Coverage Report

Created: 2025-12-28 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/jamba.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    ggml_tensor * cur;
7
0
    ggml_tensor * inpL;
8
9
    // {n_embd, n_tokens}
10
0
    inpL = build_inp_embd(model.tok_embd);
11
12
0
    auto * inp_hybrid = build_inp_mem_hybrid();
13
14
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
15
16
0
    for (int il = 0; il < n_layer; ++il) {
17
0
        const int64_t n_head_kv = hparams.n_head_kv(il);
18
19
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
20
0
        cb(cur, "attn_norm", il);
21
22
0
        if (n_head_kv == 0) {
23
0
            cur = build_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
24
0
        } else {
25
            // Attention
26
27
0
            struct ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
28
0
            struct ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
29
0
            struct ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
30
31
0
            cb(Qcur, "Qcur", il);
32
0
            cb(Kcur, "Kcur", il);
33
0
            cb(Vcur, "Vcur", il);
34
35
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
36
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
37
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
38
39
0
            cb(Qcur, "Qcur", il);
40
0
            cb(Kcur, "Kcur", il);
41
0
            cb(Vcur, "Vcur", il);
42
43
            // No RoPE :)
44
0
            cur = build_attn(inp_hybrid->get_attn(),
45
0
                    model.layers[il].wo, NULL,
46
0
                    Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f/sqrtf(float(n_embd_head)), il);
47
0
        }
48
0
        if (il == n_layer - 1 && inp_out_ids) {
49
0
            cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
50
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
51
0
        }
52
        // residual
53
0
        struct ggml_tensor * ffn_inp = ggml_add(ctx0, inpL, cur);
54
0
        cb(cur, "ffn_inp", il);
55
56
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
57
0
        cb(cur, "ffn_norm", il);
58
59
        // feed-forward network
60
0
        if (model.layers[il].ffn_gate_inp == nullptr) {
61
            // FFN
62
0
            cur = build_ffn(cur,
63
0
                    model.layers[il].ffn_up,   NULL, NULL,
64
0
                    model.layers[il].ffn_gate, NULL, NULL,
65
0
                    model.layers[il].ffn_down, NULL, NULL,
66
0
                    NULL,
67
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
68
0
            cb(cur, "ffn_out", il);
69
0
        } else {
70
            // MoE branch
71
0
            cur = build_moe_ffn(cur,
72
0
                    model.layers[il].ffn_gate_inp,
73
0
                    model.layers[il].ffn_up_exps,
74
0
                    model.layers[il].ffn_gate_exps,
75
0
                    model.layers[il].ffn_down_exps,
76
0
                    nullptr,
77
0
                    n_expert, n_expert_used,
78
0
                    LLM_FFN_SILU, false,
79
0
                    false, 0.0,
80
0
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
81
0
                    il);
82
0
            cb(cur, "ffn_moe_out", il);
83
0
        }
84
        // residual
85
0
        cur = ggml_add(ctx0, ffn_inp, cur);
86
87
0
        cur = build_cvec(cur, il);
88
0
        cb(cur, "l_out", il);
89
90
        // input for next layer
91
0
        inpL = cur;
92
0
    }
93
    // final rmsnorm
94
0
    cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1);
95
96
0
    cb(cur, "result_norm", -1);
97
0
    res->t_embd = cur;
98
99
    // lm_head
100
0
    cur = build_lora_mm(model.output, cur);
101
102
0
    cb(cur, "result_output", -1);
103
0
    res->t_logits = cur;
104
105
0
    ggml_build_forward_expand(gf, cur);
106
0
}