Coverage Report

Created: 2026-01-09 06:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/openai-moe-iswa.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_openai_moe_iswa::llm_build_openai_moe_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    ggml_tensor * cur;
5
0
    ggml_tensor * inpL;
6
7
0
    inpL = build_inp_embd(model.tok_embd);
8
9
    // inp_pos - contains the positions
10
0
    ggml_tensor * inp_pos = build_inp_pos();
11
12
0
    auto * inp_attn = build_attn_inp_kv_iswa();
13
14
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
15
16
0
    for (int il = 0; il < n_layer; ++il) {
17
0
        const float freq_base_l  = model.get_rope_freq_base (cparams, il);
18
0
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
19
20
0
        ggml_tensor * inpSA = inpL;
21
22
        // norm
23
0
        cur = build_norm(inpL,
24
0
                model.layers[il].attn_norm, nullptr,
25
0
                LLM_NORM_RMS, il);
26
0
        cb(cur, "attn_norm", il);
27
28
        // self-attention
29
0
        {
30
            // compute Q and K and RoPE them
31
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
32
0
            cb(Qcur, "Qcur", il);
33
0
            if (model.layers[il].bq) {
34
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
35
0
                cb(Qcur, "Qcur", il);
36
0
            }
37
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
38
0
            cb(Kcur, "Kcur", il);
39
0
            if (model.layers[il].bk) {
40
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
41
0
                cb(Kcur, "Kcur", il);
42
0
            }
43
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
44
0
            cb(Vcur, "Vcur", il);
45
0
            if (model.layers[il].bv) {
46
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
47
0
                cb(Vcur, "Vcur", il);
48
0
            }
49
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head,    n_tokens);
50
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
51
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
52
53
0
            Qcur = ggml_rope_ext(
54
0
                    ctx0, Qcur, inp_pos, nullptr,
55
0
                    n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
56
0
                    ext_factor, attn_factor, beta_fast, beta_slow
57
0
                    );
58
59
0
            Kcur = ggml_rope_ext(
60
0
                    ctx0, Kcur, inp_pos, nullptr,
61
0
                    n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
62
0
                    ext_factor, attn_factor, beta_fast, beta_slow
63
0
                    );
64
65
0
            cb(Qcur, "Qcur", il);
66
0
            cb(Kcur, "Kcur", il);
67
0
            cb(Vcur, "Vcur", il);
68
69
0
            cur = build_attn(inp_attn,
70
0
                    model.layers[il].wo, model.layers[il].bo,
71
0
                    Qcur, Kcur, Vcur, nullptr, model.layers[il].attn_sinks, nullptr, 1.0f/sqrtf(float(n_rot)), il);
72
73
0
            cb(cur, "attn_out", il);
74
0
        }
75
0
        if (il == n_layer - 1) {
76
            // skip computing output for unused tokens
77
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
78
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
79
0
        }
80
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
81
0
        cb(ffn_inp, "ffn_inp", il);
82
83
0
        cur = ffn_inp;
84
0
        cur = build_norm(cur,
85
0
                model.layers[il].attn_post_norm, nullptr,
86
0
                LLM_NORM_RMS, il);
87
0
        cb(cur, "attn_post_norm", il);
88
89
        // MoE branch
90
0
        cur = build_moe_ffn(cur,
91
0
                model.layers[il].ffn_gate_inp,  model.layers[il].ffn_gate_inp_b,
92
0
                model.layers[il].ffn_up_exps,   model.layers[il].ffn_up_exps_b,
93
0
                model.layers[il].ffn_gate_exps, model.layers[il].ffn_gate_exps_b,
94
0
                model.layers[il].ffn_down_exps, model.layers[il].ffn_down_exps_b,
95
0
                nullptr,
96
0
                n_expert, n_expert_used,
97
0
                LLM_FFN_SWIGLU_OAI_MOE, false,
98
0
                false, 0.0,
99
0
                LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT,
100
0
                il);
101
0
        cb(cur, "ffn_moe_out", il);
102
103
0
        cur = ggml_add(ctx0, cur, ffn_inp);
104
105
0
        cur = build_cvec(cur, il);
106
0
        cb(cur, "l_out", il);
107
108
        // input for next layer
109
0
        inpL = cur;
110
0
    }
111
0
    cur = inpL;
112
113
0
    cur = build_norm(cur,
114
0
            model.output_norm, NULL,
115
0
            LLM_NORM_RMS, -1);
116
117
0
    cb(cur, "result_norm", -1);
118
0
    res->t_embd = cur;
119
120
    // lm_head
121
0
    cur = build_lora_mm(model.output, cur);
122
123
0
    cb(cur, "result_output", -1);
124
0
    res->t_logits = cur;
125
126
0
    ggml_build_forward_expand(gf, cur);
127
0
}