/src/llama.cpp/src/models/stablelm.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | 0 | llm_build_stablelm::llm_build_stablelm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
4 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
5 | |
|
6 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
7 | |
|
8 | 0 | ggml_tensor * cur; |
9 | 0 | ggml_tensor * inpL; |
10 | |
|
11 | 0 | inpL = build_inp_embd(model.tok_embd); |
12 | | |
13 | | // inp_pos - contains the positions |
14 | 0 | ggml_tensor * inp_pos = build_inp_pos(); |
15 | |
|
16 | 0 | auto * inp_attn = build_attn_inp_kv(); |
17 | |
|
18 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
19 | |
|
20 | 0 | for (int il = 0; il < n_layer; ++il) { |
21 | | // norm |
22 | 0 | cur = build_norm(inpL, |
23 | 0 | model.layers[il].attn_norm, |
24 | 0 | model.layers[il].attn_norm_b, |
25 | 0 | LLM_NORM, il); |
26 | 0 | cb(cur, "attn_norm", il); |
27 | |
|
28 | 0 | ggml_tensor * inpSA = cur; |
29 | | |
30 | | // self-attention |
31 | 0 | { |
32 | | // compute Q and K and RoPE them |
33 | 0 | ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur); |
34 | 0 | cb(Qcur, "Qcur", il); |
35 | 0 | if (model.layers[il].bq) { |
36 | 0 | Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); |
37 | 0 | cb(Qcur, "Qcur", il); |
38 | 0 | } |
39 | |
|
40 | 0 | ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur); |
41 | 0 | cb(Kcur, "Kcur", il); |
42 | 0 | if (model.layers[il].bk) { |
43 | 0 | Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); |
44 | 0 | cb(Kcur, "Kcur", il); |
45 | 0 | } |
46 | |
|
47 | 0 | ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur); |
48 | 0 | cb(Vcur, "Vcur", il); |
49 | 0 | if (model.layers[il].bv) { |
50 | 0 | Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); |
51 | 0 | cb(Vcur, "Vcur", il); |
52 | 0 | } |
53 | |
|
54 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
55 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
56 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
57 | |
|
58 | 0 | if (model.layers[il].attn_q_norm) { |
59 | 0 | Qcur = build_norm(Qcur, |
60 | 0 | model.layers[il].attn_q_norm, |
61 | 0 | NULL, |
62 | 0 | LLM_NORM, il); |
63 | 0 | cb(Qcur, "Qcur", il); |
64 | 0 | } |
65 | 0 | if (model.layers[il].attn_k_norm) { |
66 | 0 | Kcur = build_norm(Kcur, |
67 | 0 | model.layers[il].attn_k_norm, |
68 | 0 | NULL, |
69 | 0 | LLM_NORM, il); |
70 | 0 | cb(Kcur, "Kcur", il); |
71 | 0 | } |
72 | |
|
73 | 0 | Qcur = ggml_rope_ext( |
74 | 0 | ctx0, Qcur, inp_pos, nullptr, |
75 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
76 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
77 | 0 | ); |
78 | |
|
79 | 0 | Kcur = ggml_rope_ext( |
80 | 0 | ctx0, Kcur, inp_pos, nullptr, |
81 | 0 | n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
82 | 0 | ext_factor, attn_factor, beta_fast, beta_slow |
83 | 0 | ); |
84 | |
|
85 | 0 | cb(Qcur, "Qcur", il); |
86 | 0 | cb(Kcur, "Kcur", il); |
87 | 0 | cb(Vcur, "Vcur", il); |
88 | |
|
89 | 0 | cur = build_attn(inp_attn, |
90 | 0 | model.layers[il].wo, NULL, |
91 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il); |
92 | 0 | } |
93 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
94 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
95 | 0 | inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); |
96 | 0 | inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); |
97 | 0 | } |
98 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); |
99 | 0 | cb(ffn_inp, "ffn_inp", il); |
100 | | |
101 | | // feed-forward network |
102 | 0 | { |
103 | 0 | if (model.layers[il].ffn_norm) { |
104 | 0 | cur = build_norm(ffn_inp, |
105 | 0 | model.layers[il].ffn_norm, |
106 | 0 | model.layers[il].ffn_norm_b, |
107 | 0 | LLM_NORM, il); |
108 | 0 | cb(cur, "ffn_norm", il); |
109 | 0 | } else { |
110 | | // parallel residual |
111 | 0 | cur = inpSA; |
112 | 0 | } |
113 | 0 | cur = build_ffn(cur, |
114 | 0 | model.layers[il].ffn_up, NULL, NULL, |
115 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
116 | 0 | model.layers[il].ffn_down, NULL, NULL, |
117 | 0 | NULL, |
118 | 0 | LLM_FFN_SILU, LLM_FFN_PAR, il); |
119 | 0 | cb(cur, "ffn_out", il); |
120 | 0 | } |
121 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
122 | |
|
123 | 0 | cur = build_cvec(cur, il); |
124 | 0 | cb(cur, "l_out", il); |
125 | | |
126 | | // input for next layer |
127 | 0 | inpL = cur; |
128 | 0 | } |
129 | 0 | cur = inpL; |
130 | |
|
131 | 0 | cur = build_norm(cur, |
132 | 0 | model.output_norm, |
133 | 0 | model.output_norm_b, |
134 | 0 | LLM_NORM, -1); |
135 | |
|
136 | 0 | cb(cur, "result_norm", -1); |
137 | 0 | res->t_embd = cur; |
138 | | |
139 | | // lm_head |
140 | 0 | cur = build_lora_mm(model.output, cur); |
141 | |
|
142 | 0 | cb(cur, "result_output", -1); |
143 | 0 | res->t_logits = cur; |
144 | |
|
145 | 0 | ggml_build_forward_expand(gf, cur); |
146 | 0 | } |