Coverage Report

Created: 2026-01-09 06:17

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/t5-dec.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_t5_dec::llm_build_t5_dec(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
    //const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
0
    ggml_tensor * embd_enc       = build_inp_cross_embd();
15
0
    ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
16
17
0
    const int64_t n_outputs_enc = embd_enc->ne[1];
18
19
0
    auto * inp_attn_self  = build_attn_inp_kv();
20
0
    auto * inp_attn_cross = build_attn_inp_cross();
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    const int64_t dec_n_layer = hparams.dec_n_layer;
25
26
0
    for (int il = 0; il < dec_n_layer; ++il) {
27
0
        ggml_tensor * inpSA = inpL;
28
29
        // norm
30
0
        cur = build_norm(inpL,
31
0
                model.layers[il].attn_norm, NULL,
32
0
                LLM_NORM_RMS, il);
33
0
        cb(cur, "attn_norm", il);
34
35
        // self-attention
36
0
        {
37
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
38
0
            cb(Qcur, "Qcur", il);
39
40
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
41
0
            cb(Kcur, "Kcur", il);
42
43
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
44
0
            cb(Vcur, "Vcur", il);
45
46
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
47
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
48
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
49
50
0
            ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
51
0
            ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
52
53
0
            cur = build_attn(inp_attn_self,
54
0
                    model.layers[il].wo, model.layers[il].bo,
55
0
                    Qcur, Kcur, Vcur, kq_b, nullptr, nullptr, 1.0f, il);
56
0
            cb(cur, "kqv_out", il);
57
0
        }
58
0
        cur = ggml_add(ctx0, cur, inpSA);
59
0
        cb(cur, "cross_inp", il);
60
61
0
        ggml_tensor * inpCA = cur;
62
63
        // norm
64
0
        cur = build_norm(cur,
65
0
                model.layers[il].attn_norm_cross, NULL,
66
0
                LLM_NORM_RMS, il);
67
0
        cb(cur, "attn_norm_cross", il);
68
69
        // cross-attention
70
0
        {
71
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
72
0
            cb(Qcur, "Qcur", il);
73
74
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
75
0
            cb(Kcur, "Kcur", il);
76
77
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
78
0
            cb(Vcur, "Vcur", il);
79
80
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
81
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
82
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
83
84
0
            cur = build_attn(inp_attn_cross,
85
0
                    model.layers[il].wo_cross, nullptr,
86
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
87
0
            cb(cur, "kqv_out", il);
88
89
            //ggml_tensor * q =                 ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
90
            //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
91
92
            //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
93
            //cb(kq, "kq", il);
94
95
            //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
96
            //cb(kq, "kq_soft_max_ext", il);
97
98
            //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
99
            //cb(v, "v", il);
100
101
            //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
102
            //cb(kqv, "kqv", il);
103
104
            //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
105
            //cb(kqv_merged, "kqv_merged", il);
106
107
            //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
108
            //cb(cur, "kqv_merged_cont", il);
109
110
            //ggml_build_forward_expand(gf, cur);
111
112
            //cur = build_lora_mm(model.layers[il].wo_cross, cur);
113
            //cb(cur, "kqv_out", il);
114
0
        }
115
0
        if (il == dec_n_layer - 1 && inp_out_ids) {
116
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
117
0
            inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
118
0
        }
119
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
120
0
        cb(ffn_inp, "ffn_inp", il);
121
122
        // feed-forward network
123
0
        {
124
0
            cur = build_norm(ffn_inp,
125
0
                    model.layers[il].ffn_norm, NULL,
126
0
                    LLM_NORM_RMS, il);
127
0
            cb(cur, "ffn_norm", il);
128
129
            // T5 uses relu, flan-T5 uses gelu-gated
130
0
            cur = build_ffn(cur,
131
0
                    model.layers[il].ffn_up,   NULL, NULL,
132
0
                    model.layers[il].ffn_gate, NULL, NULL,
133
0
                    model.layers[il].ffn_down, NULL, NULL,
134
0
                    NULL,
135
0
                    model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_RELU,
136
0
                    model.layers[il].ffn_gate ? LLM_FFN_PAR : LLM_FFN_SEQ,
137
0
                    il);
138
0
            cb(cur, "ffn_out", il);
139
0
        }
140
0
        cur = ggml_add(ctx0, cur, ffn_inp);
141
0
        cb(cur, "ffn_out", il);
142
143
0
        cur = build_cvec(cur, il);
144
0
        cb(cur, "l_out", il);
145
146
        // input for next layer
147
0
        inpL = cur;
148
0
    }
149
0
    cur = inpL;
150
0
    cb(cur, "result_embd", -1);
151
152
0
    cur = build_norm(cur,
153
0
            model.output_norm, NULL,
154
0
            LLM_NORM_RMS, -1);
155
156
0
    cb(cur, "result_norm", -1);
157
0
    res->t_embd = cur;
158
159
    // lm_head
160
0
    cur = build_lora_mm(model.output, cur);
161
162
0
    cb(cur, "result_output", -1);
163
0
    res->t_logits = cur;
164
165
0
    ggml_build_forward_expand(gf, cur);
166
0
}