Coverage Report

Created: 2026-01-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/gemma-embedding.cpp
Line
Count
Source
1
#include "models.h"
2
3
llm_build_gemma_embedding::llm_build_gemma_embedding(const llama_model & model, const llm_graph_params & params) :
4
0
    llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_k;
6
7
0
    ggml_tensor * cur;
8
0
    ggml_tensor * inpL;
9
10
0
    inpL = build_inp_embd(model.tok_embd);
11
12
    // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
13
0
    inpL = ggml_scale(ctx0, inpL, ubatch.token ? sqrtf(n_embd) : 1.0f);
14
0
    cb(inpL, "inp_scaled", -1);
15
16
    // inp_pos - contains the positions
17
0
    ggml_tensor * inp_pos = build_inp_pos();
18
19
0
    auto * inp_attn = build_attn_inp_no_cache();
20
21
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
22
23
0
    for (int il = 0; il < n_layer; ++il) {
24
0
        const float freq_base_l  = model.get_rope_freq_base(cparams, il);
25
0
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
26
27
        // norm
28
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
29
0
        cb(cur, "attn_norm", il);
30
31
        // self-attention
32
0
        {
33
            // compute Q and K and RoPE them
34
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
35
0
            cb(Qcur, "Qcur", il);
36
37
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
38
0
            cb(Kcur, "Kcur", il);
39
40
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
41
0
            cb(Vcur, "Vcur", il);
42
43
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
44
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
45
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
46
47
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
48
0
            cb(Qcur, "Qcur_normed", il);
49
50
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
51
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
52
53
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
54
0
            cb(Kcur, "Kcur_normed", il);
55
56
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
57
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
58
59
0
            cb(Qcur, "Qcur", il);
60
0
            cb(Kcur, "Kcur", il);
61
0
            cb(Vcur, "Vcur", il);
62
63
            // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
64
0
            Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
65
66
0
            cur =
67
0
                build_attn(inp_attn,
68
0
                    model.layers[il].wo, NULL,
69
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f, il);
70
0
        }
71
72
0
        if (il == n_layer - 1 && inp_out_ids) {
73
0
            cur  = ggml_get_rows(ctx0, cur, inp_out_ids);
74
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
75
0
        }
76
77
0
        cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
78
0
        cb(cur, "attn_post_norm", il);
79
80
0
        ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
81
0
        cb(sa_out, "sa_out", il);
82
83
0
        cur = build_norm(sa_out, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
84
0
        cb(cur, "ffn_norm", il);
85
86
        // feed-forward network
87
0
        {
88
0
            cur = build_ffn(cur,
89
0
                model.layers[il].ffn_up, NULL, NULL,
90
0
                model.layers[il].ffn_gate, NULL, NULL,
91
0
                model.layers[il].ffn_down, NULL, NULL,
92
0
                NULL, LLM_FFN_GELU, LLM_FFN_PAR, il);
93
0
            cb(cur, "ffn_out", il);
94
0
        }
95
96
0
        cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, -1);
97
0
        cb(cur, "ffn_post_norm", -1);
98
99
0
        cur = ggml_add(ctx0, cur, sa_out);
100
101
0
        cur = build_cvec(cur, il);
102
0
        cb(cur, "l_out", il);
103
104
        // input for next layer
105
0
        inpL = cur;
106
0
    }
107
108
0
    cur = inpL;
109
110
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
111
112
0
    cb(cur, "result_norm", -1);
113
0
    res->t_embd = cur;
114
115
0
    ggml_build_forward_expand(gf, cur);
116
0
}