Coverage Report

Created: 2025-12-28 06:26

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/llama-model-saver.cpp
Line
Count
Source
1
#include "llama-model-saver.h"
2
3
#include "gguf.h"
4
5
#include "llama.h"
6
#include "llama-hparams.h"
7
#include "llama-model.h"
8
#include "llama-vocab.h"
9
10
#include <string>
11
12
0
llama_model_saver::llama_model_saver(const struct llama_model & model) : model(model), llm_kv(model.arch) {
13
0
    gguf_ctx = gguf_init_empty();
14
0
}
15
16
0
llama_model_saver::~llama_model_saver() {
17
0
    gguf_free(gguf_ctx);
18
0
}
19
20
0
void llama_model_saver::add_kv(const enum llm_kv key, const uint32_t value) {
21
0
    gguf_set_val_u32(gguf_ctx, llm_kv(key).c_str(), value);
22
0
}
23
24
0
void llama_model_saver::add_kv(const enum llm_kv key, const int32_t value) {
25
0
    gguf_set_val_i32(gguf_ctx, llm_kv(key).c_str(), value);
26
0
}
27
28
0
void llama_model_saver::add_kv(const enum llm_kv key, const float value) {
29
0
    gguf_set_val_f32(gguf_ctx, llm_kv(key).c_str(), value);
30
0
}
31
32
0
void llama_model_saver::add_kv(const enum llm_kv key, const bool value) {
33
0
    gguf_set_val_bool(gguf_ctx, llm_kv(key).c_str(), value);
34
0
}
35
36
0
void llama_model_saver::add_kv(const enum llm_kv key, const char * value) {
37
0
    gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), value);
38
0
}
39
40
[[noreturn]]
41
0
void llama_model_saver::add_kv(const enum llm_kv key, const char value) {
42
0
    GGML_UNUSED(key);
43
0
    GGML_UNUSED(value);
44
0
    GGML_ABORT("fatal error"); // this should never be called, only needed to make the template below compile
45
0
}
46
47
template <typename Container>
48
0
void llama_model_saver::add_kv(const enum llm_kv key, const Container & value, const bool per_layer) {
49
0
    const size_t n_values = per_layer ? size_t(model.hparams.n_layer) : value.size();
50
0
    GGML_ASSERT(n_values <= value.size());
51
52
0
    if (n_values == 0) {
53
0
        return;
54
0
    }
55
56
0
    if (per_layer) {
57
0
        bool all_values_the_same = true;
58
0
        for (size_t i = 1; i < n_values; ++i) {
59
0
            if (value[i] != value[0]) {
60
0
                all_values_the_same = false;
61
0
                break;
62
0
            }
63
0
        }
64
0
        if (all_values_the_same) {
65
0
            add_kv(key, value[0]);
66
0
            return;
67
0
        }
68
0
    }
69
70
0
    if (std::is_same<typename Container::value_type, uint8_t>::value) {
71
0
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT8, value.data(), n_values);
72
0
    } else if (std::is_same<typename Container::value_type, int8_t>::value) {
73
0
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT8, value.data(), n_values);
74
0
    } else if (std::is_same<typename Container::value_type, uint32_t>::value) {
75
0
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_UINT32, value.data(), n_values);
76
0
    } else if (std::is_same<typename Container::value_type, int32_t>::value) {
77
0
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_INT32, value.data(), n_values);
78
0
    } else if (std::is_same<typename Container::value_type, float>::value) {
79
0
        gguf_set_arr_data(gguf_ctx, llm_kv(key).c_str(), GGUF_TYPE_FLOAT32, value.data(), n_values);
80
0
    } else if (std::is_same<Container, std::string>::value) {
81
0
        gguf_set_val_str(gguf_ctx, llm_kv(key).c_str(), reinterpret_cast<const char *>(value.data()));
82
0
    } else {
83
0
        GGML_ABORT("fatal error");
84
0
    }
85
0
}
Unexecuted instantiation: void llama_model_saver::add_kv<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(llm_kv, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, bool)
Unexecuted instantiation: void llama_model_saver::add_kv<std::__1::array<unsigned int, 512ul> >(llm_kv, std::__1::array<unsigned int, 512ul> const&, bool)
Unexecuted instantiation: void llama_model_saver::add_kv<std::__1::vector<int, std::__1::allocator<int> > >(llm_kv, std::__1::vector<int, std::__1::allocator<int> > const&, bool)
Unexecuted instantiation: void llama_model_saver::add_kv<std::__1::vector<float, std::__1::allocator<float> > >(llm_kv, std::__1::vector<float, std::__1::allocator<float> > const&, bool)
Unexecuted instantiation: void llama_model_saver::add_kv<std::__1::vector<char, std::__1::allocator<char> > >(llm_kv, std::__1::vector<char, std::__1::allocator<char> > const&, bool)
86
87
0
void llama_model_saver::add_kv(const enum llm_kv key, const std::vector<std::string> & value) {
88
0
    std::vector<const char *> tmp(value.size());
89
0
    for (size_t i = 0; i < value.size(); ++i) {
90
0
        tmp[i] = value[i].c_str();
91
0
    }
92
0
    gguf_set_arr_str(gguf_ctx, llm_kv(key).c_str(), tmp.data(), tmp.size());
93
0
}
94
95
0
void llama_model_saver::add_tensor(const struct ggml_tensor * tensor) {
96
0
    if (!tensor) {
97
0
        return;
98
0
    }
99
0
    if (gguf_find_tensor(gguf_ctx, tensor->name) >= 0) {
100
0
        GGML_ASSERT(std::string(tensor->name) == "rope_freqs.weight"); // FIXME
101
0
        return;
102
0
    }
103
0
    gguf_add_tensor(gguf_ctx, tensor);
104
0
}
105
106
0
void llama_model_saver::add_kv_from_model() {
107
0
    const llama_hparams & hparams = model.hparams;
108
0
    const llama_vocab   & vocab   = model.vocab;
109
110
0
    const int32_t n_vocab = vocab.n_tokens();
111
0
    std::vector<std::string> tokens(n_vocab);
112
0
    std::vector<float>       scores(n_vocab);
113
0
    std::vector<int32_t>     token_types(n_vocab);
114
115
0
    for (int32_t id = 0; id < n_vocab; ++id) {
116
0
        const llama_vocab::token_data & token_data = vocab.get_token_data(id);
117
118
0
        tokens[id] = token_data.text;
119
0
        scores[id] = token_data.score;
120
121
0
        switch(token_data.attr) {
122
0
            case LLAMA_TOKEN_ATTR_UNKNOWN:      token_types[id] = LLAMA_TOKEN_TYPE_UNKNOWN;      break;
123
0
            case LLAMA_TOKEN_ATTR_UNUSED:       token_types[id] = LLAMA_TOKEN_TYPE_UNUSED;       break;
124
0
            case LLAMA_TOKEN_ATTR_NORMAL:       token_types[id] = LLAMA_TOKEN_TYPE_NORMAL;       break;
125
0
            case LLAMA_TOKEN_ATTR_CONTROL:      token_types[id] = LLAMA_TOKEN_TYPE_CONTROL;      break;
126
0
            case LLAMA_TOKEN_ATTR_USER_DEFINED: token_types[id] = LLAMA_TOKEN_TYPE_USER_DEFINED; break;
127
0
            case LLAMA_TOKEN_ATTR_BYTE:         token_types[id] = LLAMA_TOKEN_TYPE_BYTE;         break;
128
0
            case LLAMA_TOKEN_ATTR_UNDEFINED:
129
0
            default:                            token_types[id] = LLAMA_TOKEN_TYPE_UNDEFINED;    break;
130
0
        }
131
0
    }
132
133
    // add_kv(LLM_KV_GENERAL_TYPE,                      ???);
134
0
    add_kv(LLM_KV_GENERAL_ARCHITECTURE,              model.arch_name());
135
    // add_kv(LLM_KV_GENERAL_QUANTIZATION_VERSION,      ???);
136
    // add_kv(LLM_KV_GENERAL_ALIGNMENT,                 ???);
137
0
    add_kv(LLM_KV_GENERAL_NAME,                      model.name);
138
    // add_kv(LLM_KV_GENERAL_AUTHOR,                    ???);
139
    // add_kv(LLM_KV_GENERAL_VERSION,                   ???);
140
    // add_kv(LLM_KV_GENERAL_URL,                       ???);
141
    // add_kv(LLM_KV_GENERAL_DESCRIPTION,               ???);
142
    // add_kv(LLM_KV_GENERAL_LICENSE,                   ???);
143
    // add_kv(LLM_KV_GENERAL_SOURCE_URL,                ???);
144
    // add_kv(LLM_KV_GENERAL_SOURCE_HF_REPO,            ???);
145
146
0
    add_kv(LLM_KV_VOCAB_SIZE,                        vocab.n_tokens());
147
0
    add_kv(LLM_KV_CONTEXT_LENGTH,                    hparams.n_ctx_train);
148
0
    add_kv(LLM_KV_EMBEDDING_LENGTH,                  hparams.n_embd);
149
0
    add_kv(LLM_KV_BLOCK_COUNT,                       hparams.n_layer);
150
0
    add_kv(LLM_KV_LEADING_DENSE_BLOCK_COUNT,         hparams.n_layer_dense_lead);
151
0
    add_kv(LLM_KV_FEED_FORWARD_LENGTH,               hparams.n_ff_arr, true);
152
0
    add_kv(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp);
153
0
    add_kv(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
154
0
    add_kv(LLM_KV_USE_PARALLEL_RESIDUAL,             hparams.use_par_res);
155
    // add_kv(LLM_KV_TENSOR_DATA_LAYOUT,                ???);
156
0
    add_kv(LLM_KV_EXPERT_COUNT,                      hparams.n_expert);
157
0
    add_kv(LLM_KV_EXPERT_USED_COUNT,                 hparams.n_expert_used);
158
0
    add_kv(LLM_KV_EXPERT_SHARED_COUNT,               hparams.n_expert_shared);
159
0
    add_kv(LLM_KV_EXPERT_WEIGHTS_SCALE,              hparams.expert_weights_scale);
160
0
    add_kv(LLM_KV_POOLING_TYPE,                      uint32_t(hparams.pooling_type));
161
0
    add_kv(LLM_KV_LOGIT_SCALE,                       hparams.f_logit_scale);
162
0
    add_kv(LLM_KV_DECODER_START_TOKEN_ID,            hparams.dec_start_token_id);
163
0
    add_kv(LLM_KV_ATTN_LOGIT_SOFTCAPPING,            hparams.f_attn_logit_softcapping);
164
0
    add_kv(LLM_KV_FINAL_LOGIT_SOFTCAPPING,           hparams.f_final_logit_softcapping);
165
0
    add_kv(LLM_KV_SWIN_NORM,                         hparams.swin_norm);
166
0
    add_kv(LLM_KV_RESCALE_EVERY_N_LAYERS,            hparams.rescale_every_n_layers);
167
0
    add_kv(LLM_KV_TIME_MIX_EXTRA_DIM,                hparams.time_mix_extra_dim);
168
0
    add_kv(LLM_KV_TIME_DECAY_EXTRA_DIM,              hparams.time_decay_extra_dim);
169
0
    add_kv(LLM_KV_RESIDUAL_SCALE,                    hparams.f_residual_scale);
170
0
    add_kv(LLM_KV_EMBEDDING_SCALE,                   hparams.f_embedding_scale);
171
172
0
    add_kv(LLM_KV_ATTENTION_HEAD_COUNT,              hparams.n_head_arr, true);
173
0
    add_kv(LLM_KV_ATTENTION_HEAD_COUNT_KV,           hparams.n_head_kv_arr, true);
174
0
    add_kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS,          hparams.f_max_alibi_bias);
175
0
    add_kv(LLM_KV_ATTENTION_CLAMP_KQV,               hparams.f_clamp_kqv);
176
0
    add_kv(LLM_KV_ATTENTION_KEY_LENGTH,              hparams.n_embd_head_k);
177
0
    add_kv(LLM_KV_ATTENTION_VALUE_LENGTH,            hparams.n_embd_head_v);
178
0
    add_kv(LLM_KV_ATTENTION_LAYERNORM_EPS,           hparams.f_norm_eps);
179
0
    add_kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,       hparams.f_norm_rms_eps);
180
0
    add_kv(LLM_KV_ATTENTION_CAUSAL,                  hparams.causal_attn);
181
0
    add_kv(LLM_KV_ATTENTION_Q_LORA_RANK,             hparams.n_lora_q);
182
0
    add_kv(LLM_KV_ATTENTION_KV_LORA_RANK,            hparams.n_lora_kv);
183
0
    add_kv(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,  hparams.n_rel_attn_bkts);
184
0
    add_kv(LLM_KV_ATTENTION_SLIDING_WINDOW,          hparams.n_swa);
185
0
    add_kv(LLM_KV_ATTENTION_SCALE,                   hparams.f_attention_scale);
186
187
0
    const float rope_scaling_factor = hparams.rope_freq_scale_train == 1.0f ? 0.0f : 1.0f/hparams.rope_freq_scale_train;
188
189
0
    add_kv(LLM_KV_ROPE_DIMENSION_COUNT,              hparams.n_rot);
190
0
    add_kv(LLM_KV_ROPE_FREQ_BASE,                    hparams.rope_freq_base_train);
191
    // add_kv(LLM_KV_ROPE_SCALE_LINEAR,                 rope_scaling_factor); // old name
192
0
    add_kv(LLM_KV_ROPE_SCALING_TYPE,                 llama_rope_scaling_type_name(hparams.rope_scaling_type_train));
193
0
    add_kv(LLM_KV_ROPE_SCALING_FACTOR,               rope_scaling_factor);
194
0
    add_kv(LLM_KV_ROPE_SCALING_ATTN_FACTOR,          hparams.rope_attn_factor);
195
0
    add_kv(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,         hparams.n_ctx_orig_yarn);
196
0
    add_kv(LLM_KV_ROPE_SCALING_FINETUNED,            hparams.rope_finetuned);
197
0
    add_kv(LLM_KV_ROPE_SCALING_YARN_LOG_MUL,         hparams.rope_yarn_log_mul);
198
199
    // TODO: implement split file support
200
    // add_kv(LLM_KV_SPLIT_NO,                          ???);
201
    // add_kv(LLM_KV_SPLIT_COUNT,                       ???);
202
    // add_kv(LLM_KV_SPLIT_TENSORS_COUNT,               ???);
203
204
0
    add_kv(LLM_KV_SSM_INNER_SIZE,                    hparams.ssm_d_inner);
205
0
    add_kv(LLM_KV_SSM_CONV_KERNEL,                   hparams.ssm_d_conv);
206
0
    add_kv(LLM_KV_SSM_STATE_SIZE,                    hparams.ssm_d_state);
207
0
    add_kv(LLM_KV_SSM_TIME_STEP_RANK,                hparams.ssm_dt_rank);
208
0
    add_kv(LLM_KV_SSM_DT_B_C_RMS,                    hparams.ssm_dt_b_c_rms);
209
210
0
    add_kv(LLM_KV_WKV_HEAD_SIZE,                     hparams.wkv_head_size);
211
212
0
    add_kv(LLM_KV_TOKENIZER_MODEL,                   vocab.get_tokenizer_model());
213
0
    add_kv(LLM_KV_TOKENIZER_PRE,                     vocab.get_tokenizer_pre());
214
0
    add_kv(LLM_KV_TOKENIZER_LIST,                    tokens);
215
0
    add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE,              token_types);
216
0
    add_kv(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,        vocab.n_token_types());
217
0
    add_kv(LLM_KV_TOKENIZER_SCORES,                  scores);
218
0
    add_kv(LLM_KV_TOKENIZER_MERGES,                  vocab.get_bpe_merges());
219
    // FIXME llama_token is type i32 but when reading in a GGUF file u32 is expected, not an issue for writing though
220
0
    add_kv(LLM_KV_TOKENIZER_BOS_ID,                  uint32_t(vocab.token_bos()));
221
0
    add_kv(LLM_KV_TOKENIZER_EOS_ID,                  uint32_t(vocab.token_eos()));
222
0
    add_kv(LLM_KV_TOKENIZER_EOT_ID,                  uint32_t(vocab.token_eot()));
223
0
    add_kv(LLM_KV_TOKENIZER_EOM_ID,                  uint32_t(vocab.token_eom()));
224
0
    add_kv(LLM_KV_TOKENIZER_UNK_ID,                  uint32_t(vocab.token_unk()));
225
0
    add_kv(LLM_KV_TOKENIZER_SEP_ID,                  uint32_t(vocab.token_sep()));
226
0
    add_kv(LLM_KV_TOKENIZER_PAD_ID,                  uint32_t(vocab.token_pad()));
227
    // add_kv(LLM_KV_TOKENIZER_CLS_ID,                  uint32_t(vocab.token_bos())); // deprecated
228
    // add_kv(LLM_KV_TOKENIZER_MASK_ID,                 ???);
229
0
    add_kv(LLM_KV_TOKENIZER_ADD_BOS,                 vocab.get_add_bos());
230
0
    add_kv(LLM_KV_TOKENIZER_ADD_EOS,                 vocab.get_add_eos());
231
0
    add_kv(LLM_KV_TOKENIZER_ADD_SEP,                 vocab.get_add_sep());
232
0
    add_kv(LLM_KV_TOKENIZER_ADD_PREFIX,              vocab.get_add_space_prefix());
233
0
    add_kv(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS,         vocab.get_remove_extra_whitespaces());
234
0
    add_kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP,    vocab.get_precompiled_charsmap());
235
    // add_kv(LLM_KV_TOKENIZER_HF_JSON,                 ???);
236
    // add_kv(LLM_KV_TOKENIZER_RWKV,                    ???);
237
0
    add_kv(LLM_KV_TOKENIZER_FIM_PRE_ID,              uint32_t(vocab.token_fim_pre()));
238
0
    add_kv(LLM_KV_TOKENIZER_FIM_SUF_ID,              uint32_t(vocab.token_fim_suf()));
239
0
    add_kv(LLM_KV_TOKENIZER_FIM_MID_ID,              uint32_t(vocab.token_fim_mid()));
240
0
    add_kv(LLM_KV_TOKENIZER_FIM_PAD_ID,              uint32_t(vocab.token_fim_pad()));
241
0
    add_kv(LLM_KV_TOKENIZER_FIM_REP_ID,              uint32_t(vocab.token_fim_rep()));
242
0
    add_kv(LLM_KV_TOKENIZER_FIM_SEP_ID,              uint32_t(vocab.token_fim_sep()));
243
244
    // TODO: implement LoRA support
245
    // add_kv(LLM_KV_ADAPTER_TYPE,                      ???);
246
    // add_kv(LLM_KV_ADAPTER_LORA_ALPHA,                ???);
247
248
    // deprecated
249
    // add_kv(LLM_KV_TOKENIZER_PREFIX_ID,               ???);
250
    // add_kv(LLM_KV_TOKENIZER_SUFFIX_ID,               ???);
251
    // add_kv(LLM_KV_TOKENIZER_MIDDLE_ID,               ???);
252
0
}
253
254
0
void llama_model_saver::add_tensors_from_model() {
255
0
    if (std::string(model.output->name) != std::string(model.tok_embd->name)) {
256
0
        add_tensor(model.tok_embd); // some models use the same tensor for tok_embd and output
257
0
    }
258
0
    add_tensor(model.type_embd);
259
0
    add_tensor(model.pos_embd);
260
0
    add_tensor(model.tok_norm);
261
0
    add_tensor(model.tok_norm_b);
262
0
    add_tensor(model.output_norm);
263
0
    add_tensor(model.output_norm_b);
264
0
    add_tensor(model.output);
265
0
    add_tensor(model.output_b);
266
0
    add_tensor(model.output_norm_enc);
267
0
    add_tensor(model.cls);
268
0
    add_tensor(model.cls_b);
269
0
    add_tensor(model.cls_out);
270
0
    add_tensor(model.cls_out_b);
271
272
0
    for (const struct llama_layer & layer : model.layers) {
273
0
        for (size_t i = 0; i < sizeof(layer)/sizeof(struct ggml_tensor *); ++i) {
274
0
            add_tensor(reinterpret_cast<const struct ggml_tensor * const *>(&layer)[i]);
275
0
        }
276
0
    }
277
0
}
278
279
0
void llama_model_saver::save(const std::string & path_model) {
280
0
    gguf_write_to_file(gguf_ctx, path_model.c_str(), false);
281
0
}
282