/src/llama.cpp/src/models/jamba.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { |
4 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
5 | |
|
6 | 0 | ggml_tensor * cur; |
7 | 0 | ggml_tensor * inpL; |
8 | | |
9 | | // {n_embd, n_tokens} |
10 | 0 | inpL = build_inp_embd(model.tok_embd); |
11 | |
|
12 | 0 | auto * inp_hybrid = build_inp_mem_hybrid(); |
13 | |
|
14 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
15 | |
|
16 | 0 | for (int il = 0; il < n_layer; ++il) { |
17 | 0 | const int64_t n_head_kv = hparams.n_head_kv(il); |
18 | |
|
19 | 0 | cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); |
20 | 0 | cb(cur, "attn_norm", il); |
21 | |
|
22 | 0 | if (n_head_kv == 0) { |
23 | 0 | cur = build_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il); |
24 | 0 | } else { |
25 | | // Attention |
26 | |
|
27 | 0 | struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
28 | 0 | struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
29 | 0 | struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
30 | |
|
31 | 0 | cb(Qcur, "Qcur", il); |
32 | 0 | cb(Kcur, "Kcur", il); |
33 | 0 | cb(Vcur, "Vcur", il); |
34 | |
|
35 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
36 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
37 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
38 | |
|
39 | 0 | cb(Qcur, "Qcur", il); |
40 | 0 | cb(Kcur, "Kcur", il); |
41 | 0 | cb(Vcur, "Vcur", il); |
42 | | |
43 | | // No RoPE :) |
44 | 0 | cur = build_attn(inp_hybrid->get_attn(), |
45 | 0 | model.layers[il].wo, NULL, |
46 | 0 | Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il); |
47 | 0 | } |
48 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
49 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
50 | 0 | inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); |
51 | 0 | } |
52 | | // residual |
53 | 0 | struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur); |
54 | 0 | cb(cur, "ffn_inp", il); |
55 | |
|
56 | 0 | cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il); |
57 | 0 | cb(cur, "ffn_norm", il); |
58 | | |
59 | | // feed-forward network |
60 | 0 | if (model.layers[il].ffn_gate_inp == nullptr) { |
61 | | // FFN |
62 | 0 | cur = build_ffn(cur, |
63 | 0 | model.layers[il].ffn_up, NULL, NULL, |
64 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
65 | 0 | model.layers[il].ffn_down, NULL, NULL, |
66 | 0 | NULL, |
67 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
68 | 0 | cb(cur, "ffn_out", il); |
69 | 0 | } else { |
70 | | // MoE branch |
71 | 0 | cur = build_moe_ffn(cur, |
72 | 0 | model.layers[il].ffn_gate_inp, |
73 | 0 | model.layers[il].ffn_up_exps, |
74 | 0 | model.layers[il].ffn_gate_exps, |
75 | 0 | model.layers[il].ffn_down_exps, |
76 | 0 | nullptr, |
77 | 0 | n_expert, n_expert_used, |
78 | 0 | LLM_FFN_SILU, false, |
79 | 0 | false, 0.0, |
80 | 0 | LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, |
81 | 0 | il); |
82 | 0 | cb(cur, "ffn_moe_out", il); |
83 | 0 | } |
84 | | // residual |
85 | 0 | cur = ggml_add(ctx0, ffn_inp, cur); |
86 | |
|
87 | 0 | cur = build_cvec(cur, il); |
88 | 0 | cb(cur, "l_out", il); |
89 | | |
90 | | // input for next layer |
91 | 0 | inpL = cur; |
92 | 0 | } |
93 | | // final rmsnorm |
94 | 0 | cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1); |
95 | |
|
96 | 0 | cb(cur, "result_norm", -1); |
97 | 0 | res->t_embd = cur; |
98 | | |
99 | | // lm_head |
100 | 0 | cur = build_lora_mm(model.output, cur); |
101 | |
|
102 | 0 | cb(cur, "result_output", -1); |
103 | 0 | res->t_logits = cur; |
104 | |
|
105 | 0 | ggml_build_forward_expand(gf, cur); |
106 | 0 | } |