Coverage Report

Created: 2026-01-11 07:13

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/llama-iswa.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_llama_iswa::llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
6
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
7
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
8
9
0
    ggml_tensor * cur;
10
0
    ggml_tensor * inpL;
11
12
0
    inpL = build_inp_embd(model.tok_embd);
13
14
    // inp_pos - contains the positions
15
0
    ggml_tensor * inp_pos = build_inp_pos();
16
17
    // temperature tuning
18
0
    ggml_tensor * inp_attn_scale = nullptr;
19
0
    inp_attn_scale = build_inp_attn_scale();
20
21
0
    auto * inp_attn = build_attn_inp_kv_iswa();
22
23
0
    const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
24
25
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
26
27
0
    for (int il = 0; il < n_layer; ++il) {
28
0
        const float freq_base_l  = model.get_rope_freq_base (cparams, il);
29
0
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
30
31
0
        ggml_tensor * inpSA = inpL;
32
33
        // This overlaps with SWA layers in current models, so get_rope_freq_base/scale may be superfluous
34
0
        const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
35
0
                              (il + 1) % hparams.n_no_rope_layer_step != 0;
36
37
        // norm
38
0
        cur = build_norm(inpL,
39
0
                model.layers[il].attn_norm, NULL,
40
0
                LLM_NORM_RMS, il);
41
0
        cb(cur, "attn_norm", il);
42
43
        // self-attention
44
0
        {
45
            // rope freq factors for llama3; may return nullptr for llama2 and other models
46
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
47
48
            // compute Q and K and RoPE them
49
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
50
0
            cb(Qcur, "Qcur", il);
51
0
            if (model.layers[il].bq) {
52
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
53
0
                cb(Qcur, "Qcur", il);
54
0
            }
55
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
56
0
            cb(Kcur, "Kcur", il);
57
0
            if (model.layers[il].bk) {
58
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
59
0
                cb(Kcur, "Kcur", il);
60
0
            }
61
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
62
0
            cb(Vcur, "Vcur", il);
63
0
            if (model.layers[il].bv) {
64
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
65
0
                cb(Vcur, "Vcur", il);
66
0
            }
67
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
68
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
69
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
70
71
0
            if (use_rope) {
72
0
                Qcur = ggml_rope_ext(
73
0
                        ctx0, Qcur, inp_pos, rope_factors,
74
0
                        n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
75
0
                        ext_factor, attn_factor, beta_fast, beta_slow
76
0
                        );
77
78
0
                Kcur = ggml_rope_ext(
79
0
                        ctx0, Kcur, inp_pos, rope_factors,
80
0
                        n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
81
0
                        ext_factor, attn_factor, beta_fast, beta_slow
82
0
                        );
83
0
            } else if (inp_attn_scale) {
84
0
                Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
85
0
            }
86
0
            cb(Qcur, "Qcur", il);
87
0
            cb(Kcur, "Kcur", il);
88
0
            cb(Vcur, "Vcur", il);
89
90
0
            if (use_rope && hparams.use_kq_norm) {
91
                // Llama4TextL2Norm
92
0
                Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
93
0
                Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
94
0
                cb(Qcur, "Qcur_normed", il);
95
0
                cb(Kcur, "Kcur_normed", il);
96
0
            }
97
0
            cur = build_attn(inp_attn,
98
0
                    model.layers[il].wo, model.layers[il].bo,
99
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
100
0
            cb(cur, "attn_out", il);
101
0
        }
102
0
        if (il == n_layer - 1 && inp_out_ids) {
103
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
104
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
105
0
        }
106
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
107
0
        cb(ffn_inp, "ffn_inp", il);
108
109
        // feed-forward network (non-MoE)
110
0
        if (model.layers[il].ffn_gate_inp == nullptr) {
111
0
            cur = build_norm(ffn_inp,
112
0
                    model.layers[il].ffn_norm, NULL,
113
0
                    LLM_NORM_RMS, il);
114
0
            cb(cur, "ffn_norm", il);
115
116
0
            cur = build_ffn(cur,
117
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
118
0
                    model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
119
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
120
0
                    NULL,
121
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
122
0
            cb(cur, "ffn_out", il);
123
0
        } else {
124
0
            ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
125
0
                    model.layers[il].ffn_norm, NULL,
126
0
                    LLM_NORM_RMS, il);
127
0
            cb(cur, "ffn_norm", il);
128
129
0
            ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
130
0
                    model.layers[il].ffn_gate_inp,
131
0
                    model.layers[il].ffn_up_exps,
132
0
                    model.layers[il].ffn_gate_exps,
133
0
                    model.layers[il].ffn_down_exps,
134
0
                    nullptr,
135
0
                    n_expert, n_expert_used,
136
0
                    LLM_FFN_SILU, false,
137
0
                    false, 0.0,
138
0
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
139
0
                    il);
140
141
            // Shared experts
142
0
            ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
143
0
                model.layers[il].ffn_up_shexp,   NULL, NULL,
144
0
                model.layers[il].ffn_gate_shexp, NULL, NULL,
145
0
                model.layers[il].ffn_down_shexp, NULL, NULL,
146
0
                NULL,
147
0
                LLM_FFN_SILU, LLM_FFN_PAR, il);
148
0
            cb(shexp_out, "ffn_moe_shexp", il);
149
150
0
            cur = ggml_add(ctx0, moe_out, shexp_out);
151
0
            cb(cur, "ffn_moe_out_merged", il);
152
0
        }
153
0
        cur = ggml_add(ctx0, cur, ffn_inp);
154
0
        cb(cur, "ffn_out", il);
155
156
0
        cur = build_cvec(cur, il);
157
0
        cb(cur, "l_out", il);
158
159
        // input for next layer
160
0
        inpL = cur;
161
0
    }
162
0
    cur = inpL;
163
164
0
    cur = build_norm(cur,
165
0
            model.output_norm, NULL,
166
0
            LLM_NORM_RMS, -1);
167
168
0
    cb(cur, "result_norm", -1);
169
0
    res->t_embd = cur;
170
171
    // lm_head
172
0
    cur = build_lora_mm(model.output, cur);
173
174
0
    cb(cur, "result_output", -1);
175
0
    res->t_logits = cur;
176
177
0
    ggml_build_forward_expand(gf, cur);
178
0
}