Coverage Report

Created: 2025-12-28 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/hunyuan-moe.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_hunyuan_moe::llm_build_hunyuan_moe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
20
21
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
22
23
0
    for (int il = 0; il < n_layer; ++il) {
24
0
        ggml_tensor * inpSA = inpL;
25
26
        // norm
27
0
        cur = build_norm(inpL,
28
0
                model.layers[il].attn_norm, NULL,
29
0
                LLM_NORM_RMS, il);
30
0
        cb(cur, "attn_norm", il);
31
32
        // self-attention
33
0
        {
34
            // rope freq factors for llama3; may return nullptr for llama2 and other models
35
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
36
37
            // compute Q and K and RoPE them
38
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
39
0
            cb(Qcur, "Qcur", il);
40
0
            if (model.layers[il].bq) {
41
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
42
0
                cb(Qcur, "Qcur", il);
43
0
            }
44
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
45
0
            cb(Kcur, "Kcur", il);
46
0
            if (model.layers[il].bk) {
47
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
48
0
                cb(Kcur, "Kcur", il);
49
0
            }
50
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
51
0
            cb(Vcur, "Vcur", il);
52
0
            if (model.layers[il].bv) {
53
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
54
0
                cb(Vcur, "Vcur", il);
55
0
            }
56
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
57
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
58
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
59
60
0
            Qcur = ggml_rope_ext(
61
0
                    ctx0, Qcur, inp_pos, rope_factors,
62
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
63
0
                    ext_factor, attn_factor, beta_fast, beta_slow
64
0
                    );
65
66
0
            cb(Qcur, "Qcur", il);
67
0
            cb(Kcur, "Kcur", il);
68
0
            cb(Vcur, "Vcur", il);
69
70
0
            Kcur = ggml_rope_ext(
71
0
                    ctx0, Kcur, inp_pos, rope_factors,
72
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
73
0
                    ext_factor, attn_factor, beta_fast, beta_slow
74
0
                    );
75
76
0
            Kcur = build_norm(Kcur,
77
0
                    model.layers[il].attn_k_norm, nullptr,
78
0
                    LLM_NORM_RMS, il);
79
0
            cb(Kcur, "Kcur_norm", il);
80
81
0
            Qcur = build_norm(Qcur,
82
0
                    model.layers[il].attn_q_norm, nullptr,
83
0
                    LLM_NORM_RMS, il);
84
0
            cb(Qcur, "Qcur_norm", il);
85
86
0
            cur = build_attn(inp_attn,
87
0
                    model.layers[il].wo, model.layers[il].bo,
88
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
89
0
            cb(cur, "attn_out", il);
90
0
        }
91
0
        if (il == n_layer - 1 && inp_out_ids) {
92
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
93
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
94
0
        }
95
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
96
0
        cb(ffn_inp, "ffn_inp", il);
97
98
0
        cur = build_norm(ffn_inp,
99
0
            model.layers[il].ffn_norm, NULL,
100
0
            LLM_NORM_RMS, il);
101
0
        cb(cur, "ffn_norm", il);
102
103
        // feed-forward network (non-MoE)
104
0
        ggml_tensor * cur_mlp = build_ffn(cur,
105
0
                model.layers[il].ffn_up_shexp,   NULL, NULL,
106
0
                model.layers[il].ffn_gate_shexp, NULL, NULL,
107
0
                model.layers[il].ffn_down_shexp, NULL, NULL,
108
0
                NULL,
109
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
110
0
        cb(cur_mlp, "ffn_mlp", il);
111
112
        // MoE branch
113
0
        ggml_tensor * cur_moe = build_moe_ffn(cur,
114
0
                model.layers[il].ffn_gate_inp,
115
0
                model.layers[il].ffn_up_exps,
116
0
                model.layers[il].ffn_gate_exps,
117
0
                model.layers[il].ffn_down_exps,
118
0
                nullptr,
119
0
                n_expert, n_expert_used,
120
0
                LLM_FFN_SILU,
121
0
                true, // norm_topk_prob
122
0
                false,
123
0
                0.0,
124
0
                LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
125
0
                il);
126
0
        cb(cur_moe, "ffn_moe_out", il);
127
128
0
        ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
129
0
        cb(ffn_out, "ffn_out", il);
130
131
0
        cur = ggml_add(ctx0, ffn_out, ffn_inp);
132
133
0
        cur = build_cvec(cur, il);
134
0
        cb(cur, "l_out", il);
135
136
        // input for next layer
137
0
        inpL = cur;
138
0
    }
139
0
    cur = inpL;
140
141
0
    cur = build_norm(cur,
142
0
            model.output_norm, NULL,
143
0
            LLM_NORM_RMS, -1);
144
145
0
    cb(cur, "result_norm", -1);
146
0
    res->t_embd = cur;
147
148
    // lm_head
149
0
    cur = build_lora_mm(model.output, cur);
150
0
    cb(cur, "result_output", -1);
151
0
    res->t_logits = cur;
152
153
0
    ggml_build_forward_expand(gf, cur);
154
0
}