/src/llama.cpp/src/models/olmo2.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | template <bool iswa> |
4 | 0 | llm_build_olmo2<iswa>::llm_build_olmo2(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
5 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
6 | |
|
7 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
8 | 0 | GGML_ASSERT(n_embd_head == hparams.n_rot); |
9 | |
|
10 | 0 | ggml_tensor * cur; |
11 | 0 | ggml_tensor * inpL; |
12 | |
|
13 | 0 | inpL = build_inp_embd(model.tok_embd); |
14 | | |
15 | | // inp_pos - contains the positions |
16 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
17 | |
|
18 | 0 | using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>; |
19 | 0 | inp_attn_type * inp_attn = nullptr; |
20 | |
|
21 | 0 | if constexpr (iswa) { |
22 | 0 | inp_attn = build_attn_inp_kv_iswa(); |
23 | 0 | } else { |
24 | 0 | inp_attn = build_attn_inp_kv(); |
25 | 0 | } |
26 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
27 | |
|
28 | 0 | for (int il = 0; il < n_layer; ++il) { |
29 | 0 | ggml_tensor * inpSA = inpL; |
30 | |
|
31 | 0 | cur = inpL; |
32 | | |
33 | | // self_attention |
34 | 0 | { |
35 | | // compute Q and K and RoPE them |
36 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
37 | 0 | cb(Qcur, "Qcur", il); |
38 | |
|
39 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
40 | 0 | cb(Kcur, "Kcur", il); |
41 | |
|
42 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
43 | 0 | cb(Vcur, "Vcur", il); |
44 | |
|
45 | 0 | Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, |
46 | 0 | LLM_NORM_RMS, il); |
47 | 0 | cb(Qcur, "Qcur_normed", il); |
48 | |
|
49 | 0 | Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, |
50 | 0 | LLM_NORM_RMS, il); |
51 | 0 | cb(Kcur, "Kcur_normed", il); |
52 | |
|
53 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
54 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
55 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
56 | |
|
57 | 0 | const bool is_swa = hparams.is_swa(il); |
58 | |
|
59 | 0 | if (is_swa) { |
60 | | // For sliding window layers, Olmo3 use regular rope with no yarn rope scaling. |
61 | | // This is achieved here by setting freq_scale and attn_factor to 1. |
62 | | // We also set ext_factor to 0 to avoid a few unnecessary computations. |
63 | 0 | Qcur = ggml_rope_ext( |
64 | 0 | ctx0, Qcur, inp_pos, nullptr, |
65 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, 1.0, |
66 | 0 | 0.0, 1.0, beta_fast, beta_slow |
67 | 0 | ); |
68 | |
|
69 | 0 | Kcur = ggml_rope_ext( |
70 | 0 | ctx0, Kcur, inp_pos, nullptr, |
71 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, 1.0, |
72 | 0 | 0.0, 1.0, beta_fast, beta_slow |
73 | 0 | ); |
74 | 0 | } else { |
75 | 0 | Qcur = ggml_rope_ext( |
76 | 0 | ctx0, Qcur, inp_pos, nullptr, |
77 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
78 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
79 | 0 | ); |
80 | |
|
81 | 0 | Kcur = ggml_rope_ext( |
82 | 0 | ctx0, Kcur, inp_pos, nullptr, |
83 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
84 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
85 | 0 | ); |
86 | 0 | } |
87 | 0 | cb(Qcur, "Qcur", il); |
88 | 0 | cb(Kcur, "Kcur", il); |
89 | 0 | cb(Vcur, "Vcur", il); |
90 | |
|
91 | 0 | cur = build_attn(inp_attn, |
92 | 0 | model.layers[il].wo, NULL, |
93 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
94 | 0 | } |
95 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
96 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
97 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
98 | 0 | } |
99 | 0 | cur = build_norm(cur, |
100 | 0 | model.layers[il].attn_post_norm, NULL, |
101 | 0 | LLM_NORM_RMS, il); |
102 | 0 | cb(cur, "attn_post_norm", il); |
103 | |
|
104 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); |
105 | 0 | cb(ffn_inp, "ffn_inp", il); |
106 | | |
107 | | // feed-forward network |
108 | 0 | cur = build_ffn(ffn_inp, |
109 | 0 | model.layers[il].ffn_up, NULL, NULL, |
110 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
111 | 0 | model.layers[il].ffn_down, NULL, NULL, |
112 | 0 | NULL, |
113 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
114 | 0 | cb(cur, "ffn_out", il); |
115 | |
|
116 | 0 | cur = build_norm(cur, |
117 | 0 | model.layers[il].ffn_post_norm, NULL, |
118 | 0 | LLM_NORM_RMS, -1); |
119 | 0 | cb(cur, "ffn_post_norm", -1); |
120 | |
|
121 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
122 | 0 | cb(cur, "ffn_out", il); |
123 | |
|
124 | 0 | cur = build_cvec(cur, il); |
125 | 0 | cb(cur, "l_out", il); |
126 | | |
127 | | // input for next layer |
128 | 0 | inpL = cur; |
129 | 0 | } |
130 | 0 | cur = inpL; |
131 | |
|
132 | 0 | cur = build_norm(cur, |
133 | 0 | model.output_norm, NULL, |
134 | 0 | LLM_NORM_RMS, -1); |
135 | |
|
136 | 0 | cb(cur, "result_norm", -1); |
137 | 0 | res->t_embd = cur; |
138 | | |
139 | | // lm_head |
140 | 0 | cur = build_lora_mm(model.output, cur); |
141 | |
|
142 | 0 | cb(cur, "result_output", -1); |
143 | 0 | res->t_logits = cur; |
144 | |
|
145 | 0 | ggml_build_forward_expand(gf, cur); |
146 | 0 | } Unexecuted instantiation: llm_build_olmo2<false>::llm_build_olmo2(llama_model const&, llm_graph_params const&) Unexecuted instantiation: llm_build_olmo2<true>::llm_build_olmo2(llama_model const&, llm_graph_params const&) |
147 | | |
148 | | // Explicit template instantiations |
149 | | template struct llm_build_olmo2<false>; |
150 | | template struct llm_build_olmo2<true>; |