Coverage Report

Created: 2026-01-09 06:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/llama-hparams.cpp
Line
Count
Source
1
#include "llama-hparams.h"
2
3
#include "ggml.h"
4
5
#include <algorithm>
6
#include <cassert>
7
8
0
void llama_hparams::set_swa_pattern(uint32_t n_pattern, bool dense_first) {
9
0
    if (dense_first) {
10
0
        for (uint32_t il = 0; il < n_layer; ++il) {
11
0
            swa_layers[il] = n_pattern == 0 || (il % n_pattern != 0);
12
0
        }
13
0
    } else {
14
0
        for (uint32_t il = 0; il < n_layer; ++il) {
15
0
            swa_layers[il] = n_pattern == 0 || (il % n_pattern < (n_pattern - 1));
16
0
        }
17
0
    }
18
0
}
19
20
0
bool llama_hparams::is_swa_any() const {
21
0
    for (uint32_t il = 0; il < n_layer; ++il) {
22
0
        if (swa_layers[il]) {
23
0
            return true;
24
0
        }
25
0
    }
26
27
0
    return false;
28
0
}
29
30
0
uint32_t llama_hparams::n_head(uint32_t il) const {
31
0
    if (il < n_layer) {
32
0
        return n_head_arr[il];
33
0
    }
34
35
0
    GGML_ABORT("fatal error");
36
0
}
37
38
0
uint32_t llama_hparams::n_head_kv(uint32_t il) const {
39
0
    if (il < n_layer) {
40
0
        return n_head_kv_arr[il];
41
0
    }
42
43
0
    GGML_ABORT("fatal error");
44
0
}
45
46
0
uint32_t llama_hparams::n_ff(uint32_t il) const {
47
0
    if (il < n_layer) {
48
0
        return n_ff_arr[il];
49
0
    }
50
51
0
    GGML_ABORT("fatal error");
52
0
}
53
54
0
uint32_t llama_hparams::n_gqa(uint32_t il) const {
55
0
    const uint32_t n_head    = this->n_head(il);
56
0
    const uint32_t n_head_kv = this->n_head_kv(il);
57
58
0
    if (n_head_kv == 0) {
59
0
        return 0;
60
0
    }
61
62
0
    return n_head/n_head_kv;
63
0
}
64
65
0
uint32_t llama_hparams::n_embd_inp() const {
66
0
    uint32_t n_embd_inp = n_embd;
67
68
0
    if (n_deepstack_layers > 0) {
69
0
        n_embd_inp += n_embd * n_deepstack_layers;
70
0
    }
71
72
0
    return n_embd_inp;
73
0
}
74
75
0
uint32_t llama_hparams::get_n_embd_out() const {
76
0
    return n_embd_out > 0 ? n_embd_out : n_embd;
77
0
}
78
79
0
uint32_t llama_hparams::n_embd_k_gqa(uint32_t il) const {
80
0
    const uint32_t n_head_kv = this->n_head_kv(il);
81
82
0
    return n_embd_head_k * n_head_kv;
83
0
}
84
85
0
uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
86
0
    const uint32_t n_head_kv = this->n_head_kv(il);
87
88
0
    return n_embd_head_v * n_head_kv;
89
0
}
90
91
0
bool llama_hparams::is_n_embd_k_gqa_variable() const {
92
0
    const uint32_t val = n_embd_k_gqa();
93
0
    for (uint32_t il = 0; il < n_layer; ++il) {
94
0
        if (val != n_embd_k_gqa(il)) {
95
0
            return true;
96
0
        }
97
0
    }
98
99
0
    return false;
100
0
}
101
102
0
bool llama_hparams::is_n_embd_v_gqa_variable() const {
103
0
    const uint32_t val = n_embd_v_gqa();
104
0
    for (uint32_t il = 0; il < n_layer; ++il) {
105
0
        if (val != n_embd_v_gqa(il)) {
106
0
            return true;
107
0
        }
108
0
    }
109
110
0
    return false;
111
0
}
112
113
0
uint32_t llama_hparams::n_embd_k_gqa_max() const {
114
0
    uint32_t val = n_embd_k_gqa();
115
0
    for (uint32_t il = 0; il < n_layer; ++il) {
116
0
        val = std::max(val, n_embd_k_gqa(il));
117
0
    }
118
119
0
    return val;
120
0
}
121
122
0
uint32_t llama_hparams::n_embd_v_gqa_max() const {
123
0
    uint32_t val = n_embd_v_gqa();
124
0
    for (uint32_t il = 0; il < n_layer; ++il) {
125
0
        val = std::max(val, n_embd_v_gqa(il));
126
0
    }
127
128
0
    return val;
129
0
}
130
131
0
uint32_t llama_hparams::n_embd_r() const {
132
0
    if (wkv_head_size != 0) {
133
        // for RWKV models
134
0
        return token_shift_count * n_embd;
135
0
    }
136
137
0
    if (n_shortconv_l_cache != 0) {
138
        // for LFM2 models
139
0
        return n_embd * (n_shortconv_l_cache - 1);
140
0
    }
141
142
    // TODO: maybe support other convolution strides than 1
143
    // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
144
    // Corresponds to Mamba's conv_states size
145
0
    return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * (ssm_d_inner + 2*ssm_n_group*ssm_d_state);
146
0
}
147
148
0
uint32_t llama_hparams::n_embd_s() const {
149
0
    if (wkv_head_size != 0) {
150
        // corresponds to RWKV's wkv_states size
151
0
        return n_embd * wkv_head_size;
152
0
    }
153
154
    // corresponds to Mamba's ssm_states size
155
0
    return ssm_d_state * ssm_d_inner;
156
0
}
157
158
0
bool llama_hparams::is_recurrent(uint32_t il) const {
159
0
    if (il < n_layer) {
160
0
        return recurrent_layer_arr[il];
161
0
    }
162
163
0
    GGML_ABORT("%s: il (%u) out of bounds (n_layer: %u)\n", __func__, il, n_layer);
164
0
}
165
166
0
uint32_t llama_hparams::n_pos_per_embd() const {
167
0
    return rope_type == LLAMA_ROPE_TYPE_MROPE || rope_type == LLAMA_ROPE_TYPE_IMROPE ? 4 : 1;
168
0
}
169
170
0
bool llama_hparams::is_swa(uint32_t il) const {
171
0
    if (il < n_layer) {
172
0
        return swa_layers[il];
173
0
    }
174
175
0
    GGML_ABORT("fatal error");
176
0
}
177
178
0
bool llama_hparams::has_kv(uint32_t il) const {
179
0
    if (n_layer_kv_from_start >= 0) {
180
0
        if (il < (uint32_t) n_layer_kv_from_start) {
181
0
            return true;
182
0
        }
183
184
0
        return false;
185
0
    }
186
187
    // by default, all layers have kv
188
0
    return true;
189
0
}
190
191
0
uint32_t llama_hparams::n_layer_kv() const {
192
0
    uint32_t res = 0;
193
194
0
    for (uint32_t il = 0; il < n_layer; ++il) {
195
0
        if (has_kv(il)) {
196
0
            res++;
197
0
        }
198
0
    }
199
200
0
    return res;
201
0
}
202
203
0
bool llama_hparams::is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1) {
204
0
    assert(p0 >= 0 && p1 >= 0);
205
206
0
    switch (swa_type) {
207
0
        case LLAMA_SWA_TYPE_NONE:
208
0
            {
209
0
            } break;
210
0
        case LLAMA_SWA_TYPE_STANDARD:
211
0
            {
212
0
                if (p1 - p0 >= (int32_t) n_swa) {
213
0
                    return true;
214
0
                }
215
0
            } break;
216
0
        case LLAMA_SWA_TYPE_CHUNKED:
217
0
            {
218
0
                const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
219
220
0
                if (p0 < pos_chunk_start) {
221
0
                    return true;
222
0
                }
223
0
            } break;
224
0
        case LLAMA_SWA_TYPE_SYMMETRIC:
225
0
            {
226
0
                const int32_t half_n_swa = (int32_t) n_swa / 2;
227
0
                const int32_t pos_diff = p1 - p0;
228
229
                // Mask if outside the symmetric window
230
0
                if (pos_diff < -half_n_swa || pos_diff > half_n_swa) {
231
0
                    return true;
232
0
                }
233
0
            } break;
234
0
    }
235
236
0
    return false;
237
0
}
238
239
0
bool llama_hparams::use_mrope() const {
240
0
    return rope_sections[0] > 0 && rope_sections[1] > 0;
241
0
}