Coverage Report

Created: 2026-01-11 07:13

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/modern-bert.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_modern_bert::llm_build_modern_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
0
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
0
    ggml_tensor * inp_pos = build_inp_pos();
12
13
    // construct input embeddings (token, type, position)
14
0
    inpL = build_inp_embd(model.tok_embd);
15
0
    cb(inpL, "inp_embd", -1);
16
17
    // embed layer norm
18
0
    inpL = build_norm(inpL, model.tok_norm, nullptr, LLM_NORM, -1);
19
0
    cb(inpL, "inp_norm", -1);
20
21
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
22
23
0
    auto * inp_attn = build_attn_inp_no_cache();
24
25
0
    for (int il = 0; il < n_layer; ++il) {
26
0
        const float freq_base_l  = model.get_rope_freq_base(cparams, il);
27
0
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
28
29
0
        cur = inpL;
30
31
        // attention layer norm
32
0
        if (model.layers[il].attn_norm) {
33
0
            cur = build_norm(inpL,
34
0
                    model.layers[il].attn_norm, NULL,
35
0
                    LLM_NORM, il);
36
0
            cb(cur, "attn_norm", il);
37
0
        }
38
39
        // self attention
40
0
        cur = build_lora_mm(model.layers[il].wqkv, cur);
41
0
        cb(cur, "wqkv", il);
42
43
0
        const size_t type_size = ggml_type_size(cur->type);
44
45
0
        ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*type_size, cur->nb[1], 0*type_size*(n_embd));
46
0
        ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*type_size, cur->nb[1], 1*type_size*(n_embd));
47
0
        ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*type_size, cur->nb[1], 1*type_size*(n_embd + n_embd_gqa));
48
49
        // RoPE
50
0
        Qcur = ggml_rope_ext(
51
0
                ctx0, Qcur, inp_pos, nullptr,
52
0
                n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
53
0
                ext_factor, attn_factor, beta_fast, beta_slow
54
0
                );
55
56
0
        Kcur = ggml_rope_ext(
57
0
                ctx0, Kcur, inp_pos, nullptr,
58
0
                n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
59
0
                ext_factor, attn_factor, beta_fast, beta_slow
60
0
                );
61
62
0
        cb(Qcur, "Qcur", il);
63
0
        cb(Kcur, "Kcur", il);
64
0
        cb(Vcur, "Vcur", il);
65
66
0
        cur = build_attn(inp_attn,
67
0
                    model.layers[il].wo, nullptr,
68
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
69
0
        cb(cur, "kqv_out", il);
70
71
0
        if (il == n_layer - 1 && inp_out_ids) {
72
0
            cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
73
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
74
0
        }
75
76
        // re-add the layer input
77
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
78
0
        cb(ffn_inp, "ffn_inp", il);
79
80
        // attention layer norm
81
0
        cur = build_norm(ffn_inp,
82
0
                model.layers[il].ffn_norm, NULL,
83
0
                LLM_NORM, il);
84
0
        cb(cur, "ffn_norm", il);
85
86
0
        cur = build_ffn(cur,
87
0
                model.layers[il].ffn_up,   NULL, NULL,
88
0
                NULL,                      NULL, NULL,
89
0
                model.layers[il].ffn_down, NULL, NULL,
90
0
                NULL,
91
0
                LLM_FFN_GEGLU, LLM_FFN_SEQ, il);
92
93
        // attentions bypass the intermediate layer
94
0
        cur = ggml_add(ctx0, cur, ffn_inp);
95
96
        // input for next layer
97
0
        inpL = cur;
98
0
    }
99
100
0
    cur = inpL;
101
102
0
    cur = build_norm(cur,
103
0
            model.output_norm, NULL,
104
0
            LLM_NORM, -1);
105
0
    cb(cur, "final_norm_out", -1);
106
107
0
    if (hparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
108
        // extracting cls token
109
0
        cur = ggml_view_1d(ctx0, cur, hparams.n_embd, 0);
110
0
        cb(cur, "cls_pooled_embd", -1);
111
0
    }
112
113
0
    cb(cur, "res_embd", -1);
114
0
    res->t_embd = cur;
115
0
    ggml_build_forward_expand(gf, cur);
116
0
}