = 0.0f; // RoPE frequency scaling factor |
323 | | float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor |
324 | | float yarn_attn_factor = -1.0f; // YaRN magnitude scaling factor |
325 | | float yarn_beta_fast = -1.0f; // YaRN low correction dim |
326 | | float yarn_beta_slow = -1.0f; // YaRN high correction dim |
327 | | int32_t yarn_orig_ctx = 0; // YaRN original context length |
328 | | |
329 | | // offload params |
330 | | std::vector<ggml_backend_dev_t> devices; // devices to use for offloading |
331 | | |
332 | | int32_t n_gpu_layers = -1; // number of layers to store in VRAM, -1 is auto, <= -2 is all |
333 | | int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors |
334 | | float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs |
335 | | bool fit_params = true; // whether to fit unset model/context parameters to free device memory |
336 | | size_t fit_params_target = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory |
337 | | int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use |
338 | | |
339 | | enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs |
340 | | |
341 | | struct cpu_params cpuparams; |
342 | | struct cpu_params cpuparams_batch; |
343 | | |
344 | | ggml_backend_sched_eval_callback cb_eval = nullptr; |
345 | | void * cb_eval_user_data = nullptr; |
346 | | |
347 | | ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; |
348 | | |
349 | | enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; |
350 | | enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings |
351 | | enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings |
352 | | enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention |
353 | | |
354 | | struct common_params_sampling sampling; |
355 | | struct common_params_speculative speculative; |
356 | | struct common_params_vocoder vocoder; |
357 | | struct common_params_diffusion diffusion; |
358 | | |
359 | | struct common_params_model model; |
360 | | |
361 | | std::string model_alias = ""; // model alias // NOLINT |
362 | | std::string hf_token = ""; // HF token // NOLINT |
363 | | std::string prompt = ""; // NOLINT |
364 | | std::string system_prompt = ""; // NOLINT |
365 | | std::string prompt_file = ""; // store the external prompt file name // NOLINT |
366 | | std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT |
367 | | std::string input_prefix = ""; // string to prefix user inputs with // NOLINT |
368 | | std::string input_suffix = ""; // string to suffix user inputs with // NOLINT |
369 | | std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT |
370 | | std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT |
371 | | std::string logits_file = ""; // file for saving *all* logits // NOLINT |
372 | | |
373 | | std::vector<std::string> in_files; // all input files |
374 | | std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts) |
375 | | std::vector<llama_model_kv_override> kv_overrides; |
376 | | std::vector<llama_model_tensor_buft_override> tensor_buft_overrides; |
377 | | |
378 | | bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply) |
379 | | std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale |
380 | | |
381 | | std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale |
382 | | |
383 | | int32_t verbosity = 3; // LOG_LEVEL_INFO |
384 | | int32_t control_vector_layer_start = -1; // layer range for control vector |
385 | | int32_t control_vector_layer_end = -1; // layer range for control vector |
386 | | bool offline = false; |
387 | | |
388 | | int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. |
389 | | int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line |
390 | | // (which is more convenient to use for plotting) |
391 | | // |
392 | | bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt |
393 | | size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score |
394 | | |
395 | | bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt |
396 | | size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed |
397 | | |
398 | | bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt |
399 | | size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed |
400 | | |
401 | | bool kl_divergence = false; // compute KL divergence |
402 | | |
403 | | bool usage = false; // print usage |
404 | | bool completion = false; // print source-able completion script |
405 | | bool use_color = false; // use color to distinguish generations and inputs |
406 | | bool special = false; // enable special token output |
407 | | bool interactive = false; // interactive mode |
408 | | bool interactive_first = false; // wait for user input immediately |
409 | | bool prompt_cache_all = false; // save user input and generations to prompt cache |
410 | | bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it |
411 | | |
412 | | bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\" |
413 | | bool multiline_input = false; // reverse the usage of `\` |
414 | | bool simple_io = false; // improves compatibility with subprocesses and limited consoles |
415 | | bool cont_batching = true; // insert new sequences for decoding on-the-fly |
416 | | bool no_perf = false; // disable performance metrics |
417 | | bool show_timings = true; // show timing information on CLI |
418 | | bool ctx_shift = false; // context shift on infinite text generation |
419 | | bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055) |
420 | | bool kv_unified = false; // enable unified KV cache |
421 | | |
422 | | bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix |
423 | | bool use_mmap = true; // use mmap for faster loads |
424 | | bool use_mlock = false; // use mlock to keep model in memory |
425 | | bool verbose_prompt = false; // print prompt tokens before generation |
426 | | bool display_prompt = true; // print prompt before generation |
427 | | bool no_kv_offload = false; // disable KV offloading |
428 | | bool warmup = true; // warmup run |
429 | | bool check_tensors = false; // validate tensor data |
430 | | bool no_op_offload = false; // globally disable offload host tensor operations to device |
431 | | bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking) |
432 | | bool no_host = false; // bypass host buffer allowing extra buffers to be used |
433 | | |
434 | | bool single_turn = false; // single turn chat conversation |
435 | | |
436 | | ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K |
437 | | ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V |
438 | | |
439 | | common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO; |
440 | | |
441 | | // multimodal models (see tools/mtmd) |
442 | | struct common_params_model mmproj; |
443 | | bool mmproj_use_gpu = true; // use GPU for multimodal model |
444 | | bool no_mmproj = false; // explicitly disable multimodal model |
445 | | std::vector<std::string> image; // path to image file(s) |
446 | | int image_min_tokens = -1; |
447 | | int image_max_tokens = -1; |
448 | | |
449 | | // finetune |
450 | | struct lr_opt lr; |
451 | | enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW; |
452 | | float val_split = 0.05f; // fraction of the data used for the validation set |
453 | | |
454 | | // embedding |
455 | | bool embedding = false; // get only sentence embedding |
456 | | int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm) |
457 | | std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix |
458 | | std::string embd_sep = "\n"; // separator of embeddings |
459 | | std::string cls_sep = "\t"; // separator of classification sequences |
460 | | |
461 | | // server params |
462 | | int32_t port = 8080; // server listens on this network port |
463 | | int32_t timeout_read = 600; // http read timeout in seconds |
464 | | int32_t timeout_write = timeout_read; // http write timeout in seconds |
465 | | int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool) |
466 | | int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting |
467 | | int32_t n_ctx_checkpoints = 8; // max number of context checkpoints per slot |
468 | | int32_t cache_ram_mib = 8192; // -1 = no limit, 0 - disable, 1 = 1 MiB, etc. |
469 | | |
470 | | std::string hostname = "127.0.0.1"; |
471 | | std::string public_path = ""; // NOLINT |
472 | | std::string api_prefix = ""; // NOLINT |
473 | | std::string chat_template = ""; // NOLINT |
474 | | bool use_jinja = true; // NOLINT |
475 | | bool enable_chat_template = true; |
476 | | common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; |
477 | | int reasoning_budget = -1; |
478 | | bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response |
479 | | int sleep_idle_seconds = -1; // if >0, server will sleep after this many seconds of idle time |
480 | | |
481 | | std::vector<std::string> api_keys; |
482 | | |
483 | | std::string ssl_file_key = ""; // NOLINT |
484 | | std::string ssl_file_cert = ""; // NOLINT |
485 | | |
486 | | std::map<std::string, std::string> default_template_kwargs; |
487 | | |
488 | | // webui configs |
489 | | bool webui = true; |
490 | | std::string webui_config_json; |
491 | | |
492 | | // "advanced" endpoints are disabled by default for better security |
493 | | bool endpoint_slots = true; |
494 | | bool endpoint_props = false; // only control POST requests, not GET |
495 | | bool endpoint_metrics = false; |
496 | | |
497 | | // router server configs |
498 | | std::string models_dir = ""; // directory containing models for the router server |
499 | | std::string models_preset = ""; // directory containing model presets for the router server |
500 | | int models_max = 4; // maximum number of models to load simultaneously |
501 | | bool models_autoload = true; // automatically load models when requested via the router server |
502 | | |
503 | | bool log_json = false; |
504 | | |
505 | | std::string slot_save_path; |
506 | | std::string media_path; // path to directory for loading media files |
507 | | |
508 | | float slot_prompt_similarity = 0.1f; |
509 | | |
510 | | // batched-bench params |
511 | | bool is_pp_shared = false; |
512 | | bool is_tg_separate = false; |
513 | | |
514 | | std::vector<int32_t> n_pp; |
515 | | std::vector<int32_t> n_tg; |
516 | | std::vector<int32_t> n_pl; |
517 | | |
518 | | // retrieval params |
519 | | std::vector<std::string> context_files; // context files to embed |
520 | | |
521 | | int32_t chunk_size = 64; // chunk size for context embedding |
522 | | |
523 | | std::string chunk_separator = "\n"; // chunk separator for context embedding |
524 | | |
525 | | // passkey params |
526 | | int32_t n_junk = 250; // number of times to repeat the junk text |
527 | | int32_t i_pos = -1; // position of the passkey in the junk text |
528 | | |
529 | | // imatrix params |
530 | | int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations |
531 | | int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations |
532 | | int32_t i_chunk = 0; // start processing from this chunk |
533 | | int8_t imat_dat = 0; // whether the legacy imatrix.dat format should be output (gguf <= 0 < dat) |
534 | | |
535 | | bool process_output = false; // collect data for the output tensor |
536 | | bool compute_ppl = true; // whether to compute perplexity |
537 | | bool show_statistics = false; // show imatrix statistics per tensor |
538 | | bool parse_special = false; // whether to parse special tokens during imatrix tokenization |
539 | | |
540 | | // cvector-generator params |
541 | | int n_pca_batch = 100; |
542 | | int n_pca_iterations = 1000; |
543 | | dimre_method cvector_dimre_method = DIMRE_METHOD_PCA; |
544 | | std::string cvector_positive_file = "tools/cvector-generator/positive.txt"; |
545 | | std::string cvector_negative_file = "tools/cvector-generator/negative.txt"; |
546 | | |
547 | | bool spm_infill = false; // suffix/prefix/middle pattern for infill |
548 | | |
549 | | // batched-bench params |
550 | | bool batched_bench_output_jsonl = false; |
551 | | |
552 | | // common params |
553 | | std::string out_file; // output filename for all example programs |
554 | | // optional callback for model loading progress and cancellation: |
555 | | // called with a progress value between 0.0 and 1.0. |
556 | | // return false from callback to abort model loading or true to continue |
557 | | llama_progress_callback load_progress_callback = NULL; |
558 | | void * load_progress_callback_user_data = NULL; |
559 | | |
560 | 0 | bool has_speculative() const { |
561 | 0 | return !speculative.model.path.empty() || !speculative.model.hf_repo.empty(); |
562 | 0 | } |
563 | | }; |
564 | | |
565 | | // call once at the start of a program if it uses libcommon |
566 | | // initializes the logging system and prints info about the build |
567 | | void common_init(); |
568 | | |
569 | | std::string common_params_get_system_info(const common_params & params); |
570 | | |
571 | | bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]); |
572 | | bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]); |
573 | | void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr); |
574 | | bool set_process_priority(enum ggml_sched_priority prio); |
575 | | |
576 | | // |
577 | | // String utils |
578 | | // |
579 | | |
580 | | #ifdef __GNUC__ |
581 | | # if defined(__MINGW32__) && !defined(__clang__) |
582 | | # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) |
583 | | # else |
584 | | # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) |
585 | | # endif |
586 | | #else |
587 | | # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) |
588 | | #endif |
589 | | |
590 | | LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2) |
591 | | std::string string_format(const char * fmt, ...); |
592 | | |
593 | | std::string string_strip(const std::string & str); |
594 | | std::string string_get_sortable_timestamp(); |
595 | | |
596 | | std::string string_join(const std::vector<std::string> & values, const std::string & separator); |
597 | | std::vector<std::string> string_split(const std::string & str, const std::string & delimiter); |
598 | | std::string string_repeat(const std::string & str, size_t n); |
599 | | |
600 | | void string_replace_all(std::string & s, const std::string & search, const std::string & replace); |
601 | | |
602 | | std::string regex_escape(const std::string & s); |
603 | | |
604 | | template<class T> |
605 | | static std::vector<T> string_split(const std::string & str, char delim) { |
606 | | static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string"); |
607 | | std::vector<T> values; |
608 | | std::istringstream str_stream(str); |
609 | | std::string token; |
610 | | while (std::getline(str_stream, token, delim)) { |
611 | | T value; |
612 | | std::istringstream token_stream(token); |
613 | | token_stream >> value; |
614 | | values.push_back(value); |
615 | | } |
616 | | return values; |
617 | | } |
618 | | |
619 | | template<> |
620 | | std::vector<std::string> string_split<std::string>(const std::string & input, char separator) |
621 | 0 | { |
622 | 0 | std::vector<std::string> parts; |
623 | 0 | size_t begin_pos = 0; |
624 | 0 | size_t separator_pos = input.find(separator); |
625 | 0 | while (separator_pos != std::string::npos) { |
626 | 0 | std::string part = input.substr(begin_pos, separator_pos - begin_pos); |
627 | 0 | parts.emplace_back(part); |
628 | 0 | begin_pos = separator_pos + 1; |
629 | 0 | separator_pos = input.find(separator, begin_pos); |
630 | 0 | } |
631 | 0 | parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos)); |
632 | 0 | return parts; |
633 | 0 | } Unexecuted instantiation: json-schema-to-grammar.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) Unexecuted instantiation: common.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) Unexecuted instantiation: log.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) Unexecuted instantiation: sampling.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) |
634 | | |
635 | | static bool string_starts_with(const std::string & str, |
636 | 0 | const std::string & prefix) { // While we wait for C++20's std::string::starts_with... |
637 | 0 | return str.rfind(prefix, 0) == 0; |
638 | 0 | } Unexecuted instantiation: json-schema-to-grammar.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) Unexecuted instantiation: common.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) Unexecuted instantiation: log.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) Unexecuted instantiation: sampling.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) |
639 | | |
640 | | // While we wait for C++20's std::string::ends_with... |
641 | | bool string_ends_with(const std::string_view & str, const std::string_view & suffix); |
642 | | bool string_remove_suffix(std::string & str, const std::string_view & suffix); |
643 | | size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop); |
644 | | |
645 | | bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides); |
646 | | void string_process_escapes(std::string & input); |
647 | | |
648 | | std::string string_from(bool value); |
649 | | std::string string_from(const std::vector<int> & values); |
650 | | std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens); |
651 | | std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch); |
652 | | |
653 | | // |
654 | | // Filesystem utils |
655 | | // |
656 | | |
657 | | bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false); |
658 | | bool fs_create_directory_with_parents(const std::string & path); |
659 | | bool fs_is_directory(const std::string & path); |
660 | | |
661 | | std::string fs_get_cache_directory(); |
662 | | std::string fs_get_cache_file(const std::string & filename); |
663 | | |
664 | | struct common_file_info { |
665 | | std::string path; |
666 | | std::string name; |
667 | | size_t size = 0; // in bytes |
668 | | bool is_dir = false; |
669 | | }; |
670 | | std::vector<common_file_info> fs_list(const std::string & path, bool include_directories); |
671 | | |
672 | | // |
673 | | // TTY utils |
674 | | // |
675 | | |
676 | | // Auto-detect if colors can be enabled based on terminal and environment |
677 | | bool tty_can_use_colors(); |
678 | | |
679 | | // |
680 | | // Model utils |
681 | | // |
682 | | |
683 | | struct common_sampler; |
684 | | |
685 | | // note: defines the model, context, samplers, ets. lifetimes |
686 | | struct common_init_result { |
687 | | common_init_result(common_params & params); |
688 | | ~common_init_result(); |
689 | | |
690 | | llama_model * model(); |
691 | | llama_context * context(); |
692 | | common_sampler * sampler(llama_seq_id seq_id); |
693 | | |
694 | | std::vector<llama_adapter_lora_ptr> & lora(); |
695 | | |
696 | | void free_context(); |
697 | | |
698 | | private: |
699 | | struct impl; |
700 | | std::unique_ptr<impl> pimpl; |
701 | | }; |
702 | | |
703 | | using common_init_result_ptr = std::unique_ptr<common_init_result>; |
704 | | |
705 | | common_init_result_ptr common_init_from_params(common_params & params); |
706 | | |
707 | | struct llama_model_params common_model_params_to_llama ( common_params & params); |
708 | | struct llama_context_params common_context_params_to_llama(const common_params & params); |
709 | | struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params); |
710 | | |
711 | | // clear LoRA adapters from context, then apply new list of adapters |
712 | | void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora); |
713 | | |
714 | | std::string get_model_endpoint(); |
715 | | |
716 | | // |
717 | | // Batch utils |
718 | | // |
719 | | |
720 | | void common_batch_clear(struct llama_batch & batch); |
721 | | |
722 | | void common_batch_add( |
723 | | struct llama_batch & batch, |
724 | | llama_token id, |
725 | | llama_pos pos, |
726 | | const std::vector<llama_seq_id> & seq_ids, |
727 | | bool logits); |
728 | | |
729 | | // |
730 | | // Token utils |
731 | | // |
732 | | |
733 | | // longest common prefix |
734 | | size_t common_lcp(const llama_tokens & a, const llama_tokens & b); |
735 | | |
736 | | // longet common subsequence |
737 | | size_t common_lcs(const llama_tokens & a, const llama_tokens & b); |
738 | | |
739 | | // |
740 | | // Vocab utils |
741 | | // |
742 | | |
743 | | // tokenizes a string into a vector of tokens |
744 | | // should work similar to Python's `tokenizer.encode` |
745 | | std::vector<llama_token> common_tokenize( |
746 | | const struct llama_context * ctx, |
747 | | const std::string & text, |
748 | | bool add_special, |
749 | | bool parse_special = false); |
750 | | |
751 | | std::vector<llama_token> common_tokenize( |
752 | | const struct llama_vocab * vocab, |
753 | | const std::string & text, |
754 | | bool add_special, |
755 | | bool parse_special = false); |
756 | | |
757 | | // tokenizes a token into a piece, optionally renders special/control tokens |
758 | | // should work similar to Python's `tokenizer.id_to_piece` |
759 | | std::string common_token_to_piece( |
760 | | const struct llama_context * ctx, |
761 | | llama_token token, |
762 | | bool special = true); |
763 | | |
764 | | std::string common_token_to_piece( |
765 | | const struct llama_vocab * vocab, |
766 | | llama_token token, |
767 | | bool special = true); |
768 | | |
769 | | // detokenizes a vector of tokens into a string |
770 | | // should work similar to Python's `tokenizer.decode` |
771 | | // optionally renders special/control tokens |
772 | | std::string common_detokenize( |
773 | | const struct llama_context * ctx, |
774 | | const std::vector<llama_token> & tokens, |
775 | | bool special = true); |
776 | | |
777 | | std::string common_detokenize( |
778 | | const struct llama_vocab * vocab, |
779 | | const std::vector<llama_token> & tokens, |
780 | | bool special = true); |
781 | | |
782 | | // |
783 | | // Embedding utils |
784 | | // |
785 | | |
786 | | // TODO: repace embd_norm with an enum |
787 | | void common_embd_normalize(const float * inp, float * out, int n, int embd_norm); |
788 | | |
789 | | float common_embd_similarity_cos(const float * embd1, const float * embd2, int n); |
790 | | |
791 | | // |
792 | | // Control vector utils |
793 | | // |
794 | | |
795 | | struct common_control_vector_data { |
796 | | int n_embd; |
797 | | |
798 | | // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd |
799 | | std::vector<float> data; |
800 | | }; |
801 | | |
802 | | struct common_control_vector_load_info { |
803 | | float strength; |
804 | | |
805 | | std::string fname; |
806 | | }; |
807 | | |
808 | | // Load control vectors, scale each by strength, and add them together. |
809 | | // On error, returns {-1, empty} |
810 | | common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos); |
811 | | |
812 | | // |
813 | | // Split utils |
814 | | // |
815 | | |
816 | | namespace { |
817 | | |
818 | | const char * const LLM_KV_SPLIT_NO = "split.no"; |
819 | | const char * const LLM_KV_SPLIT_COUNT = "split.count"; |
820 | | const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"; |
821 | | |
822 | | } |
823 | | |
824 | | // |
825 | | // MoE utils |
826 | | // |
827 | | |
828 | | const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps"; |
829 | | |
830 | 0 | static std::string llm_ffn_exps_block_regex(int idx) { |
831 | 0 | return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX); |
832 | 0 | } Unexecuted instantiation: json-schema-to-grammar.cpp:llm_ffn_exps_block_regex(int) Unexecuted instantiation: common.cpp:llm_ffn_exps_block_regex(int) Unexecuted instantiation: log.cpp:llm_ffn_exps_block_regex(int) Unexecuted instantiation: sampling.cpp:llm_ffn_exps_block_regex(int) |
833 | | |
834 | 0 | static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() { |
835 | 0 | return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() }; |
836 | 0 | } Unexecuted instantiation: json-schema-to-grammar.cpp:llm_ffn_exps_cpu_override() Unexecuted instantiation: common.cpp:llm_ffn_exps_cpu_override() Unexecuted instantiation: log.cpp:llm_ffn_exps_cpu_override() Unexecuted instantiation: sampling.cpp:llm_ffn_exps_cpu_override() |
837 | | |
838 | | // |
839 | | // training utils |
840 | | // |
841 | | |
842 | | ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride); |
843 | | |
844 | | // "adamw" or "sgd" (case insensitive) |
845 | | enum ggml_opt_optimizer_type common_opt_get_optimizer(const char *); |