/src/llama.cpp/src/models/minimax-m2.cpp
Line | Count | Source |
1 | | |
2 | | #include "models.h" |
3 | | |
4 | 0 | llm_build_minimax_m2::llm_build_minimax_m2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
5 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
6 | |
|
7 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
8 | | // GGML_ASSERT(n_embd_head == hparams.n_rot); this is wrong in case of minimax, head_dim = 128, n_rot = 64 |
9 | |
|
10 | 0 | ggml_tensor * cur; |
11 | 0 | ggml_tensor * inpL; |
12 | |
|
13 | 0 | inpL = build_inp_embd(model.tok_embd); |
14 | |
|
15 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
16 | 0 | auto inp_attn = build_attn_inp_kv(); |
17 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
18 | |
|
19 | 0 | for (int il = 0; il < n_layer; ++il) { |
20 | 0 | ggml_tensor * inpSA = inpL; |
21 | |
|
22 | 0 | cur = inpL; |
23 | | |
24 | | // self_attention |
25 | 0 | { |
26 | 0 | cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il); |
27 | 0 | cb(cur, "attn_norm", il); |
28 | | |
29 | | // compute Q and K and RoPE them |
30 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
31 | 0 | cb(Qcur, "Qcur", il); |
32 | |
|
33 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
34 | 0 | cb(Kcur, "Kcur", il); |
35 | |
|
36 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
37 | 0 | cb(Vcur, "Vcur", il); |
38 | |
|
39 | 0 | Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, |
40 | 0 | LLM_NORM_RMS, il); |
41 | 0 | cb(Qcur, "Qcur_normed", il); |
42 | |
|
43 | 0 | Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, |
44 | 0 | LLM_NORM_RMS, il); |
45 | 0 | cb(Kcur, "Kcur_normed", il); |
46 | |
|
47 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
48 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
49 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
50 | |
|
51 | 0 | Qcur = ggml_rope_ext( |
52 | 0 | ctx0, Qcur, inp_pos, nullptr, |
53 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
54 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
55 | 0 | ); |
56 | |
|
57 | 0 | Kcur = ggml_rope_ext( |
58 | 0 | ctx0, Kcur, inp_pos, nullptr, |
59 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
60 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
61 | 0 | ); |
62 | |
|
63 | 0 | cb(Qcur, "Qcur", il); |
64 | 0 | cb(Kcur, "Kcur", il); |
65 | 0 | cb(Vcur, "Vcur", il); |
66 | |
|
67 | 0 | cur = build_attn(inp_attn, |
68 | 0 | model.layers[il].wo, NULL, |
69 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
70 | 0 | } |
71 | |
|
72 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
73 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
74 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
75 | 0 | } |
76 | |
|
77 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
78 | 0 | cb(ffn_inp, "ffn_inp", il); |
79 | | |
80 | | // MoE branch |
81 | 0 | cur = build_norm(ffn_inp, |
82 | 0 | model.layers[il].ffn_norm, NULL, |
83 | 0 | LLM_NORM_RMS, il); |
84 | 0 | cb(cur, "ffn_norm", il); |
85 | |
|
86 | 0 | cur = build_moe_ffn(cur, |
87 | 0 | model.layers[il].ffn_gate_inp, |
88 | 0 | model.layers[il].ffn_up_exps, |
89 | 0 | model.layers[il].ffn_gate_exps, |
90 | 0 | model.layers[il].ffn_down_exps, |
91 | 0 | model.layers[il].ffn_exp_probs_b, |
92 | 0 | n_expert, n_expert_used, |
93 | 0 | LLM_FFN_SILU, true, |
94 | 0 | false, 0.0, |
95 | 0 | (llama_expert_gating_func_type) hparams.expert_gating_func, |
96 | 0 | il); |
97 | 0 | cb(cur, "ffn_moe_out", il); |
98 | |
|
99 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
100 | |
|
101 | 0 | cur = build_cvec(cur, il); |
102 | 0 | cb(cur, "l_out", il); |
103 | | |
104 | | // input for next layer |
105 | 0 | inpL = cur; |
106 | 0 | } |
107 | |
|
108 | 0 | cur = inpL; |
109 | |
|
110 | 0 | cur = build_norm(cur, |
111 | 0 | model.output_norm, NULL, |
112 | 0 | LLM_NORM_RMS, -1); |
113 | |
|
114 | 0 | cb(cur, "result_norm", -1); |
115 | 0 | res->t_embd = cur; |
116 | | |
117 | | // lm_head |
118 | 0 | cur = build_lora_mm(model.output, cur); |
119 | |
|
120 | 0 | cb(cur, "result_output", -1); |
121 | 0 | res->t_logits = cur; |
122 | |
|
123 | 0 | ggml_build_forward_expand(gf, cur); |
124 | 0 | } |