Coverage Report

Created: 2026-01-09 06:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/cogvlm.cpp
Line
Count
Source
1
#include "models.h"
2
3
llm_build_cogvlm::llm_build_cogvlm(const llama_model & model, const llm_graph_params & params) :
4
0
    llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
0
    const float   kq_scale    = 1.0f / sqrtf(float(n_embd_head));
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
10
11
0
    ggml_tensor * inpL;
12
0
    ggml_tensor * cur;
13
14
0
    inpL = build_inp_embd(model.tok_embd);
15
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
0
    auto * inp_attn = build_attn_inp_kv();
19
20
    // check ubatch to see if we have input tokens (text)
21
    // or an input embedding vector (image)
22
0
    bool is_text;
23
0
    if (ubatch.token) {
24
0
        is_text = true;
25
0
    } else {
26
0
        is_text = false;
27
0
    }
28
29
0
    for (int il = 0; il < n_layer; ++il) {
30
        // get either the text or image weight tensors
31
0
        ggml_tensor *wqkv, *wo;
32
0
        ggml_tensor *ffn_gate, *ffn_down, *ffn_up;
33
34
0
        if (is_text) {
35
0
            wqkv     = model.layers[il].wqkv;
36
0
            wo       = model.layers[il].wo;
37
0
            ffn_gate = model.layers[il].ffn_gate;
38
0
            ffn_down = model.layers[il].ffn_down;
39
0
            ffn_up   = model.layers[il].ffn_up;
40
0
        } else {
41
0
            wqkv     = model.layers[il].visexp_attn_wqkv;
42
0
            wo       = model.layers[il].visexp_attn_wo;
43
0
            ffn_gate = model.layers[il].visexp_ffn_gate;
44
0
            ffn_down = model.layers[il].visexp_ffn_down;
45
0
            ffn_up   = model.layers[il].visexp_ffn_up;
46
0
        }
47
48
0
        ggml_tensor * inpSA = inpL;
49
0
        cur = build_norm(inpSA, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
50
51
        // build self attention
52
0
        {
53
0
            ggml_tensor * qkv = build_lora_mm(wqkv, cur);
54
55
            // split qkv into Q, K, V along the first dimension
56
0
            ggml_tensor * Qcur =
57
0
                ggml_view_3d(ctx0, qkv, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), qkv->nb[1], 0);
58
0
            ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
59
0
                                              qkv->nb[1], n_embd * ggml_element_size(qkv));
60
0
            ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
61
0
                                              qkv->nb[1], 2 * n_embd * ggml_element_size(qkv));
62
63
0
            Qcur = ggml_rope(ctx0, Qcur, inp_pos, n_embd_head, rope_type);
64
0
            Kcur = ggml_rope(ctx0, Kcur, inp_pos, n_embd_head, rope_type);
65
66
0
            cur = build_attn(inp_attn,
67
0
                wo, nullptr,
68
0
                Qcur, Kcur, Vcur,
69
0
                nullptr, nullptr, nullptr,
70
0
                kq_scale, il);
71
0
            cb(cur, "attn_out", il);
72
0
        }
73
74
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
75
0
        cb(ffn_inp, "ffn_inp", il);
76
77
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
78
0
        cb(cur, "ffn_norm", il);
79
80
0
        cur = build_ffn(cur,
81
0
                ffn_up, NULL, NULL,
82
0
                ffn_gate, NULL, NULL,
83
0
                ffn_down, NULL, NULL,
84
0
                NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
85
86
0
        cur = ggml_add(ctx0, cur, ffn_inp);
87
0
        cb(cur, "ffn_out", il);
88
89
0
        inpL = cur;
90
0
    }
91
92
0
    cur = inpL;
93
94
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
95
0
    cb(cur, "result_norm", -1);
96
0
    res->t_embd = cur;
97
98
0
    cur = build_lora_mm(model.output, cur);
99
0
    cb(cur, "result_output", -1);
100
0
    res->t_logits = cur;
101
0
    ggml_build_forward_expand(gf, cur);
102
0
}