Coverage Report

Created: 2026-01-10 06:24

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/qwen3next.cpp
Line
Count
Source
1
#include "ggml.h"
2
#include "models.h"
3
4
0
#define CHUNK_SIZE 64
5
6
llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_graph_params & params) :
7
0
    llm_graph_context_mamba(params), model(model) {
8
0
    ggml_tensor * cur;
9
0
    ggml_tensor * inpL;
10
11
0
    inpL = build_inp_embd(model.tok_embd);
12
0
    cb(inpL, "model.embed_tokens", -1);
13
14
0
    auto * inp = build_inp_mem_hybrid();
15
16
0
    ggml_tensor * inp_pos     = build_inp_pos();
17
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
18
19
0
    ggml_tensor * causal_mask =
20
0
        ggml_tri(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
21
0
                    GGML_TRI_TYPE_LOWER);
22
23
0
    ggml_tensor * identity = ggml_diag(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
24
0
    ggml_tensor * diag_mask = ggml_add(ctx0, causal_mask, identity);
25
26
0
    ggml_build_forward_expand(gf, causal_mask);
27
0
    ggml_build_forward_expand(gf, identity);
28
0
    ggml_build_forward_expand(gf, diag_mask);
29
30
0
    for (int il = 0; il < n_layer; ++il) {
31
0
        ggml_tensor * inpSA = inpL;
32
33
0
        cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
34
0
        cb(cur, "attn_norm", il);
35
36
        // Determine layer type and build appropriate attention mechanism
37
0
        if (hparams.is_recurrent(il)) {
38
            // Linear attention layer (gated delta net)
39
0
            cur = build_layer_attn_linear(inp->get_recr(), cur, causal_mask, identity, diag_mask, il);
40
0
        } else {
41
            // Full attention layer
42
0
            cur = build_layer_attn(inp->get_attn(), cur, inp_pos, il);
43
0
        }
44
45
0
        if (il == n_layer - 1 && inp_out_ids) {
46
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
47
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
48
0
        }
49
50
        // Residual connection
51
0
        cur = ggml_add(ctx0, cur, inpSA);
52
0
        cb(cur, "attn_residual", il);
53
54
        // Save the tensor before post-attention norm for residual connection
55
0
        ggml_tensor * ffn_residual = cur;
56
57
        // Post-attention norm
58
0
        ggml_tensor * attn_post_norm = build_norm(cur, model.layers[il].attn_post_norm, nullptr, LLM_NORM_RMS, il);
59
0
        cb(attn_post_norm, "attn_post_norm", il);
60
61
        // FFN layer (MoE or dense) - without residual connection
62
0
        cur = build_layer_ffn(attn_post_norm, il);
63
0
        cb(cur, "ffn_out", il);
64
65
        // Residual connection for FFN - add to the tensor from before post_attention_layernorm
66
0
        cur = ggml_add(ctx0, cur, ffn_residual);
67
0
        cb(cur, "post_moe", il);
68
69
        // Input for next layer
70
0
        inpL = cur;
71
0
    }
72
0
    cur = inpL;
73
74
    // Final norm
75
0
    cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
76
77
0
    cb(cur, "result_norm", -1);
78
0
    res->t_embd = cur;
79
80
    // LM head
81
0
    cur = build_lora_mm(model.output, cur);
82
83
0
    cb(cur, "result_output", -1);
84
0
    res->t_logits = cur;
85
86
0
    ggml_build_forward_expand(gf, cur);
87
0
}
88
89
ggml_tensor * llm_build_qwen3next::build_delta_net_chunking(
90
        ggml_tensor * q,
91
        ggml_tensor * k,
92
        ggml_tensor * v,
93
        ggml_tensor * g,
94
        ggml_tensor * beta,
95
        ggml_tensor * state,
96
        ggml_tensor * causal_mask,
97
        ggml_tensor * identity,
98
        ggml_tensor * diag_mask,
99
0
        int           il) {
100
0
    const int64_t S_k      = q->ne[0];
101
0
    const int64_t H_k      = q->ne[1];
102
0
    const int64_t n_tokens = q->ne[2];
103
0
    const int64_t n_seqs   = q->ne[3];
104
105
0
    const int64_t S_v = v->ne[0];
106
0
    const int64_t H_v = v->ne[1];
107
108
0
    GGML_ASSERT(v->ne[2] == n_tokens);
109
0
    GGML_ASSERT(k->ne[2] == n_tokens);
110
0
    GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
111
0
    GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
112
0
    GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
113
114
0
    GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
115
0
    GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
116
117
0
    GGML_ASSERT(H_k == H_v);  // we did a repeat to make sure this is the case
118
119
0
    const float eps_norm = hparams.f_norm_rms_eps;
120
121
0
    q = ggml_l2_norm(ctx0, q, eps_norm);
122
0
    k = ggml_l2_norm(ctx0, k, eps_norm);
123
124
0
    const float scale = 1.0f / sqrtf(S_v);
125
126
0
    q = ggml_scale(ctx0, q, scale);
127
128
0
    beta = ggml_sigmoid(ctx0, beta);
129
130
0
    cb(q, "q_in", il);
131
0
    cb(k, "k_in", il);
132
0
    cb(v, "v_in", il);
133
0
    cb(beta, "beta_in", il);
134
0
    cb(g, "g_in", il);
135
136
0
    q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
137
0
    k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
138
0
    v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
139
0
    g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
140
141
0
    beta  = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
142
0
    state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
143
144
0
    cb(q, "q_perm", il);
145
0
    cb(k, "k_perm", il);
146
0
    cb(v, "v_perm", il);
147
0
    cb(beta, "beta_perm", il);
148
0
    cb(g, "g_perm", il);
149
0
    cb(state, "state_in", il);
150
151
0
    GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
152
0
    GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
153
0
    GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
154
0
    GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
155
156
    // Do padding
157
0
    const int64_t chunk_size = CHUNK_SIZE;
158
159
0
    const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
160
0
    const int64_t n_chunks = (n_tokens + pad) / chunk_size;
161
162
0
    q = ggml_pad(ctx0, q, 0, pad, 0, 0);
163
0
    k = ggml_pad(ctx0, k, 0, pad, 0, 0);
164
0
    v = ggml_pad(ctx0, v, 0, pad, 0, 0);
165
0
    g = ggml_pad(ctx0, g, pad, 0, 0, 0);
166
0
    beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
167
168
0
    cb(q, "q_pad", il);
169
0
    cb(k, "k_pad", il);
170
0
    cb(v, "v_pad", il);
171
0
    cb(beta, "beta_pad", il);
172
0
    cb(g, "g_pad", il);
173
174
0
    ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
175
0
    ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
176
177
0
    cb(v_beta, "v_beta", il);
178
0
    cb(k_beta, "k_beta", il);
179
180
0
    q      = ggml_reshape_4d(ctx0, q,      S_k, chunk_size, n_chunks, H_k * n_seqs);
181
0
    k      = ggml_reshape_4d(ctx0, k,      S_k, chunk_size, n_chunks, H_k * n_seqs);
182
0
    k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs);
183
0
    v      = ggml_reshape_4d(ctx0, v,      S_v, chunk_size, n_chunks, H_v * n_seqs);
184
0
    v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs);
185
186
0
    g    = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs);
187
0
    beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs);
188
189
0
    ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g);
190
191
0
    cb(g_cumsum, "g_cumsum", il);
192
193
0
    ggml_tensor * gcs_i = ggml_reshape_4d(ctx0, g_cumsum, chunk_size, 1, n_chunks, H_v * n_seqs);
194
0
    ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_v * n_seqs);
195
196
0
    ggml_tensor * gcs_j_broadcast =
197
0
        ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs);
198
199
0
    ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
200
201
0
    cb(decay_mask, "decay_mask", il);
202
203
0
    decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
204
0
    decay_mask = ggml_exp(ctx0, decay_mask);
205
0
    decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
206
207
0
    ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
208
209
0
    ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
210
0
    ggml_tensor * attn    = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask));
211
212
0
    cb(attn, "attn_pre_solve", il);
213
214
0
    ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask);
215
0
    ggml_tensor * lhs        = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
216
217
0
    ggml_tensor * lin_solve  = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
218
0
    attn                     = ggml_mul(ctx0, lin_solve, causal_mask);
219
0
    attn                     = ggml_add(ctx0, attn, identity);
220
221
0
    cb(attn, "attn_solved", il);
222
223
0
    v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
224
225
0
    ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum));
226
0
    ggml_tensor * gexp       = ggml_exp(ctx0, g_cumsum_t);
227
228
0
    ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp);
229
230
0
    cb(kbeta_gexp, "kbeta_gexp", il);
231
232
0
    ggml_tensor * k_cumdecay =
233
0
        ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
234
235
0
    cb(k_cumdecay, "k_cumdecay", il);
236
237
0
    ggml_tensor * core_attn_out = nullptr;
238
0
    ggml_tensor * new_state = ggml_dup(ctx0, state);
239
240
0
    cb(new_state, "new_state", il);
241
242
0
    for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
243
0
        auto chunkify = [=](ggml_tensor * t) {
244
0
            return ggml_cont(ctx0, ggml_view_4d(ctx0, t, t->ne[0], chunk_size, 1, t->ne[3],
245
0
                t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
246
0
        };
247
248
0
        auto chunkify_g = [=](ggml_tensor * t) {
249
0
            return ggml_cont(ctx0, ggml_view_4d(ctx0, t, chunk_size, t->ne[1], 1, t->ne[3],
250
0
                t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
251
0
        };
252
253
0
        ggml_tensor * k_chunk = chunkify(k);
254
0
        ggml_tensor * q_chunk = chunkify(q);
255
0
        ggml_tensor * v_chunk = chunkify(v);
256
257
0
        ggml_tensor * g_cs_chunk = chunkify_g(g_cumsum);
258
0
        ggml_tensor * g_cs_chunk_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cs_chunk));
259
260
0
        ggml_tensor * decay_mask_chunk = chunkify(decay_mask);
261
0
        ggml_tensor * k_cumdecay_chunk = chunkify(k_cumdecay);
262
263
0
        ggml_tensor * gexp_chunk = ggml_exp(ctx0, g_cs_chunk_t);
264
265
        // attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
266
0
        attn = ggml_mul_mat(ctx0, k_chunk, q_chunk);
267
0
        attn = ggml_mul(ctx0, attn, decay_mask_chunk);
268
0
        attn = ggml_mul(ctx0, attn, diag_mask);
269
270
0
        ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
271
272
        // v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
273
0
        ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
274
275
        // v_new = v_i - v_prime
276
0
        ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime);
277
0
        ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
278
279
        // attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
280
0
        ggml_tensor * q_g_exp    = ggml_mul(ctx0, q_chunk, gexp_chunk);
281
0
        ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
282
283
        // core_attn_out[:, :, i] = attn_inter + attn @ v_new
284
0
        ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn);
285
286
0
        ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
287
288
0
        core_attn_out = core_attn_out == nullptr ? core_attn_out_chunk : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 1);
289
290
        // g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
291
        // g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
292
        // key_gdiff = key * g_diff.unsqueeze(-1)
293
        // kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
294
        // last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
295
296
0
        ggml_tensor * g_cum_last =
297
0
            ggml_cont(ctx0, ggml_view_4d(ctx0, g_cs_chunk_t, g_cs_chunk_t->ne[0], 1, g_cs_chunk_t->ne[2], g_cs_chunk_t->ne[3],
298
0
                                        g_cs_chunk_t->nb[1], g_cs_chunk_t->nb[2], g_cs_chunk_t->nb[3],
299
0
                                        g_cs_chunk_t->nb[0] * (g_cs_chunk_t->ne[1] - 1)));
300
301
0
        ggml_tensor * gexp_last =
302
0
            ggml_reshape_4d(ctx0, ggml_exp(ctx0, g_cum_last), 1, 1, g_cum_last->ne[0] * g_cum_last->ne[2], g_cum_last->ne[3]);
303
304
0
        ggml_tensor * g_cum_last_3d =
305
0
            ggml_reshape_3d(ctx0, g_cum_last, g_cum_last->ne[0], g_cum_last->ne[2], g_cum_last->ne[3]);
306
307
0
        ggml_tensor * g_cumsum_3d = ggml_reshape_3d(ctx0, g_cs_chunk, g_cs_chunk->ne[0], g_cs_chunk->ne[2], g_cs_chunk->ne[3]);
308
309
0
        ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum_3d, g_cum_last_3d));
310
311
0
        ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
312
313
0
        ggml_tensor * key_gdiff = ggml_mul(ctx0, k_chunk,
314
0
                                        ggml_reshape_4d(ctx0, g_diff_exp, 1, g_diff_exp->ne[0], g_diff_exp->ne[1],
315
0
                                                        g_diff_exp->ne[2] * g_diff_exp->ne[3]));
316
317
0
        ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff)));
318
319
0
        new_state = ggml_add(ctx0,
320
0
            ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gexp_last, gexp_last->ne[0], gexp_last->ne[1], H_v, n_seqs)),
321
0
            ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
322
0
    }
323
324
0
    core_attn_out = ggml_cont_4d(ctx0, core_attn_out, S_v, chunk_size * n_chunks, H_v, n_seqs);
325
326
0
    ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out, S_v, n_tokens, H_v, n_seqs, core_attn_out->nb[1], core_attn_out->nb[2], core_attn_out->nb[3], 0);
327
0
    cb(output_tokens, "output_tokens", il);
328
329
    // flatten output
330
0
    ggml_tensor * flat_output =
331
0
        ggml_cont_1d(ctx0, ggml_permute(ctx0, output_tokens, 0, 2, 1, 3), S_v * H_v * n_tokens * n_seqs);
332
333
0
    ggml_tensor * flat_state = ggml_cont_1d(ctx0, new_state, S_v * S_v * H_v * n_seqs);
334
335
0
    return ggml_concat(ctx0, flat_output, flat_state, 0);
336
0
}
337
338
ggml_tensor * llm_build_qwen3next::build_delta_net_autoregressive(
339
        ggml_tensor * q,
340
        ggml_tensor * k,
341
        ggml_tensor * v,
342
        ggml_tensor * g,
343
        ggml_tensor * beta,
344
        ggml_tensor * state,
345
0
        int           il) {
346
0
    const int64_t S_k      = q->ne[0];
347
0
    const int64_t H_k      = q->ne[1];
348
0
    const int64_t n_tokens = q->ne[2];
349
0
    const int64_t n_seqs   = q->ne[3];
350
351
0
    const int64_t S_v = v->ne[0];
352
0
    const int64_t H_v = v->ne[1];
353
354
0
    GGML_ASSERT(n_tokens == 1);  // This function is optimized for single token processing
355
0
    GGML_ASSERT(v->ne[2] == n_tokens);
356
0
    GGML_ASSERT(k->ne[2] == n_tokens);
357
0
    GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
358
0
    GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
359
0
    GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
360
361
0
    GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
362
0
    GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
363
364
0
    GGML_ASSERT(H_k == H_v);  // we did a repeat to make sure this is the case
365
366
0
    const float eps_norm = hparams.f_norm_rms_eps;
367
368
0
    q = ggml_l2_norm(ctx0, q, eps_norm);
369
0
    k = ggml_l2_norm(ctx0, k, eps_norm);
370
371
0
    const float scale = 1.0f / sqrtf(S_v);
372
373
0
    q    = ggml_scale(ctx0, q, scale);
374
0
    beta = ggml_sigmoid(ctx0, beta);
375
376
0
    cb(q, "q_in", il);
377
0
    cb(k, "k_in", il);
378
0
    cb(v, "v_in", il);
379
0
    cb(beta, "beta_in", il);
380
0
    cb(g, "g_in", il);
381
382
0
    state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
383
384
0
    ggml_tensor * g_t    = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs);
385
0
    ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
386
387
    // Apply exponential to g_t
388
0
    g_t = ggml_exp(ctx0, g_t);
389
390
    // Apply the gated delta rule for the single timestep
391
    // last_recurrent_state = last_recurrent_state * g_t
392
0
    state = ggml_mul(ctx0, state, g_t);
393
394
    // kv_mem = (last_recurrent_state * k_t.unsqueeze(-1)).sum(dim=-2)
395
0
    ggml_tensor * k_t_unsqueezed = ggml_reshape_4d(ctx0, k, 1, S_v, H_v, n_seqs);
396
0
    ggml_tensor * kv_mem         = ggml_mul(ctx0, state, k_t_unsqueezed);
397
    // we need to sum over dim=-2, so we transpose, sum, then transpose again
398
0
    kv_mem = ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kv_mem))));
399
400
    // v_t = v.unsqueeze(2) (we insert the singleton dimension after n_seqs and H_v)
401
0
    ggml_tensor * v_t    = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
402
    // delta = (v_t - kv_mem) * beta_t
403
0
    ggml_tensor * v_diff = ggml_sub(ctx0, v_t, kv_mem);  // both should be [S_v, 1, H_v, n_seqs]
404
0
    ggml_tensor * delta  = ggml_mul(ctx0, v_diff, beta_t);
405
406
    // last_recurrent_state = last_recurrent_state + k_t.unsqueeze(-1) * delta
407
0
    ggml_tensor * k_t_delta = ggml_mul(ctx0, ggml_repeat_4d(ctx0, k_t_unsqueezed, S_v, S_v, H_v, n_seqs), delta);
408
0
    state                   = ggml_add(ctx0, state, k_t_delta);
409
410
    // Compute the attention output
411
    // core_attn_out = (last_recurrent_state * q_t.unsqueeze(-1)).sum(dim=-2)
412
0
    ggml_tensor * q_t_unsqueezed = ggml_reshape_4d(ctx0, q, 1, S_v, H_v, n_seqs);  // unsqueeze q_t
413
0
    ggml_tensor * state_q        = ggml_mul(ctx0, state, q_t_unsqueezed);
414
    // again, since it's over dim = -2, transpose, sum, transpose back
415
0
    ggml_tensor * core_attn_out =
416
0
        ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, state_q))));
417
418
    // core_attn_out should be [S_v, 1, H_v, n_seqs] after this
419
0
    cb(core_attn_out, "output_tokens", il);
420
0
    cb(state, "new_state", il);
421
422
    // flatten output, no need to permute since n_tokens is 1 so [S_v, 1, H_v, n_seqs] and [S_v, H_v, 1, n_seqs] are equivalent memory-layout wise
423
0
    ggml_tensor * flat_output = ggml_reshape_1d(ctx0, core_attn_out, S_v * H_v * n_tokens * n_seqs);
424
0
    ggml_tensor * flat_state  = ggml_reshape_1d(ctx0, state, S_v * S_v * H_v * n_seqs);
425
426
0
    return ggml_concat(ctx0, flat_output, flat_state, 0);
427
0
}
428
429
ggml_tensor * llm_build_qwen3next::build_norm_gated(
430
        ggml_tensor * input,
431
        ggml_tensor * weights,
432
        ggml_tensor * gate,
433
0
        int           layer) {
434
0
    ggml_tensor * normalized = build_norm(input, weights, nullptr, LLM_NORM_RMS, layer);
435
0
    ggml_tensor * gated_silu = ggml_silu(ctx0, gate);
436
437
0
    return ggml_mul(ctx0, normalized, gated_silu);
438
0
}
439
440
ggml_tensor * llm_build_qwen3next::build_layer_attn(
441
        llm_graph_input_attn_kv * inp,
442
        ggml_tensor *             cur,
443
        ggml_tensor *             inp_pos,
444
0
        int                       il) {
445
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
446
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
447
448
    // Order: joint QG projection, QG split, Q norm, KV projection, K norm, RoPE, attention
449
450
    // Qwen3Next uses a single Q projection that outputs query + gate
451
0
    ggml_tensor * Qcur_full = build_lora_mm(model.layers[il].wq, cur);
452
0
    cb(Qcur_full, "Qcur_full", il);
453
454
0
    Qcur_full = ggml_reshape_4d(ctx0, Qcur_full, n_embd_head * 2, n_head, n_tokens, 1);
455
456
    // Split Q projection into query and gate
457
    // The split should be along dimension 0 (the feature dimension)
458
0
    ggml_tensor * Qcur = ggml_view_4d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens, 1,
459
0
                                             Qcur_full->nb[1], Qcur_full->nb[2], Qcur_full->nb[3], 0);
460
0
    ggml_tensor * gate =
461
0
        ggml_view_4d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens, 1,
462
0
                     Qcur_full->nb[1], Qcur_full->nb[2], Qcur_full->nb[3], n_embd_head * ggml_element_size(Qcur_full));
463
0
    cb(Qcur, "Qcur", il);
464
0
    cb(gate, "gate", il);
465
466
    // Now reshape Qcur to [n_embd_head, n_head, n_tokens] for multi-head attention
467
0
    Qcur = ggml_cont_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
468
0
    cb(Qcur, "Qcur_reshaped", il);
469
470
    // Apply Q normalization
471
0
    Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, il);
472
0
    cb(Qcur, "Qcur_normed", il);
473
474
0
    ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
475
0
    cb(Kcur, "Kcur", il);
476
477
0
    ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
478
0
    cb(Vcur, "Vcur", il);
479
480
    // Apply K normalization
481
0
    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
482
0
    Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, il);
483
0
    cb(Kcur, "Kcur_normed", il);
484
485
    // Reshape gate to [n_embd, n_tokens] for the sigmoid gating (flatten the heads)
486
0
    gate = ggml_cont_2d(ctx0, gate, n_embd_head * n_head, n_tokens);
487
0
    cb(gate, "gate_reshaped", il);
488
489
0
    Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
490
491
    // Apply RoPE
492
0
    Qcur = ggml_rope_ext(
493
0
            ctx0, Qcur, inp_pos, nullptr,
494
0
            n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
495
0
            ext_factor, attn_factor, beta_fast, beta_slow);
496
497
0
    Kcur = ggml_rope_ext(
498
0
            ctx0, Kcur, inp_pos, nullptr,
499
0
            n_rot, rope_type, n_ctx_orig, freq_base,
500
0
            freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
501
502
0
    cb(Qcur, "Qcur", il);
503
0
    cb(Kcur, "Kcur", il);
504
0
    cb(Vcur, "Vcur", il);
505
506
    // Attention computation
507
0
    const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
508
509
0
    cur = build_attn(inp,
510
0
                nullptr, nullptr,
511
0
                Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
512
0
    cb(cur, "attn_pregate", il);
513
514
0
    ggml_tensor * gate_sigmoid = ggml_sigmoid(ctx0, gate);
515
0
    cb(gate_sigmoid, "gate_sigmoid", il);
516
517
0
    cur = ggml_mul(ctx0, cur, gate_sigmoid);
518
0
    cb(cur, "attn_gated", il);
519
520
0
    cur = build_lora_mm(model.layers[il].wo, cur);
521
0
    cb(cur, "attn_output", il);
522
523
0
    return cur;
524
0
}
525
526
ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
527
        llm_graph_input_rs * inp,
528
        ggml_tensor *        cur,
529
        ggml_tensor *        causal_mask,
530
        ggml_tensor *        identity,
531
        ggml_tensor *        diag_mask,
532
0
        int                  il) {
533
0
    const auto * mctx_cur = inp->mctx;
534
535
0
    const int64_t d_inner      = hparams.ssm_d_inner;
536
0
    const int64_t n_seqs       = ubatch.n_seqs;
537
0
    const int64_t head_k_dim   = hparams.ssm_d_state;
538
0
    const int64_t num_k_heads  = hparams.ssm_n_group;
539
0
    const int64_t num_v_heads  = hparams.ssm_dt_rank;
540
0
    const int64_t head_v_dim   = d_inner / num_v_heads;
541
0
    const int64_t n_seq_tokens = ubatch.n_seq_tokens;
542
543
0
    const auto kv_head = mctx_cur->get_head();
544
545
0
    GGML_ASSERT(n_seqs != 0);
546
0
    GGML_ASSERT(ubatch.equal_seqs());
547
0
    GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
548
549
    // Input projections
550
0
    ggml_tensor * mixed_qkvz = build_lora_mm(model.layers[il].ssm_in, cur);
551
0
    cb(mixed_qkvz, "linear_attn_mixed_qkvz", il);
552
553
0
    ggml_tensor * mixed_ba = build_lora_mm(model.layers[il].ssm_beta_alpha, cur);
554
0
    cb(mixed_ba, "linear_attn_mixed_ba", il);
555
556
0
    int64_t       qkvz_new_dim        = 2 * head_k_dim + 2 * head_v_dim * (num_v_heads / num_k_heads);
557
0
    ggml_tensor * mixed_qkvz_reshaped = ggml_reshape_4d(ctx0, mixed_qkvz, qkvz_new_dim, num_k_heads, n_seq_tokens, n_seqs);
558
559
    // Reshape mixed_ba: [batch, seq_len, hidden_size] -> [batch, seq_len, num_k_heads, 2*num_v_heads/num_k_heads]
560
0
    int64_t       ba_new_dim        = 2 * num_v_heads / num_k_heads;
561
0
    ggml_tensor * mixed_ba_reshaped = ggml_reshape_4d(ctx0, mixed_ba, ba_new_dim, num_k_heads, n_seq_tokens, n_seqs);
562
563
    // Split mixed_ba into b and a (beta and alpha parameters)
564
0
    int64_t split_sizes_ba[2] = {
565
0
        num_v_heads / num_k_heads,  // beta size
566
0
        num_v_heads / num_k_heads   // alpha size
567
0
    };
568
569
0
    ggml_tensor * b = ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[0], num_k_heads, n_seq_tokens, n_seqs,
570
0
                                   mixed_ba_reshaped->nb[1], mixed_ba_reshaped->nb[2], mixed_ba_reshaped->nb[3], 0);
571
0
    cb(b, "b", il);
572
573
0
    ggml_tensor * a = ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[1], num_k_heads, n_seq_tokens, n_seqs,
574
0
                                   mixed_ba_reshaped->nb[1], mixed_ba_reshaped->nb[2], mixed_ba_reshaped->nb[3],
575
0
                                   split_sizes_ba[0] * ggml_element_size(mixed_ba_reshaped));
576
0
    cb(a, "a", il);
577
578
    // Reshape b and a to merge head dimensions: [batch, seq_len, num_k_heads, num_v_heads/num_k_heads] -> [batch, seq_len, num_v_heads]
579
0
    ggml_tensor * beta  = ggml_cont_3d(ctx0, b, num_v_heads, n_seq_tokens, n_seqs);
580
0
    ggml_tensor * alpha = ggml_cont_3d(ctx0, a, num_v_heads, n_seq_tokens, n_seqs);
581
582
0
    ggml_tensor * alpha_biased   = ggml_add(ctx0, alpha, model.layers[il].ssm_dt);
583
0
    ggml_tensor * alpha_softplus = ggml_softplus(ctx0, alpha_biased);
584
0
    cb(alpha_softplus, "a_softplus", il);
585
0
    ggml_tensor * gate = ggml_mul(ctx0, alpha_softplus, model.layers[il].ssm_a);  // -A_log.exp() * softplus
586
0
    cb(gate, "gate", il);
587
588
    // Split mixed_qkvz into query, key, value, z
589
0
    int64_t split_sizes_qkvz[4] = {
590
0
        head_k_dim,                              // query size
591
0
        head_k_dim,                              // key size
592
0
        head_v_dim * num_v_heads / num_k_heads,  // value size
593
0
        head_v_dim * num_v_heads / num_k_heads   // z size
594
0
    };
595
596
0
    ggml_tensor * query =
597
0
        ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[0], num_k_heads, n_seq_tokens, n_seqs,
598
0
                     mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3], 0);
599
0
    cb(query, "q", il);
600
601
0
    ggml_tensor * key = ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[1], num_k_heads, n_seq_tokens, n_seqs,
602
0
                                     mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3],
603
0
                                     split_sizes_qkvz[0] * sizeof(float));
604
0
    cb(key, "k", il);
605
606
0
    ggml_tensor * value =
607
0
        ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[2], num_k_heads, n_seq_tokens, n_seqs,
608
0
                     mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3],
609
0
                     (split_sizes_qkvz[0] + split_sizes_qkvz[1]) * sizeof(float));
610
0
    cb(value, "v", il);
611
612
0
    ggml_tensor * z = ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[3], num_k_heads, n_seq_tokens, n_seqs,
613
0
                                   mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3],
614
0
                                   (split_sizes_qkvz[0] + split_sizes_qkvz[1] + split_sizes_qkvz[2]) * sizeof(float));
615
0
    cb(z, "z", il);
616
617
    // After creating query, key, and value_reshaped, reshape each to flatten the head dimensions
618
    // query: [head_k_dim, num_k_heads, n_tokens, n_seqs] -> [head_k_dim * num_k_heads, n_tokens, n_seqs]
619
0
    ggml_tensor * query_flat = ggml_cont_3d(ctx0, query, head_k_dim * num_k_heads, n_seq_tokens, n_seqs);
620
0
    cb(query_flat, "query_flat", il);
621
622
    // key: [head_k_dim, num_k_heads, n_tokens, n_seqs] -> [head_k_dim * num_k_heads, n_tokens, n_seqs]
623
0
    ggml_tensor * key_flat = ggml_cont_3d(ctx0, key, head_k_dim * num_k_heads, n_seq_tokens, n_seqs);
624
0
    cb(key_flat, "key_flat", il);
625
626
    // value_reshaped: [head_v_dim, num_v_heads, n_tokens, n_seqs] -> [head_v_dim * num_v_heads, n_tokens, n_seqs]
627
0
    ggml_tensor * value_flat = ggml_cont_3d(ctx0, value, head_v_dim * num_v_heads, n_seq_tokens, n_seqs);
628
0
    cb(value_flat, "value_flat", il);
629
630
    // Get convolution states from cache
631
0
    ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
632
0
    ggml_tensor * ssm_states_all  = mctx_cur->get_s_l(il);
633
634
    // bool use_precomputed_states = n_seq_tokens == 1 && mctx_cur->has_previous_state();
635
636
    // Build the convolution states tensor
637
0
    ggml_tensor * conv_states = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
638
0
    cb(conv_states, "conv_states", il);
639
640
    // Now concatenate along the feature dimension (dim 0) to get [conv_dim, n_tokens, n_seqs]
641
0
    ggml_tensor * qkv_mixed = ggml_concat(ctx0, query_flat, key_flat, 0);
642
0
    qkv_mixed               = ggml_concat(ctx0, qkv_mixed, value_flat, 0);
643
0
    cb(qkv_mixed, "qkv_mixed", il);
644
645
0
    qkv_mixed = ggml_permute(ctx0, qkv_mixed, 1, 0, 2, 3);
646
0
    cb(qkv_mixed, "qkv_mixed_permuted", il);
647
648
    // Calculate the total conv dimension
649
0
    int64_t qkv_dim = head_k_dim * num_k_heads * 2 + head_v_dim * num_v_heads;
650
651
    // Calculate convolution kernel size
652
0
    ggml_tensor * conv_kernel      = model.layers[il].ssm_conv1d;
653
0
    const int64_t conv_kernel_size = conv_kernel->ne[0];
654
0
    const int64_t conv_channels    = d_inner + 2 * hparams.ssm_n_group * hparams.ssm_d_state;
655
0
    conv_states                    = ggml_reshape_3d(ctx0, conv_states, conv_kernel_size - 1, conv_channels, n_seqs);
656
0
    cb(conv_states, "conv_states_reshaped", il);
657
658
0
    ggml_tensor * conv_input = ggml_concat(ctx0, conv_states, qkv_mixed, 0);
659
0
    cb(conv_input, "conv_input", il);
660
661
    // Update convolution state cache
662
    // Extract the last (conv_kernel_size - 1) states from conv_input
663
0
    ggml_tensor * last_conv_states =
664
0
        ggml_view_3d(ctx0, conv_input, conv_kernel_size - 1, conv_channels, n_seqs, conv_input->nb[1],
665
0
                     conv_input->nb[2], (conv_input->ne[0] - conv_states->ne[0]) * ggml_element_size(conv_input));
666
0
    cb(last_conv_states, "last_conv_states", il);
667
668
0
    ggml_tensor * state_update_target =
669
0
        ggml_view_1d(ctx0, conv_states_all, (conv_kernel_size - 1) * conv_channels * n_seqs,
670
0
                     kv_head * (conv_kernel_size - 1) * conv_channels * ggml_element_size(conv_states_all));
671
0
    cb(state_update_target, "state_update_target", il);
672
673
0
    ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv_states, state_update_target));
674
0
    cb(conv_states_all, "conv_states_updated", il);
675
676
    // Apply SSM convolution
677
0
    ggml_tensor * conv_output_proper = ggml_ssm_conv(ctx0, conv_input, conv_kernel);
678
0
    cb(conv_output_proper, "conv_output_raw", il);
679
680
0
    conv_output_proper = ggml_cont(ctx0, ggml_transpose(ctx0, conv_output_proper));
681
0
    cb(conv_output_proper, "conv_output_pre_silu", il);
682
683
0
    ggml_tensor * conv_output_silu = ggml_silu(ctx0, conv_output_proper);
684
0
    cb(conv_output_silu, "conv_output_silu", il);
685
686
0
    ggml_tensor * conv_qkv_mix =
687
0
        ggml_cont_2d(ctx0, ggml_transpose(ctx0, conv_output_silu), qkv_dim, n_seq_tokens * n_seqs);
688
0
    cb(conv_qkv_mix, "conv_qkv_mix", il);
689
690
    // Extract the convolved Q, K, V from conv_output
691
0
    ggml_tensor * q_conv =
692
0
        ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, conv_qkv_mix->nb[1], 0);
693
0
    cb(q_conv, "q_conv", il);
694
0
    ggml_tensor * k_conv =
695
0
        ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, conv_qkv_mix->nb[1],
696
0
                     head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
697
0
    cb(k_conv, "k_conv", il);
698
0
    ggml_tensor * v_conv =
699
0
        ggml_view_2d(ctx0, conv_qkv_mix, head_v_dim * num_v_heads, n_seq_tokens * n_seqs, conv_qkv_mix->nb[1],
700
0
                     2 * head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
701
0
    cb(v_conv, "v_conv", il);
702
703
    // Unsqueeze them
704
0
    q_conv = ggml_cont_4d(ctx0, q_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
705
0
    k_conv = ggml_cont_4d(ctx0, k_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
706
0
    v_conv = ggml_cont_4d(ctx0, v_conv, head_v_dim, num_v_heads, n_seq_tokens, n_seqs);
707
708
0
    beta = ggml_cont_4d(ctx0, b, num_v_heads, 1, n_seq_tokens, n_seqs);
709
710
0
    ggml_tensor * state = build_rs(inp, ssm_states_all, hparams.n_embd_s(), n_seqs);
711
0
    state               = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim * num_v_heads, 1, n_seqs);
712
0
    cb(state, "state_predelta", il);
713
714
    // if head keys and value keys are different, repeat to force tensors into matching shapes
715
0
    if (num_k_heads != num_v_heads) {
716
0
        GGML_ASSERT(num_v_heads % num_k_heads == 0);
717
0
        int64_t repeat_factor = num_v_heads / num_k_heads;
718
719
        // repeat interleave: reshape to (repeat part, 1, remaining part), do repeat, then reshape back
720
0
        ggml_tensor * q_reshaped = ggml_reshape_3d(ctx0, q_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
721
0
        ggml_tensor * k_reshaped = ggml_reshape_3d(ctx0, k_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
722
723
        // Repeat along the third dimension (the new dimension with size 1)
724
0
        ggml_tensor * q_repeated =
725
0
            ggml_repeat_4d(ctx0, q_reshaped, head_k_dim, repeat_factor, num_k_heads * n_seq_tokens * n_seqs, 1);
726
0
        ggml_tensor * k_repeated =
727
0
            ggml_repeat_4d(ctx0, k_reshaped, head_k_dim, repeat_factor, num_k_heads * n_seq_tokens * n_seqs, 1);
728
729
        // Reshape back to merge the head and repeat dimensions
730
        // From [head_dim, num_k_heads, repeat_factor, n_seq_tokens * n_seqs]
731
        // Back to [head_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs]
732
0
        q_conv = ggml_reshape_4d(ctx0, q_repeated, head_k_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs);
733
0
        k_conv = ggml_reshape_4d(ctx0, k_repeated, head_k_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs);
734
0
    }
735
736
0
    cb(q_conv, "q_conv_predelta", il);
737
0
    cb(k_conv, "k_conv_predelta", il);
738
0
    cb(v_conv, "v_conv_predelta", il);
739
740
    // Choose between build_delta_net_chunking, build_delta_net_recurrent, and build_delta_net_autoregressive based on n_tokens
741
0
    ggml_tensor * attn_out;
742
0
    if (n_seq_tokens == 1) {
743
0
        attn_out = build_delta_net_autoregressive(q_conv, k_conv, v_conv, gate, beta, state, il);
744
0
    } else {
745
0
        attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, diag_mask, il);
746
0
    }
747
0
    cb(attn_out, "attn_out", il);
748
749
    // The tensors were concatenated 1d, so we need to extract them 1d as well
750
0
    const int64_t output_flat_size = head_v_dim * num_v_heads * n_seq_tokens * n_seqs;
751
0
    ggml_tensor * attn_out_1d      = ggml_view_1d(ctx0, attn_out, output_flat_size, 0);
752
0
    cb(attn_out_1d, "attn_out_1d", il);
753
754
0
    ggml_tensor * attn_out_final = ggml_cont_4d(ctx0, attn_out_1d, head_v_dim, num_v_heads, n_seq_tokens, n_seqs);
755
0
    cb(attn_out_final, "attn_out_reshaped", il);
756
757
    // Extract the state part (second part of the concatenated tensor)
758
    // State starts after n_tokens elements along dimension 1
759
0
    const int64_t state_flat_size = head_v_dim * head_v_dim * num_v_heads * n_seqs;
760
761
0
    ggml_tensor * state_1d =
762
0
        ggml_view_1d(ctx0, attn_out, state_flat_size, output_flat_size * ggml_element_size(attn_out));
763
0
    cb(state_1d, "state_1d", il);
764
765
    // Update the recurrent states
766
0
    ggml_build_forward_expand(gf,
767
0
                              ggml_cpy(ctx0, state_1d,
768
0
                                       ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs,
769
0
                                                    kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all))));
770
771
0
    GGML_ASSERT(ggml_nelements(attn_out_1d) + ggml_nelements(state_1d) == ggml_nelements(attn_out));
772
773
    // Reshape both attn_out_final and z to 2D tensors for normalization
774
    // attn_out_final: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
775
0
    ggml_tensor * attn_out_2d_final =
776
0
        ggml_cont_2d(ctx0, attn_out_final, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
777
778
    // z: [head_dim, n_heads, n_tokens, n_seqs] -> [n_heads * n_tokens * n_seqs, head_dim]
779
0
    ggml_tensor * z_2d = ggml_cont_2d(ctx0, z, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
780
781
    // Apply gated normalization: self.norm(core_attn_out, z)
782
0
    ggml_tensor * attn_out_norm = build_norm_gated(attn_out_2d_final, model.layers[il].ssm_norm, z_2d, il);
783
784
    // Final reshape: [head_dim, n_heads, n_tokens, n_seqs] -> [n_tokens, n_seqs, n_heads * head_dim]
785
0
    ggml_tensor * final_output = ggml_reshape_3d(ctx0, attn_out_norm, head_v_dim * num_v_heads, n_seq_tokens, n_seqs);
786
0
    cb(final_output, "final_output", il);
787
788
    // Output projection
789
0
    cur = build_lora_mm(model.layers[il].ssm_out, final_output);
790
0
    cb(cur, "linear_attn_out", il);
791
792
    // Reshape back to original dimensions
793
0
    cur = ggml_cont_2d(ctx0, cur, n_embd, n_seq_tokens * n_seqs);
794
0
    return cur;
795
0
}
796
797
0
ggml_tensor * llm_build_qwen3next::build_layer_ffn(ggml_tensor * cur, const int il) {
798
    // Check if this is an MoE layer
799
0
    if (model.layers[il].ffn_gate_inp != nullptr) {
800
        // MoE branch
801
0
        ggml_tensor * moe_out =
802
0
            build_moe_ffn(cur,
803
0
                model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
804
0
                model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
805
0
                nullptr,
806
0
                n_expert, n_expert_used, LLM_FFN_SILU,
807
0
                true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
808
0
        cb(moe_out, "ffn_moe_out", il);
809
810
        // Add shared experts if present - following Qwen3Next reference implementation
811
0
        if (model.layers[il].ffn_up_shexp != nullptr) {
812
0
            ggml_tensor * ffn_shexp =
813
0
                build_ffn(cur,
814
0
                    model.layers[il].ffn_up_shexp, NULL, NULL,
815
0
                    model.layers[il].ffn_gate_shexp, NULL, NULL,
816
0
                    model.layers[il].ffn_down_shexp, NULL, NULL,
817
0
                    NULL,
818
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
819
0
            cb(ffn_shexp, "ffn_shexp", il);
820
821
            // Apply shared expert gating as in the reference implementation
822
            // The shared expert has its own gate that is sigmoided
823
            // Note: ffn_gate_inp_shexp is the shared expert gate (outputs 1 value per token)
824
0
            ggml_tensor * shared_gate = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
825
0
            cb(shared_gate, "shared_expert_gate", il);
826
827
            // Apply sigmoid to the gate
828
0
            shared_gate = ggml_sigmoid(ctx0, shared_gate);
829
0
            cb(shared_gate, "shared_expert_gate_sigmoid", il);
830
831
            // The gate needs to be broadcast to match the dimensions of ffn_shexp
832
            // ffn_shexp is [n_embd, n_tokens, 1, 1] and shared_gate is [1, n_tokens, 1, 1]
833
            // We need to repeat the gate along the feature dimension
834
0
            shared_gate = ggml_repeat(ctx0, shared_gate, ffn_shexp);
835
0
            cb(shared_gate, "shared_expert_gate_broadcast", il);
836
837
            // Apply the gate to the shared expert output
838
0
            ffn_shexp = ggml_mul(ctx0, ffn_shexp, shared_gate);
839
0
            cb(ffn_shexp, "ffn_shexp_gated", il);
840
841
0
            cur = ggml_add(ctx0, moe_out, ffn_shexp);
842
0
            cb(cur, "ffn_out", il);
843
0
        } else {
844
0
            cur = moe_out;
845
0
        }
846
0
    } else {
847
        // Dense FFN branch (not currently used I believe)
848
0
        cur = build_ffn(cur,
849
0
            model.layers[il].ffn_up, NULL, NULL,
850
0
            model.layers[il].ffn_gate, NULL, NULL,
851
0
            model.layers[il].ffn_down, NULL, NULL,
852
            NULL,
853
0
            LLM_FFN_SILU, LLM_FFN_PAR, il);
854
0
        cb(cur, "ffn_out", il);
855
0
    }
856
0
    return cur;
857
0
}