/src/llama.cpp/src/models/t5-dec.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_t5_dec::llm_build_t5_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
4 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
5 | | //const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); |
6 | |
|
7 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
8 | |
|
9 | 0 | ggml_tensor * cur; |
10 | 0 | ggml_tensor * inpL; |
11 | |
|
12 | 0 | inpL = build_inp_embd(model.tok_embd); |
13 | |
|
14 | 0 | ggml_tensor * embd_enc = build_inp_cross_embd(); |
15 | 0 | ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec(); |
16 | |
|
17 | 0 | const int64_t n_outputs_enc = embd_enc->ne[1]; |
18 | |
|
19 | 0 | auto * inp_attn_self = build_attn_inp_kv(); |
20 | 0 | auto * inp_attn_cross = build_attn_inp_cross(); |
21 | |
|
22 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
23 | |
|
24 | 0 | const int64_t dec_n_layer = hparams.dec_n_layer; |
25 | |
|
26 | 0 | for (int il = 0; il < dec_n_layer; ++il) { |
27 | 0 | ggml_tensor * inpSA = inpL; |
28 | | |
29 | | // norm |
30 | 0 | cur = build_norm(inpL, |
31 | 0 | model.layers[il].attn_norm, NULL, |
32 | 0 | LLM_NORM_RMS, il); |
33 | 0 | cb(cur, "attn_norm", il); |
34 | | |
35 | | // self-attention |
36 | 0 | { |
37 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
38 | 0 | cb(Qcur, "Qcur", il); |
39 | |
|
40 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
41 | 0 | cb(Kcur, "Kcur", il); |
42 | |
|
43 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
44 | 0 | cb(Vcur, "Vcur", il); |
45 | |
|
46 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
47 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
48 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
49 | |
|
50 | 0 | ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b; |
51 | 0 | ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b); |
52 | |
|
53 | 0 | cur = build_attn(inp_attn_self, |
54 | 0 | model.layers[il].wo, model.layers[il].bo, |
55 | 0 | Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il); |
56 | 0 | cb(cur, "kqv_out", il); |
57 | 0 | } |
58 | 0 | cur = ggml_add(ctx0, cur, inpSA); |
59 | 0 | cb(cur, "cross_inp", il); |
60 | |
|
61 | 0 | ggml_tensor * inpCA = cur; |
62 | | |
63 | | // norm |
64 | 0 | cur = build_norm(cur, |
65 | 0 | model.layers[il].attn_norm_cross, NULL, |
66 | 0 | LLM_NORM_RMS, il); |
67 | 0 | cb(cur, "attn_norm_cross", il); |
68 | | |
69 | | // cross-attention |
70 | 0 | { |
71 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur); |
72 | 0 | cb(Qcur, "Qcur", il); |
73 | |
|
74 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc); |
75 | 0 | cb(Kcur, "Kcur", il); |
76 | |
|
77 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc); |
78 | 0 | cb(Vcur, "Vcur", il); |
79 | |
|
80 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
81 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc); |
82 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc); |
83 | |
|
84 | 0 | cur = build_attn(inp_attn_cross, |
85 | 0 | model.layers[il].wo_cross, nullptr, |
86 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il); |
87 | 0 | cb(cur, "kqv_out", il); |
88 | | |
89 | | //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); |
90 | | //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); |
91 | | |
92 | | //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); |
93 | | //cb(kq, "kq", il); |
94 | | |
95 | | //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias); |
96 | | //cb(kq, "kq_soft_max_ext", il); |
97 | | |
98 | | //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc))); |
99 | | //cb(v, "v", il); |
100 | | |
101 | | //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq); |
102 | | //cb(kqv, "kqv", il); |
103 | | |
104 | | //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); |
105 | | //cb(kqv_merged, "kqv_merged", il); |
106 | | |
107 | | //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); |
108 | | //cb(cur, "kqv_merged_cont", il); |
109 | | |
110 | | //ggml_build_forward_expand(gf, cur); |
111 | | |
112 | | //cur = build_lora_mm(model.layers[il].wo_cross, cur); |
113 | | //cb(cur, "kqv_out", il); |
114 | 0 | } |
115 | 0 | if (il == dec_n_layer - 1 && inp_out_ids) { |
116 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
117 | 0 | inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids); |
118 | 0 | } |
119 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA); |
120 | 0 | cb(ffn_inp, "ffn_inp", il); |
121 | | |
122 | | // feed-forward network |
123 | 0 | { |
124 | 0 | cur = build_norm(ffn_inp, |
125 | 0 | model.layers[il].ffn_norm, NULL, |
126 | 0 | LLM_NORM_RMS, il); |
127 | 0 | cb(cur, "ffn_norm", il); |
128 | | |
129 | | // T5 uses relu, flan-T5 uses gelu-gated |
130 | 0 | cur = build_ffn(cur, |
131 | 0 | model.layers[il].ffn_up, NULL, NULL, |
132 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
133 | 0 | model.layers[il].ffn_down, NULL, NULL, |
134 | 0 | NULL, |
135 | 0 | model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_RELU, |
136 | 0 | model.layers[il].ffn_gate ? LLM_FFN_PAR : LLM_FFN_SEQ, |
137 | 0 | il); |
138 | 0 | cb(cur, "ffn_out", il); |
139 | 0 | } |
140 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
141 | 0 | cb(cur, "ffn_out", il); |
142 | |
|
143 | 0 | cur = build_cvec(cur, il); |
144 | 0 | cb(cur, "l_out", il); |
145 | | |
146 | | // input for next layer |
147 | 0 | inpL = cur; |
148 | 0 | } |
149 | 0 | cur = inpL; |
150 | 0 | cb(cur, "result_embd", -1); |
151 | |
|
152 | 0 | cur = build_norm(cur, |
153 | 0 | model.output_norm, NULL, |
154 | 0 | LLM_NORM_RMS, -1); |
155 | |
|
156 | 0 | cb(cur, "result_norm", -1); |
157 | 0 | res->t_embd = cur; |
158 | | |
159 | | // lm_head |
160 | 0 | cur = build_lora_mm(model.output, cur); |
161 | |
|
162 | 0 | cb(cur, "result_output", -1); |
163 | 0 | res->t_logits = cur; |
164 | |
|
165 | 0 | ggml_build_forward_expand(gf, cur); |
166 | 0 | } |