/src/llama.cpp/src/models/mamba.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | 0 | llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) { |
5 | 0 | ggml_tensor * cur; |
6 | 0 | ggml_tensor * inpL; |
7 | | |
8 | | // {n_embd, n_tokens} |
9 | 0 | inpL = build_inp_embd(model.tok_embd); |
10 | |
|
11 | 0 | auto * rs_inp = build_rs_inp(); |
12 | |
|
13 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
14 | |
|
15 | 0 | for (int il = 0; il < n_layer; ++il) { |
16 | | // norm |
17 | 0 | cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); |
18 | 0 | cb(cur, "attn_norm", il); |
19 | |
|
20 | 0 | if (model.arch == LLM_ARCH_MAMBA2) { |
21 | 0 | cur = build_mamba2_layer(rs_inp, cur, model, ubatch, il); |
22 | 0 | } else { |
23 | 0 | cur = build_mamba_layer(rs_inp, cur, model, ubatch, il); |
24 | 0 | } |
25 | |
|
26 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
27 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
28 | 0 | inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); |
29 | 0 | } |
30 | | |
31 | | // residual |
32 | 0 | cur = ggml_add(ctx0, cur, inpL); |
33 | |
|
34 | 0 | cur = build_cvec(cur, il); |
35 | 0 | cb(cur, "l_out", il); |
36 | | |
37 | | // input for next layer |
38 | 0 | inpL = cur; |
39 | 0 | } |
40 | | |
41 | | // final rmsnorm |
42 | 0 | cur = build_norm(inpL, model.output_norm, NULL, LLM_NORM_RMS, -1); |
43 | |
|
44 | 0 | cb(cur, "result_norm", -1); |
45 | 0 | res->t_embd = cur; |
46 | | |
47 | | // lm_head |
48 | 0 | cur = build_lora_mm(model.output, cur); |
49 | |
|
50 | 0 | cb(cur, "result_output", -1); |
51 | 0 | res->t_logits = cur; |
52 | |
|
53 | 0 | ggml_build_forward_expand(gf, cur); |
54 | 0 | } |
55 | | |