Coverage Report

Created: 2026-01-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/ernie4-5-moe.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_ernie4_5_moe::llm_build_ernie4_5_moe(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context(params) {
7
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
8
9
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
11
12
0
    ggml_tensor * cur;
13
0
    ggml_tensor * inpL;
14
15
0
    inpL = build_inp_embd(model.tok_embd);
16
17
    // inp_pos - contains the positions
18
0
    ggml_tensor * inp_pos = build_inp_pos();
19
20
0
    auto * inp_attn = build_attn_inp_kv();
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Ernie 4.5 MoE requires n_moe_layer_step > 0");
25
0
    for (int il = 0; il < n_layer; ++il) {
26
0
        ggml_tensor * inpSA = inpL;
27
        // norm
28
0
        {
29
0
            cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
30
0
            cb(cur, "attn_norm", il);
31
0
        }
32
        // self-attention
33
0
        {
34
            // compute Q and K and RoPE them
35
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
36
0
            cb(Qcur, "Qcur", il);
37
0
            if (model.layers[il].bq) {
38
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
39
0
                cb(Qcur, "Qcur", il);
40
0
            }
41
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
42
0
            cb(Kcur, "Kcur", il);
43
0
            if (model.layers[il].bk) {
44
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
45
0
                cb(Kcur, "Kcur", il);
46
0
            }
47
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
48
0
            cb(Vcur, "Vcur", il);
49
0
            if (model.layers[il].bv) {
50
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
51
0
                cb(Vcur, "Vcur", il);
52
0
            }
53
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
54
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
55
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
56
57
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
59
60
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
61
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
62
63
0
            cb(Qcur, "Qcur", il);
64
0
            cb(Kcur, "Kcur", il);
65
0
            cb(Vcur, "Vcur", il);
66
67
0
            cur = build_attn(inp_attn,
68
0
                    model.layers[il].wo, NULL,
69
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
70
0
            cb(cur, "attn_out", il);
71
0
        }
72
0
        if (il == n_layer - 1 && inp_out_ids) {
73
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
74
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
75
0
        }
76
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
77
0
        cb(ffn_inp, "ffn_inp", il);
78
79
        // feed-forward network
80
0
        bool is_moe_layer =
81
0
            static_cast<uint32_t>(il) >= hparams.n_layer_dense_lead && (il + 1) % hparams.n_moe_layer_step == 0;
82
83
0
        if (!is_moe_layer) {
84
0
            cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
85
0
            cb(cur, "ffn_norm", il);
86
87
0
            cur = build_ffn(cur,
88
0
                    model.layers[il].ffn_up, NULL, NULL,
89
0
                    model.layers[il].ffn_gate, NULL, NULL,
90
0
                    model.layers[il].ffn_down, NULL, NULL,
91
0
                    NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
92
0
            cb(cur, "ffn_out", il);
93
0
        } else {
94
            // MoE branch
95
0
            cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
96
0
            cb(cur, "ffn_norm", il);
97
98
0
            ggml_tensor * moe_out = build_moe_ffn(cur,
99
0
                                        model.layers[il].ffn_gate_inp,
100
0
                                        model.layers[il].ffn_up_exps,
101
0
                                        model.layers[il].ffn_gate_exps,
102
0
                                        model.layers[il].ffn_down_exps,
103
0
                                        model.layers[il].ffn_exp_probs_b,
104
0
                                        n_expert, n_expert_used,
105
0
                                        LLM_FFN_SILU, true,
106
0
                                        false, 0.0,
107
0
                                        LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
108
0
                                        il);
109
0
            cb(moe_out, "ffn_moe_out", il);
110
111
            // Shared expert (if present)
112
0
            if (hparams.n_ff_shexp > 0) {
113
0
                ggml_tensor * ffn_shexp =
114
0
                    build_ffn(cur,
115
0
                        model.layers[il].ffn_up_shexp, NULL, NULL,
116
0
                        model.layers[il].ffn_gate_shexp, NULL, NULL,
117
0
                        model.layers[il].ffn_down_shexp, NULL, NULL,
118
0
                        NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
119
0
                cb(ffn_shexp, "ffn_shexp", il);
120
121
0
                cur = ggml_add(ctx0, moe_out, ffn_shexp);
122
0
            } else {
123
0
                cur = moe_out;
124
0
            }
125
0
            cb(cur, "ffn_out", il);
126
0
        }
127
0
        cur = ggml_add(ctx0, cur, ffn_inp);
128
0
        cb(cur, "ffn_out", il);
129
130
0
        cur = build_cvec(cur, il);
131
0
        cb(cur, "l_out", il);
132
133
        // input for next layer
134
0
        inpL = cur;
135
0
    }
136
0
    cur = inpL;
137
138
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
139
140
0
    cb(cur, "result_norm", -1);
141
0
    res->t_embd = cur;
142
143
    // lm_head
144
0
    cur = build_lora_mm(model.output, cur);
145
146
0
    cb(cur, "result_output", -1);
147
0
    res->t_logits = cur;
148
149
0
    ggml_build_forward_expand(gf, cur);
150
0
}