/src/llama.cpp/src/models/openai-moe-iswa.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
4 | 0 | ggml_tensor * cur; |
5 | 0 | ggml_tensor * inpL; |
6 | |
|
7 | 0 | inpL = build_inp_embd(model.tok_embd); |
8 | | |
9 | | // inp_pos - contains the positions |
10 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
11 | |
|
12 | 0 | auto * inp_attn = build_attn_inp_kv_iswa(); |
13 | |
|
14 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
15 | |
|
16 | 0 | for (int il = 0; il < n_layer; ++il) { |
17 | 0 | const float freq_base_l = model.get_rope_freq_base (cparams, il); |
18 | 0 | const float freq_scale_l = model.get_rope_freq_scale(cparams, il); |
19 | |
|
20 | 0 | ggml_tensor * inpSA = inpL; |
21 | | |
22 | | // norm |
23 | 0 | cur = build_norm(inpL, |
24 | 0 | model.layers[il].attn_norm, nullptr, |
25 | 0 | LLM_NORM_RMS, il); |
26 | 0 | cb(cur, "attn_norm", il); |
27 | | |
28 | | // self-attention |
29 | 0 | { |
30 | | // compute Q and K and RoPE them |
31 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
32 | 0 | cb(Qcur, "Qcur", il); |
33 | 0 | if (model.layers[il].bq) { |
34 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
35 | 0 | cb(Qcur, "Qcur", il); |
36 | 0 | } |
37 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
38 | 0 | cb(Kcur, "Kcur", il); |
39 | 0 | if (model.layers[il].bk) { |
40 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
41 | 0 | cb(Kcur, "Kcur", il); |
42 | 0 | } |
43 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
44 | 0 | cb(Vcur, "Vcur", il); |
45 | 0 | if (model.layers[il].bv) { |
46 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
47 | 0 | cb(Vcur, "Vcur", il); |
48 | 0 | } |
49 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens); |
50 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens); |
51 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens); |
52 | |
|
53 | 0 | Qcur = ggml_rope_ext( |
54 | 0 | ctx0, Qcur, inp_pos, nullptr, |
55 | 0 | n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, |
56 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
57 | 0 | ); |
58 | |
|
59 | 0 | Kcur = ggml_rope_ext( |
60 | 0 | ctx0, Kcur, inp_pos, nullptr, |
61 | 0 | n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l, |
62 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
63 | 0 | ); |
64 | |
|
65 | 0 | cb(Qcur, "Qcur", il); |
66 | 0 | cb(Kcur, "Kcur", il); |
67 | 0 | cb(Vcur, "Vcur", il); |
68 | |
|
69 | 0 | cur = build_attn(inp_attn, |
70 | 0 | model.layers[il].wo, model.layers[il].bo, |
71 | 0 | Qcur, Kcur, Vcur, nullptr, model.layers[il].attn_sinks, nullptr, 1.0f/sqrtf(float(n_rot)), il); |
72 | |
|
73 | 0 | cb(cur, "attn_out", il); |
74 | 0 | } |
75 | 0 | if (il == n_layer - 1) { |
76 | | // skip computing output for unused tokens |
77 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
78 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
79 | 0 | } |
80 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
81 | 0 | cb(ffn_inp, "ffn_inp", il); |
82 | |
|
83 | 0 | cur = ffn_inp; |
84 | 0 | cur = build_norm(cur, |
85 | 0 | model.layers[il].attn_post_norm, nullptr, |
86 | 0 | LLM_NORM_RMS, il); |
87 | 0 | cb(cur, "attn_post_norm", il); |
88 | | |
89 | | // MoE branch |
90 | 0 | cur = build_moe_ffn(cur, |
91 | 0 | model.layers[il].ffn_gate_inp, model.layers[il].ffn_gate_inp_b, |
92 | 0 | model.layers[il].ffn_up_exps, model.layers[il].ffn_up_exps_b, |
93 | 0 | model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b, |
94 | 0 | model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b, |
95 | 0 | nullptr, |
96 | 0 | n_expert, n_expert_used, |
97 | 0 | LLM_FFN_SWIGLU_OAI_MOE, false, |
98 | 0 | false, 0.0, |
99 | 0 | LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT, |
100 | 0 | il); |
101 | 0 | cb(cur, "ffn_moe_out", il); |
102 | |
|
103 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
104 | |
|
105 | 0 | cur = build_cvec(cur, il); |
106 | 0 | cb(cur, "l_out", il); |
107 | | |
108 | | // input for next layer |
109 | 0 | inpL = cur; |
110 | 0 | } |
111 | 0 | cur = inpL; |
112 | |
|
113 | 0 | cur = build_norm(cur, |
114 | 0 | model.output_norm, NULL, |
115 | 0 | LLM_NORM_RMS, -1); |
116 | |
|
117 | 0 | cb(cur, "result_norm", -1); |
118 | 0 | res->t_embd = cur; |
119 | | |
120 | | // lm_head |
121 | 0 | cur = build_lora_mm(model.output, cur); |
122 | |
|
123 | 0 | cb(cur, "result_output", -1); |
124 | 0 | res->t_logits = cur; |
125 | |
|
126 | 0 | ggml_build_forward_expand(gf, cur); |
127 | 0 | } |