Coverage Report

Created: 2026-01-09 06:16

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/exaone4.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
template <bool iswa>
5
llm_build_exaone4<iswa>::llm_build_exaone4(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context(params) {
7
0
    const int64_t n_embd_head = hparams.n_embd_head_k;
8
9
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_v);
10
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
11
12
0
    ggml_tensor * cur;
13
0
    ggml_tensor * inpL;
14
15
0
    inpL = build_inp_embd(model.tok_embd);
16
17
    // inp_pos - contains the positions
18
0
    ggml_tensor * inp_pos = build_inp_pos();
19
20
0
    using inp_attn_type      = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
21
0
    inp_attn_type * inp_attn = nullptr;
22
23
0
    if constexpr (iswa) {
24
0
        inp_attn = build_attn_inp_kv_iswa();
25
0
    } else {
26
0
        inp_attn = build_attn_inp_kv();
27
0
    }
28
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
29
30
0
    for (int il = 0; il < n_layer; ++il) {
31
0
        ggml_tensor * inpSA = inpL;
32
33
        // use RoPE for SWA layers or non-SWA models
34
0
        const bool use_rope = hparams.is_swa(il) || hparams.swa_type == LLAMA_SWA_TYPE_NONE;
35
36
0
        cur = inpL;
37
38
        // self-attention
39
0
        {
40
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
41
42
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
43
0
            cb(Qcur, "Qcur", il);
44
45
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
46
0
            cb(Kcur, "Kcur", il);
47
48
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
49
0
            cb(Vcur, "Vcur", il);
50
51
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
52
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
53
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
54
55
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
56
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
57
0
            cb(Qcur, "Qcur_normed", il);
58
0
            cb(Kcur, "Kcur_normed", il);
59
60
0
            if (use_rope) {
61
0
                Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
62
0
                                     freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
63
64
0
                Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base,
65
0
                                     freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
66
0
            }
67
0
            cb(Qcur, "Qcur", il);
68
0
            cb(Kcur, "Kcur", il);
69
0
            cb(Vcur, "Vcur", il);
70
71
0
            cur = build_attn(inp_attn,
72
0
                    model.layers[il].wo, NULL,
73
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
74
0
            cb(cur, "attn_out", il);
75
0
        }
76
0
        if (il == n_layer - 1 && inp_out_ids) {
77
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
78
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
79
0
        }
80
0
        cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
81
0
        cb(cur, "attn_post_norm", il);
82
83
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
84
0
        cb(ffn_inp, "ffn_inp", il);
85
86
        // feed-forward network
87
0
        cur = build_ffn(ffn_inp,
88
0
                model.layers[il].ffn_up, NULL, NULL,
89
0
                model.layers[il].ffn_gate, NULL, NULL,
90
0
                model.layers[il].ffn_down, NULL, NULL, NULL,
91
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
92
0
        cb(cur, "ffn_out", il);
93
94
0
        cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
95
0
        cb(cur, "ffn_post_norm", -1);
96
97
0
        cur = ggml_add(ctx0, cur, ffn_inp);
98
99
0
        cur = build_cvec(cur, il);
100
0
        cb(cur, "l_out", il);
101
102
        // input for next layer
103
0
        inpL = cur;
104
0
    }
105
0
    cur = inpL;
106
107
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
108
109
0
    cb(cur, "result_norm", -1);
110
0
    res->t_embd = cur;
111
112
    // lm_head
113
0
    cur = build_lora_mm(model.output, cur);
114
115
0
    cb(cur, "result_output", -1);
116
0
    res->t_logits = cur;
117
118
0
    ggml_build_forward_expand(gf, cur);
119
0
}
Unexecuted instantiation: llm_build_exaone4<false>::llm_build_exaone4(llama_model const&, llm_graph_params const&)
Unexecuted instantiation: llm_build_exaone4<true>::llm_build_exaone4(llama_model const&, llm_graph_params const&)
120
121
// Explicit template instantiations
122
template struct llm_build_exaone4<false>;
123
template struct llm_build_exaone4<true>;