/src/llama.cpp/src/models/mpt.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | | |
5 | 0 | llm_build_mpt::llm_build_mpt(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
6 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
7 | 0 | const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); |
8 | |
|
9 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
10 | |
|
11 | 0 | ggml_tensor * cur; |
12 | 0 | ggml_tensor * pos; |
13 | 0 | ggml_tensor * inpL; |
14 | |
|
15 | 0 | inpL = build_inp_embd(model.tok_embd); |
16 | |
|
17 | 0 | auto * inp_attn = build_attn_inp_kv(); |
18 | |
|
19 | 0 | if (model.pos_embd) { |
20 | | // inp_pos - contains the positions |
21 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
22 | 0 | pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); |
23 | 0 | cb(pos, "pos_embd", -1); |
24 | |
|
25 | 0 | inpL = ggml_add(ctx0, inpL, pos); |
26 | 0 | cb(inpL, "inpL", -1); |
27 | 0 | } |
28 | |
|
29 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
30 | |
|
31 | 0 | for (int il = 0; il < n_layer; ++il) { |
32 | 0 | ggml_tensor * attn_norm; |
33 | |
|
34 | 0 | attn_norm = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il); |
35 | 0 | cb(attn_norm, "attn_norm", il); |
36 | | |
37 | | // self-attention |
38 | 0 | { |
39 | 0 | cur = attn_norm; |
40 | |
|
41 | 0 | cur = build_lora_mm(model.layers[il].wqkv, cur); |
42 | 0 | cb(cur, "wqkv", il); |
43 | |
|
44 | 0 | if (model.layers[il].bqkv) { |
45 | 0 | cur = ggml_add(ctx0, cur, model.layers[il].bqkv); |
46 | 0 | cb(cur, "bqkv", il); |
47 | 0 | } |
48 | |
|
49 | 0 | if (hparams.f_clamp_kqv > 0.0f) { |
50 | 0 | cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); |
51 | 0 | cb(cur, "wqkv_clamped", il); |
52 | 0 | } |
53 | |
|
54 | 0 | ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), |
55 | 0 | cur->nb[1], 0 * sizeof(float) * (n_embd)); |
56 | 0 | ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), |
57 | 0 | cur->nb[1], 1 * sizeof(float) * (n_embd)); |
58 | 0 | ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), |
59 | 0 | cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)); |
60 | | |
61 | | // Q/K Layernorm |
62 | 0 | if (model.layers[il].attn_q_norm) { |
63 | 0 | Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens); |
64 | 0 | Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens); |
65 | |
|
66 | 0 | Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il); |
67 | |
|
68 | 0 | Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il); |
69 | |
|
70 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
71 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
72 | 0 | } |
73 | |
|
74 | 0 | cb(Qcur, "Qcur", il); |
75 | 0 | cb(Kcur, "Kcur", il); |
76 | 0 | cb(Vcur, "Vcur", il); |
77 | |
|
78 | 0 | cur = build_attn(inp_attn, |
79 | 0 | model.layers[il].wo, model.layers[il].bo, |
80 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il); |
81 | 0 | } |
82 | |
|
83 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
84 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
85 | 0 | inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); |
86 | 0 | } |
87 | | |
88 | | // Add the input |
89 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); |
90 | 0 | cb(ffn_inp, "ffn_inp", il); |
91 | | |
92 | | // feed forward |
93 | 0 | { |
94 | 0 | cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il); |
95 | 0 | cb(cur, "ffn_norm", il); |
96 | 0 | cur = build_ffn(cur, |
97 | 0 | model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, |
98 | 0 | NULL, NULL, NULL, |
99 | 0 | model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, |
100 | 0 | model.layers[il].ffn_act, LLM_FFN_GELU, LLM_FFN_SEQ, il); |
101 | 0 | cb(cur, "ffn_out", il); |
102 | 0 | } |
103 | |
|
104 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
105 | |
|
106 | 0 | cur = build_cvec(cur, il); |
107 | 0 | cb(cur, "l_out", il); |
108 | | |
109 | | // input for next layer |
110 | 0 | inpL = cur; |
111 | 0 | } |
112 | |
|
113 | 0 | cur = inpL; |
114 | |
|
115 | 0 | cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); |
116 | |
|
117 | 0 | cb(cur, "result_norm", -1); |
118 | 0 | res->t_embd = cur; |
119 | |
|
120 | 0 | cur = build_lora_mm(model.output, cur); |
121 | |
|
122 | 0 | cb(cur, "result_output", -1); |
123 | 0 | res->t_logits = cur; |
124 | |
|
125 | 0 | ggml_build_forward_expand(gf, cur); |
126 | 0 | } |