/src/llama.cpp/src/models/rnd1.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | // RND1 is a Qwen3Moe AR model converted to diffusion model. |
4 | 0 | llm_build_rnd1::llm_build_rnd1(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
5 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
6 | |
|
7 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
8 | 0 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
9 | |
|
10 | 0 | ggml_tensor * cur; |
11 | 0 | ggml_tensor * inpL; |
12 | |
|
13 | 0 | inpL = build_inp_embd(model.tok_embd); |
14 | | |
15 | | // inp_pos - contains the positions |
16 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
17 | | |
18 | | // Non-causal attention for diffusion |
19 | 0 | auto * inp_attn = build_attn_inp_no_cache(); |
20 | |
|
21 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
22 | |
|
23 | 0 | for (int il = 0; il < n_layer; ++il) { |
24 | 0 | ggml_tensor * inpSA = inpL; |
25 | | |
26 | | // norm |
27 | 0 | cur = build_norm(inpL, |
28 | 0 | model.layers[il].attn_norm, NULL, |
29 | 0 | LLM_NORM_RMS, il); |
30 | 0 | cb(cur, "attn_norm", il); |
31 | | |
32 | | // self_attention |
33 | 0 | { |
34 | | // compute Q and K and RoPE them |
35 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
36 | 0 | cb(Qcur, "Qcur", il); |
37 | |
|
38 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
39 | 0 | cb(Kcur, "Kcur", il); |
40 | |
|
41 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
42 | 0 | cb(Vcur, "Vcur", il); |
43 | |
|
44 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
45 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
46 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
47 | |
|
48 | 0 | Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il); |
49 | 0 | cb(Qcur, "Qcur_normed", il); |
50 | |
|
51 | 0 | Qcur = ggml_rope_ext( |
52 | 0 | ctx0, Qcur, inp_pos, nullptr, |
53 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
54 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
55 | 0 | ); |
56 | |
|
57 | 0 | Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il); |
58 | 0 | cb(Kcur, "Kcur_normed", il); |
59 | |
|
60 | 0 | Kcur = ggml_rope_ext( |
61 | 0 | ctx0, Kcur, inp_pos, nullptr, |
62 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
63 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
64 | 0 | ); |
65 | |
|
66 | 0 | cb(Qcur, "Qcur", il); |
67 | 0 | cb(Kcur, "Kcur", il); |
68 | 0 | cb(Vcur, "Vcur", il); |
69 | |
|
70 | 0 | cur = build_attn(inp_attn, |
71 | 0 | model.layers[il].wo, model.layers[il].bo, |
72 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
73 | 0 | } |
74 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
75 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
76 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
77 | 0 | } |
78 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
79 | 0 | cb(ffn_inp, "ffn_inp", il); |
80 | | |
81 | | // MoE branch |
82 | 0 | cur = build_norm(ffn_inp, |
83 | 0 | model.layers[il].ffn_norm, NULL, |
84 | 0 | LLM_NORM_RMS, il); |
85 | 0 | cb(cur, "ffn_norm", il); |
86 | |
|
87 | 0 | ggml_tensor * moe_out = |
88 | 0 | build_moe_ffn(cur, |
89 | 0 | model.layers[il].ffn_gate_inp, |
90 | 0 | model.layers[il].ffn_up_exps, |
91 | 0 | model.layers[il].ffn_gate_exps, |
92 | 0 | model.layers[il].ffn_down_exps, |
93 | 0 | nullptr, |
94 | 0 | n_expert, n_expert_used, |
95 | 0 | LLM_FFN_SILU, true, |
96 | 0 | false, 0.0, |
97 | 0 | LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, |
98 | 0 | il); |
99 | 0 | cb(moe_out, "ffn_moe_out", il); |
100 | 0 | cur = moe_out; |
101 | |
|
102 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
103 | |
|
104 | 0 | cur = build_cvec(cur, il); |
105 | 0 | cb(cur, "l_out", il); |
106 | | |
107 | | // input for next layer |
108 | 0 | inpL = cur; |
109 | 0 | } |
110 | 0 | cur = inpL; |
111 | |
|
112 | 0 | cur = build_norm(cur, |
113 | 0 | model.output_norm, NULL, |
114 | 0 | LLM_NORM_RMS, -1); |
115 | |
|
116 | 0 | cb(cur, "result_norm", -1); |
117 | 0 | res->t_embd = cur; |
118 | | |
119 | | // lm_head |
120 | 0 | cur = build_lora_mm(model.output, cur); |
121 | |
|
122 | 0 | cb(cur, "result_output", -1); |
123 | 0 | res->t_logits = cur; |
124 | |
|
125 | 0 | ggml_build_forward_expand(gf, cur); |
126 | 0 | } |