Coverage Report

Created: 2026-01-18 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/llama-hparams.h
Line
Count
Source
1
#pragma once
2
3
#include "llama.h"
4
5
#include <array>
6
#include <cassert>
7
8
// bump if necessary
9
#define LLAMA_MAX_LAYERS  512
10
#define LLAMA_MAX_EXPERTS 512 // Qwen3 Next
11
12
enum llama_expert_gating_func_type {
13
    LLAMA_EXPERT_GATING_FUNC_TYPE_NONE           = 0,
14
    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX        = 1,
15
    LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID        = 2,
16
    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX_WEIGHT = 3, // applied to the router weights instead of the logits
17
};
18
19
enum llama_swa_type {
20
    LLAMA_SWA_TYPE_NONE      = 0,
21
    LLAMA_SWA_TYPE_STANDARD  = 1,
22
    LLAMA_SWA_TYPE_CHUNKED   = 2,
23
    LLAMA_SWA_TYPE_SYMMETRIC = 3,
24
};
25
26
struct llama_hparams_posnet {
27
    uint32_t n_embd;
28
    uint32_t n_layer;
29
};
30
31
struct llama_hparams_convnext {
32
    uint32_t n_embd;
33
    uint32_t n_layer;
34
};
35
36
struct llama_hparams {
37
    bool vocab_only;
38
    bool no_alloc;
39
    bool rope_finetuned;
40
    bool use_par_res;
41
    bool swin_norm;
42
43
    uint32_t n_ctx_train; // context size the model was trained on
44
    uint32_t n_embd;
45
    uint32_t n_embd_features = 0;
46
    uint32_t n_layer;
47
    int32_t n_layer_kv_from_start = -1; // if non-negative, the first n_layer_kv_from_start layers have KV cache
48
    uint32_t n_rot;
49
    uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
50
    uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
51
    uint32_t n_expert = 0;
52
    uint32_t n_expert_used = 0;
53
    uint32_t n_rel_attn_bkts = 0;
54
55
    // note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
56
    uint32_t n_embd_head_k_mla = 0;
57
    uint32_t n_embd_head_v_mla = 0;
58
59
    // for WavTokenizer
60
    struct llama_hparams_posnet   posnet;
61
    struct llama_hparams_convnext convnext;
62
63
    uint32_t n_shortconv_l_cache  = 0;
64
65
    std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr;
66
    std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
67
    std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
68
69
    uint32_t n_layer_dense_lead = 0;
70
    uint32_t n_lora_q           = 0;
71
    uint32_t n_lora_kv          = 0;
72
    uint32_t n_ff_exp           = 0;
73
    uint32_t n_ff_shexp         = 0;
74
    uint32_t n_ff_chexp         = 0;
75
    uint32_t n_expert_shared    = 0;
76
    uint32_t n_norm_groups      = 0;
77
    uint32_t n_expert_groups    = 0;
78
    uint32_t n_group_used       = 0;
79
    uint32_t n_group_experts    = 0;
80
81
    float    expert_group_scale   = 0.05f;
82
    float    expert_weights_scale = 0.0f;
83
    bool     expert_weights_norm  = false;
84
    uint32_t expert_gating_func   = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE;
85
    uint32_t moe_every_n_layers   = 0;
86
    uint32_t nextn_predict_layers = 0;
87
88
    float f_norm_eps;
89
    float f_norm_rms_eps;
90
    float f_norm_group_eps;
91
92
    float f_attn_logit_softcapping   = 50.0f;
93
    float f_router_logit_softcapping = 30.0f;
94
    float f_final_logit_softcapping  = 30.0f;
95
96
    // for RWKV
97
    uint32_t rescale_every_n_layers = 0;
98
    uint32_t time_mix_extra_dim     = 0;
99
    uint32_t time_decay_extra_dim   = 0;
100
    uint32_t wkv_head_size          = 0;
101
    uint32_t token_shift_count      = 2;
102
    uint32_t n_lora_decay           = 0;
103
    uint32_t n_lora_iclr            = 0;
104
    uint32_t n_lora_value_res_mix   = 0;
105
    uint32_t n_lora_gate            = 0;
106
107
    float    rope_attn_factor = 1.0f;
108
    float    rope_freq_base_train;
109
    float    rope_freq_base_train_swa  = 10000.0f;
110
    float    rope_freq_scale_train;
111
    float    rope_freq_scale_train_swa = 1.0f;
112
113
    uint32_t n_ctx_orig_yarn;
114
    float    rope_yarn_log_mul = 0.0f;
115
116
    float    yarn_ext_factor  = -1.0f;
117
    float    yarn_attn_factor =  1.0f;
118
    float    yarn_beta_fast   = 32.0f;
119
    float    yarn_beta_slow   =  1.0f;
120
121
    std::array<int, 4> rope_sections;
122
123
    // Sliding Window Attention (SWA)
124
    llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
125
    // the size of the sliding window (0 - no SWA)
126
    uint32_t n_swa = 0;
127
    // if swa_layers[il] == 1, then layer il is SWA
128
    // if swa_layers[il] == 0, then layer il is dense (i.e. non-SWA)
129
    // by default, all layers are dense
130
    // note: using uint32_t type for compatibility reason
131
    std::array<uint32_t, LLAMA_MAX_LAYERS> swa_layers;
132
133
    // for State Space Models
134
    uint32_t ssm_d_conv  = 0;
135
    uint32_t ssm_d_inner = 0;
136
    uint32_t ssm_d_state = 0;
137
    uint32_t ssm_dt_rank = 0;
138
    uint32_t ssm_n_group = 0;
139
140
    // for hybrid state space models
141
    std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;
142
143
    bool ssm_dt_b_c_rms = false;
144
145
    float f_clamp_kqv      = 0.0f;
146
    float f_max_alibi_bias = 0.0f;
147
    float f_logit_scale    = 0.0f;
148
149
    // Additional scale factors (Granite/Granite MoE)
150
    float f_residual_scale  = 0.0f;
151
    float f_embedding_scale = 0.0f;
152
    float f_attention_scale = 0.0f;
153
154
    // grok-2
155
    float    f_attn_out_scale = 0.0f;
156
    uint32_t attn_temp_length = 0;
157
158
    bool causal_attn   = true;
159
    bool use_alibi     = false;
160
    bool attn_soft_cap = false;
161
    bool use_kq_norm   = false;
162
163
    // for Classifiers
164
    uint32_t n_cls_out = 1;
165
166
    // output embedding dimension (0 = use n_embd)
167
    uint32_t n_embd_out = 0;
168
169
    // llama4 smallthinker
170
    uint32_t n_moe_layer_step        = 0;
171
    uint32_t n_no_rope_layer_step    = 4;
172
    uint32_t n_attn_temp_floor_scale = 0;
173
    float    f_attn_temp_scale       = 0.0f;
174
    float    f_attn_temp_offset      = 0.0f; // offset position index
175
176
    // gemma3n altup
177
    uint32_t n_altup      = 4; // altup_num_inputs
178
    uint32_t i_altup_act  = 0; // altup_active_idx
179
    uint32_t laurel_rank  = 64;
180
    uint32_t n_embd_altup = 256;
181
182
    // needed for sentence-transformers dense layers
183
    uint32_t dense_2_feat_in  = 0;  // in_features of the 2_Dense
184
    uint32_t dense_2_feat_out = 0;  // out_features of the 2_Dense
185
    uint32_t dense_3_feat_in  = 0;  // in_features of the 3_Dense
186
    uint32_t dense_3_feat_out = 0;  // out_features of the 3_Dense
187
188
    // xIELU
189
    std::array<float, LLAMA_MAX_LAYERS> xielu_alpha_n;
190
    std::array<float, LLAMA_MAX_LAYERS> xielu_alpha_p;
191
    std::array<float, LLAMA_MAX_LAYERS> xielu_beta;
192
    std::array<float, LLAMA_MAX_LAYERS> xielu_eps;
193
194
    // qwen3vl deepstack
195
    uint32_t n_deepstack_layers = 0;
196
197
    // needed by encoder-decoder models (e.g. T5, FLAN-T5)
198
    // ref: https://github.com/ggerganov/llama.cpp/pull/8141
199
    llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
200
    uint32_t    dec_n_layer        = 0;
201
202
    enum llama_pooling_type      pooling_type            = LLAMA_POOLING_TYPE_NONE;
203
    enum llama_rope_type         rope_type               = LLAMA_ROPE_TYPE_NONE;
204
    enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
205
206
    // this value n_pattern means that every nth layer is dense (i.e. non-SWA)
207
    // dense_first means whether the pattern is start with a dense layer
208
    // note that if n_pattern == 0, all layers are SWA
209
    //           if n_pattern == 1, all layers are dense
210
    // example 1: n_pattern = 3, dense_first = false
211
    //   il == 0: swa
212
    //   il == 1: swa
213
    //   il == 2: dense
214
    //   il == 3: swa
215
    //   il == 4: swa
216
    //   il == 5: dense
217
    //   il == 6: swa
218
    //   etc ...
219
    // example 2: n_pattern = 2, dense_first = true
220
    //   il == 0: dense
221
    //   il == 1: swa
222
    //   il == 2: dense
223
    //   il == 3: swa
224
    //   etc ...
225
    void set_swa_pattern(uint32_t n_pattern, bool dense_first = false);
226
227
    // return true if one of the layers is SWA
228
    bool is_swa_any() const;
229
230
    uint32_t n_head(uint32_t il = 0) const;
231
232
    uint32_t n_head_kv(uint32_t il = 0) const;
233
234
    uint32_t n_ff(uint32_t il = 0) const;
235
236
    uint32_t n_gqa(uint32_t il = 0) const;
237
238
    // dimension of main + auxiliary input embeddings
239
    uint32_t n_embd_inp() const;
240
241
    // dimension of output embeddings
242
    uint32_t get_n_embd_out() const;
243
244
    // dimension of key embeddings across all k-v heads
245
    uint32_t n_embd_k_gqa(uint32_t il = 0) const;
246
247
    // dimension of value embeddings across all k-v heads
248
    uint32_t n_embd_v_gqa(uint32_t il = 0) const;
249
250
    // true if any layer has a different n_embd_k_gqa/n_embd_v_gqa
251
    bool is_n_embd_k_gqa_variable() const;
252
    bool is_n_embd_v_gqa_variable() const;
253
254
    // return the maximum n_embd_k_gqa/n_embd_v_gqa across all layers
255
    uint32_t n_embd_k_gqa_max() const;
256
    uint32_t n_embd_v_gqa_max() const;
257
258
    // dimension of the rolling state embeddings
259
    // corresponds to Mamba's conv_states size or RWKV's token_shift states size
260
    uint32_t n_embd_r() const;
261
262
    // dimension of the recurrent state embeddings
263
    uint32_t n_embd_s() const;
264
265
    // whether or not the given layer is recurrent (for hybrid models)
266
    bool is_recurrent(uint32_t il) const;
267
268
    uint32_t n_pos_per_embd() const;
269
270
    bool is_swa(uint32_t il) const;
271
272
    bool has_kv(uint32_t il) const;
273
274
    // number of layers for which has_kv() returns true
275
    uint32_t n_layer_kv() const;
276
277
    // note that this function uses different SWA parameters from those in the hparams
278
    // note: inlined on purpose for performance reasons
279
    // TODO: think of a better place for this function
280
    // TODO: pack the SWA params in a struct?
281
0
    static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1) {
282
0
        assert(p0 >= 0 && p1 >= 0);
283
284
0
        switch (swa_type) {
285
0
            case LLAMA_SWA_TYPE_NONE:
286
0
                {
287
0
                } break;
288
0
            case LLAMA_SWA_TYPE_STANDARD:
289
0
                {
290
0
                    if (p1 - p0 >= (int32_t) n_swa) {
291
0
                        return true;
292
0
                    }
293
0
                } break;
294
0
            case LLAMA_SWA_TYPE_CHUNKED:
295
0
                {
296
0
                    const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa;
297
298
0
                    if (p0 < pos_chunk_start) {
299
0
                        return true;
300
0
                    }
301
0
                } break;
302
0
            case LLAMA_SWA_TYPE_SYMMETRIC:
303
0
                {
304
0
                    const int32_t half_n_swa = (int32_t) n_swa / 2;
305
0
                    const int32_t pos_diff = p1 - p0;
306
307
                    // Mask if outside the symmetric window
308
0
                    if (pos_diff < -half_n_swa || pos_diff > half_n_swa) {
309
0
                        return true;
310
0
                    }
311
0
                } break;
312
0
        }
313
314
0
        return false;
315
0
    }
316
317
318
    bool use_mrope() const;
319
};
320
321
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");