Coverage Report

Created: 2026-01-10 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/mpt.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
0
llm_build_mpt::llm_build_mpt(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
6
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
7
0
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
8
9
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10
11
0
    ggml_tensor * cur;
12
0
    ggml_tensor * pos;
13
0
    ggml_tensor * inpL;
14
15
0
    inpL = build_inp_embd(model.tok_embd);
16
17
0
    auto * inp_attn = build_attn_inp_kv();
18
19
0
    if (model.pos_embd) {
20
        // inp_pos - contains the positions
21
0
        ggml_tensor * inp_pos = build_inp_pos();
22
0
        pos                   = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
23
0
        cb(pos, "pos_embd", -1);
24
25
0
        inpL = ggml_add(ctx0, inpL, pos);
26
0
        cb(inpL, "inpL", -1);
27
0
    }
28
29
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
30
31
0
    for (int il = 0; il < n_layer; ++il) {
32
0
        ggml_tensor * attn_norm;
33
34
0
        attn_norm = build_norm(inpL, model.layers[il].attn_norm, model.layers[il].attn_norm_b, LLM_NORM, il);
35
0
        cb(attn_norm, "attn_norm", il);
36
37
        // self-attention
38
0
        {
39
0
            cur = attn_norm;
40
41
0
            cur = build_lora_mm(model.layers[il].wqkv, cur);
42
0
            cb(cur, "wqkv", il);
43
44
0
            if (model.layers[il].bqkv) {
45
0
                cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
46
0
                cb(cur, "bqkv", il);
47
0
            }
48
49
0
            if (hparams.f_clamp_kqv > 0.0f) {
50
0
                cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
51
0
                cb(cur, "wqkv_clamped", il);
52
0
            }
53
54
0
            ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float),
55
0
                                              cur->nb[1], 0 * sizeof(float) * (n_embd));
56
0
            ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
57
0
                                              cur->nb[1], 1 * sizeof(float) * (n_embd));
58
0
            ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
59
0
                                              cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
60
61
            // Q/K Layernorm
62
0
            if (model.layers[il].attn_q_norm) {
63
0
                Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens);
64
0
                Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens);
65
66
0
                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il);
67
68
0
                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il);
69
70
0
                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
71
0
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
72
0
            }
73
74
0
            cb(Qcur, "Qcur", il);
75
0
            cb(Kcur, "Kcur", il);
76
0
            cb(Vcur, "Vcur", il);
77
78
0
            cur = build_attn(inp_attn,
79
0
                    model.layers[il].wo, model.layers[il].bo,
80
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
81
0
        }
82
83
0
        if (il == n_layer - 1 && inp_out_ids) {
84
0
            cur  = ggml_get_rows(ctx0, cur, inp_out_ids);
85
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
86
0
        }
87
88
        // Add the input
89
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
90
0
        cb(ffn_inp, "ffn_inp", il);
91
92
        // feed forward
93
0
        {
94
0
            cur = build_norm(ffn_inp, model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, LLM_NORM, il);
95
0
            cb(cur, "ffn_norm", il);
96
0
            cur = build_ffn(cur,
97
0
                model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
98
0
                NULL, NULL, NULL,
99
0
                model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
100
0
                model.layers[il].ffn_act, LLM_FFN_GELU, LLM_FFN_SEQ, il);
101
0
            cb(cur, "ffn_out", il);
102
0
        }
103
104
0
        cur = ggml_add(ctx0, cur, ffn_inp);
105
106
0
        cur = build_cvec(cur, il);
107
0
        cb(cur, "l_out", il);
108
109
        // input for next layer
110
0
        inpL = cur;
111
0
    }
112
113
0
    cur = inpL;
114
115
0
    cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
116
117
0
    cb(cur, "result_norm", -1);
118
0
    res->t_embd = cur;
119
120
0
    cur = build_lora_mm(model.output, cur);
121
122
0
    cb(cur, "result_output", -1);
123
0
    res->t_logits = cur;
124
125
0
    ggml_build_forward_expand(gf, cur);
126
0
}