Coverage Report

Created: 2026-01-09 06:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/plamo3.cpp
Line
Count
Source
1
#include "models.h"
2
3
template <bool iswa>
4
llm_build_plamo3<iswa>::llm_build_plamo3(const llama_model & model, const llm_graph_params & params) :
5
0
    llm_graph_context(params) {
6
0
    const int64_t head_dim_q = hparams.n_embd_head_k;
7
0
    const int64_t head_dim_v = hparams.n_embd_head_v;
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL = build_inp_embd(model.tok_embd);
11
0
    ggml_tensor * inp_pos = build_inp_pos();
12
13
0
    using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
14
0
    inp_attn_type * inp_attn = nullptr;
15
16
0
    if constexpr (iswa) {
17
0
        inp_attn = build_attn_inp_kv_iswa();
18
0
    } else {
19
0
        inp_attn = build_attn_inp_kv();
20
0
    }
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        ggml_tensor * residual = inpL;
26
27
0
        float freq_base_l  = 0.0f;
28
0
        float freq_scale_l = 0.0f;
29
0
        if constexpr (iswa) {
30
0
            freq_base_l  = model.get_rope_freq_base (cparams, il);
31
0
            freq_scale_l = model.get_rope_freq_scale(cparams, il);
32
0
        } else {
33
0
            freq_base_l  = freq_base;
34
0
            freq_scale_l = freq_scale;
35
0
        }
36
37
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
38
0
        cb(cur, "attn_norm", il);
39
40
0
        ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
41
0
        cb(cur, "wqkv", il);
42
43
0
        const int32_t n_head    = hparams.n_head(il);
44
0
        const int32_t n_head_kv = hparams.n_head_kv(il);
45
46
0
        const int64_t q_offset = 0;
47
0
        const int64_t k_offset = head_dim_q * n_head;
48
0
        const int64_t v_offset = k_offset + head_dim_q * n_head_kv;
49
50
0
        ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, head_dim_q, n_head, n_tokens,
51
0
                head_dim_q * sizeof(float), qkv->nb[1], q_offset * ggml_element_size(qkv));
52
0
        ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, head_dim_q, n_head_kv, n_tokens,
53
0
                head_dim_q * sizeof(float), qkv->nb[1], k_offset * ggml_element_size(qkv));
54
0
        ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, head_dim_v, n_head_kv, n_tokens,
55
0
                head_dim_v * sizeof(float), qkv->nb[1], v_offset * ggml_element_size(qkv));
56
57
0
        cb(Qcur, "Qcur", il);
58
0
        cb(Kcur, "Kcur", il);
59
0
        cb(Vcur, "Vcur", il);
60
61
0
        Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
62
0
        cb(Qcur, "attn_q_norm", il);
63
0
        Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
64
0
        cb(Kcur, "attn_k_norm", il);
65
66
0
        Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr,
67
0
                n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
68
0
                ext_factor, attn_factor, beta_fast, beta_slow);
69
0
        Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr,
70
0
                n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
71
0
                ext_factor, attn_factor, beta_fast, beta_slow);
72
73
0
        const float attn_scale = 1.0f / sqrtf(float(head_dim_q));
74
75
0
        cur = build_attn(inp_attn,
76
0
                model.layers[il].wo, NULL,
77
0
                Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, attn_scale, il);
78
0
        cb(cur, "attn_out", il);
79
80
0
        if (il == n_layer - 1 && inp_out_ids) {
81
0
            cur      = ggml_get_rows(ctx0, cur, inp_out_ids);
82
0
            residual = ggml_get_rows(ctx0, residual, inp_out_ids);
83
0
        }
84
85
0
        cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
86
0
        cb(cur, "attn_post_norm", il);
87
88
0
        cur = ggml_add(ctx0, cur, residual);
89
0
        cb(cur, "attn_residual", il);
90
91
0
        residual = cur;
92
93
0
        cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
94
0
        cb(cur, "ffn_norm", il);
95
96
0
        cur = build_ffn(cur,
97
0
                model.layers[il].ffn_up,   NULL, NULL,
98
0
                NULL,                      NULL, NULL,
99
0
                model.layers[il].ffn_down, NULL, NULL,
100
0
                NULL,
101
0
                LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
102
0
        cb(cur, "ffn_out", il);
103
104
0
        cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
105
0
        cb(cur, "ffn_post_norm", il);
106
107
0
        cur = ggml_add(ctx0, cur, residual);
108
0
        cb(cur, "ffn_residual", il);
109
110
0
        cur = build_cvec(cur, il);
111
0
        cb(cur, "l_out", il);
112
0
        inpL = cur;
113
0
    }
114
115
0
    cur = inpL;
116
117
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
118
0
    res->t_embd = cur;
119
120
0
    cur = build_lora_mm(model.output, cur);
121
0
    res->t_logits = cur;
122
123
0
    ggml_build_forward_expand(gf, cur);
124
0
}
Unexecuted instantiation: llm_build_plamo3<false>::llm_build_plamo3(llama_model const&, llm_graph_params const&)
Unexecuted instantiation: llm_build_plamo3<true>::llm_build_plamo3(llama_model const&, llm_graph_params const&)
125
126
// Explicit template instantiations
127
template struct llm_build_plamo3<false>;
128
template struct llm_build_plamo3<true>;