Coverage Report

Created: 2026-01-18 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c
Line
Count
Source
1
#define _CRT_SECURE_NO_DEPRECATE // Disables "unsafe" warnings on Windows
2
#define _USE_MATH_DEFINES // For M_PI on MSVC
3
4
#include "ggml-backend-impl.h"
5
#include "ggml-backend.h"
6
#include "traits.h"
7
#include "ggml-cpu-impl.h"
8
#include "ggml-cpu.h"
9
#include "ggml-impl.h"
10
#include "quants.h"
11
#include "ggml-threading.h"
12
#include "unary-ops.h"
13
#include "binary-ops.h"
14
#include "vec.h"
15
#include "ops.h"
16
#include "ggml.h"
17
18
#if defined(_MSC_VER) || defined(__MINGW32__)
19
#include <malloc.h> // using malloc.h with MSC/MINGW
20
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
21
#include <alloca.h>
22
#endif
23
24
#include <assert.h>
25
#include <errno.h>
26
#include <time.h>
27
#include <math.h>
28
#include <stdlib.h>
29
#include <string.h>
30
#include <stdint.h>
31
#include <inttypes.h>
32
#include <stdio.h>
33
#include <float.h>
34
#include <limits.h>
35
#include <stdarg.h>
36
#include <signal.h>
37
#if defined(__gnu_linux__)
38
#include <syscall.h>
39
#endif
40
41
#ifdef GGML_USE_OPENMP
42
#include <omp.h>
43
#endif
44
45
#if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
46
#undef GGML_USE_LLAMAFILE
47
#endif
48
49
#ifdef GGML_USE_LLAMAFILE
50
#include "llamafile/sgemm.h"
51
#endif
52
53
// Note: once we move threading into a separate C++ file
54
// will use std::hardware_destructive_interference_size instead of hardcoding it here
55
// and we'll use C++ attribute syntax.
56
#define GGML_CACHE_LINE  64
57
58
#if defined(__clang__) || defined(__GNUC__)
59
#define GGML_CACHE_ALIGN __attribute__((aligned(GGML_CACHE_LINE)))
60
#endif
61
62
#if defined(__has_feature)
63
#if __has_feature(thread_sanitizer)
64
#define GGML_TSAN_ENABLED 1
65
#endif
66
#else  // __has_feature
67
#if defined(__SANITIZE_THREAD__)
68
#define GGML_TSAN_ENABLED 1
69
#endif
70
#endif // __has_feature
71
72
2
#define UNUSED GGML_UNUSED
73
#define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
74
75
// precomputed f32 table for f16 (256 KB) (simd-mappings.h)
76
float ggml_table_f32_f16[1 << 16];
77
78
#if defined(__ARM_ARCH)
79
struct ggml_arm_arch_features_type {
80
    int sve_cnt;
81
} ggml_arm_arch_features = { 0 };
82
#endif
83
84
#if defined(__riscv)
85
struct ggml_riscv_arch_features_type {
86
    int rvv_vlen;
87
} ggml_riscv_arch_features = { 0 };
88
#endif
89
90
#if defined(_WIN32)
91
92
#define WIN32_LEAN_AND_MEAN
93
#ifndef NOMINMAX
94
    #define NOMINMAX
95
#endif
96
#include <windows.h>
97
98
#if defined(_MSC_VER) && !defined(__clang__)
99
#define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
100
101
typedef volatile LONG atomic_int;
102
typedef atomic_int atomic_bool;
103
typedef atomic_int atomic_flag;
104
105
#define ATOMIC_FLAG_INIT 0
106
107
typedef enum {
108
    memory_order_relaxed,
109
    memory_order_consume,
110
    memory_order_acquire,
111
    memory_order_release,
112
    memory_order_acq_rel,
113
    memory_order_seq_cst
114
} memory_order;
115
116
static void atomic_store(atomic_int * ptr, LONG val) {
117
    InterlockedExchange(ptr, val);
118
}
119
static void atomic_store_explicit(atomic_int * ptr, LONG val, memory_order mo) {
120
    // TODO: add support for explicit memory order
121
    InterlockedExchange(ptr, val);
122
}
123
static LONG atomic_load(atomic_int * ptr) {
124
    return InterlockedCompareExchange(ptr, 0, 0);
125
}
126
static LONG atomic_load_explicit(atomic_int * ptr, memory_order mo) {
127
    // TODO: add support for explicit memory order
128
    return InterlockedCompareExchange(ptr, 0, 0);
129
}
130
static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
131
    return InterlockedExchangeAdd(ptr, inc);
132
}
133
static LONG atomic_fetch_add_explicit(atomic_int * ptr, LONG inc, memory_order mo) {
134
    // TODO: add support for explicit memory order
135
    return InterlockedExchangeAdd(ptr, inc);
136
}
137
static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
138
    return InterlockedExchange(ptr, 1);
139
}
140
static void atomic_flag_clear(atomic_flag * ptr) {
141
    InterlockedExchange(ptr, 0);
142
}
143
static void atomic_thread_fence(memory_order mo) {
144
    MemoryBarrier();
145
}
146
#else // clang
147
#include <stdatomic.h>
148
#endif
149
150
typedef HANDLE pthread_t;
151
152
typedef DWORD thread_ret_t;
153
static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
154
    (void) unused;
155
    HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
156
    if (handle == NULL)
157
    {
158
        return EAGAIN;
159
    }
160
161
    *out = handle;
162
    return 0;
163
}
164
165
static int pthread_join(pthread_t thread, void * unused) {
166
    (void) unused;
167
    int ret = (int) WaitForSingleObject(thread, INFINITE);
168
    CloseHandle(thread);
169
    return ret;
170
}
171
172
static int sched_yield (void) {
173
    Sleep (0);
174
    return 0;
175
}
176
#else
177
178
#include <pthread.h>
179
#include <stdatomic.h>
180
#include <sched.h>
181
#if defined(__FreeBSD__)
182
#include <pthread_np.h>
183
#endif
184
185
typedef void * thread_ret_t;
186
187
#include <sys/types.h>
188
#include <sys/stat.h>
189
#include <unistd.h>
190
191
#endif
192
193
typedef pthread_t ggml_thread_t;
194
195
0
#define GGML_THREADPOOL_N_THREADS_MASK (0xffffU)
196
0
#define GGML_THREADPOOL_N_THREADS_BITS (16)
197
198
#if defined(__APPLE__)
199
#include <unistd.h>
200
#include <mach/mach.h>
201
#include <TargetConditionals.h>
202
#endif
203
204
static const struct ggml_type_traits_cpu type_traits_cpu[GGML_TYPE_COUNT] = {
205
    [GGML_TYPE_F32] = {
206
        .from_float               = (ggml_from_float_t) ggml_cpu_fp32_to_fp32,
207
        .vec_dot                  = (ggml_vec_dot_t) ggml_vec_dot_f32,
208
        .vec_dot_type             = GGML_TYPE_F32,
209
        .nrows                    = 1,
210
    },
211
    [GGML_TYPE_F16] = {
212
        .from_float               = (ggml_from_float_t) ggml_cpu_fp32_to_fp16,
213
        .vec_dot                  = (ggml_vec_dot_t) ggml_vec_dot_f16,
214
        .vec_dot_type             = GGML_TYPE_F16,
215
        .nrows                    = 1,
216
    },
217
    [GGML_TYPE_Q4_0] = {
218
        .from_float               = quantize_row_q4_0,
219
        .vec_dot                  = ggml_vec_dot_q4_0_q8_0,
220
        .vec_dot_type             = GGML_TYPE_Q8_0,
221
#if defined (__ARM_FEATURE_MATMUL_INT8)
222
        .nrows                    = 2,
223
#else
224
        .nrows                    = 1,
225
#endif
226
    },
227
    [GGML_TYPE_Q4_1] = {
228
        .from_float               = quantize_row_q4_1,
229
        .vec_dot                  = ggml_vec_dot_q4_1_q8_1,
230
        .vec_dot_type             = GGML_TYPE_Q8_1,
231
#if defined (__ARM_FEATURE_MATMUL_INT8)
232
        .nrows                    = 2,
233
#else
234
        .nrows                    = 1,
235
#endif
236
    },
237
    [GGML_TYPE_Q5_0] = {
238
        .from_float               = quantize_row_q5_0,
239
        .vec_dot                  = ggml_vec_dot_q5_0_q8_0,
240
        .vec_dot_type             = GGML_TYPE_Q8_0,
241
        .nrows                    = 1,
242
    },
243
    [GGML_TYPE_Q5_1] = {
244
        .from_float               = quantize_row_q5_1,
245
        .vec_dot                  = ggml_vec_dot_q5_1_q8_1,
246
        .vec_dot_type             = GGML_TYPE_Q8_1,
247
        .nrows                    = 1,
248
    },
249
    [GGML_TYPE_Q8_0] = {
250
        .from_float               = quantize_row_q8_0,
251
        .vec_dot                  = ggml_vec_dot_q8_0_q8_0,
252
        .vec_dot_type             = GGML_TYPE_Q8_0,
253
#if defined (__ARM_FEATURE_MATMUL_INT8)
254
        .nrows                    = 2,
255
#else
256
        .nrows                    = 1,
257
#endif
258
    },
259
    [GGML_TYPE_Q8_1] = {
260
        .from_float               = quantize_row_q8_1,
261
        .vec_dot_type             = GGML_TYPE_Q8_1,
262
        .nrows                    = 1,
263
    },
264
    [GGML_TYPE_MXFP4] = {
265
        .from_float               = quantize_row_mxfp4,
266
        .vec_dot                  = ggml_vec_dot_mxfp4_q8_0,
267
        .vec_dot_type             = GGML_TYPE_Q8_0,
268
        .nrows                    = 1,
269
    },
270
    [GGML_TYPE_Q2_K] = {
271
        .from_float               = quantize_row_q2_K,
272
        .vec_dot                  = ggml_vec_dot_q2_K_q8_K,
273
        .vec_dot_type             = GGML_TYPE_Q8_K,
274
        .nrows                    = 1,
275
    },
276
    [GGML_TYPE_Q3_K] = {
277
        .from_float               = quantize_row_q3_K,
278
        .vec_dot                  = ggml_vec_dot_q3_K_q8_K,
279
        .vec_dot_type             = GGML_TYPE_Q8_K,
280
        .nrows                    = 1,
281
    },
282
    [GGML_TYPE_Q4_K] = {
283
        .from_float               = quantize_row_q4_K,
284
        .vec_dot                  = ggml_vec_dot_q4_K_q8_K,
285
        .vec_dot_type             = GGML_TYPE_Q8_K,
286
#if defined (__ARM_FEATURE_MATMUL_INT8)
287
        .nrows                    = 2,
288
#else
289
        .nrows                    = 1,
290
#endif
291
    },
292
    [GGML_TYPE_Q5_K] = {
293
        .from_float               = quantize_row_q5_K,
294
        .vec_dot                  = ggml_vec_dot_q5_K_q8_K,
295
        .vec_dot_type             = GGML_TYPE_Q8_K,
296
        .nrows                    = 1,
297
    },
298
    [GGML_TYPE_Q6_K] = {
299
        .from_float               = quantize_row_q6_K,
300
        .vec_dot                  = ggml_vec_dot_q6_K_q8_K,
301
        .vec_dot_type             = GGML_TYPE_Q8_K,
302
#if defined (__ARM_FEATURE_MATMUL_INT8)
303
        .nrows                    = 2,
304
#else
305
        .nrows                    = 1,
306
#endif
307
    },
308
    [GGML_TYPE_IQ2_XXS] = {
309
        .from_float               = NULL,
310
        .vec_dot                  = ggml_vec_dot_iq2_xxs_q8_K,
311
        .vec_dot_type             = GGML_TYPE_Q8_K,
312
        .nrows                    = 1,
313
    },
314
    [GGML_TYPE_IQ2_XS] = {
315
        .from_float               = NULL,
316
        .vec_dot                  = ggml_vec_dot_iq2_xs_q8_K,
317
        .vec_dot_type             = GGML_TYPE_Q8_K,
318
        .nrows                    = 1,
319
    },
320
    [GGML_TYPE_IQ3_XXS] = {
321
        // NOTE: from_float for iq3 and iq2_s was removed because these quants require initialization in ggml_quantize_init
322
        //.from_float               = quantize_row_iq3_xxs,
323
        .vec_dot                  = ggml_vec_dot_iq3_xxs_q8_K,
324
        .vec_dot_type             = GGML_TYPE_Q8_K,
325
        .nrows                    = 1,
326
    },
327
    [GGML_TYPE_IQ3_S] = {
328
        //.from_float               = quantize_row_iq3_s,
329
        .vec_dot                  = ggml_vec_dot_iq3_s_q8_K,
330
        .vec_dot_type             = GGML_TYPE_Q8_K,
331
        .nrows                    = 1,
332
    },
333
    [GGML_TYPE_IQ2_S] = {
334
        //.from_float               = quantize_row_iq2_s,
335
        .vec_dot                  = ggml_vec_dot_iq2_s_q8_K,
336
        .vec_dot_type             = GGML_TYPE_Q8_K,
337
        .nrows                    = 1,
338
    },
339
    [GGML_TYPE_IQ1_S] = {
340
        .from_float               = NULL,
341
        .vec_dot                  = ggml_vec_dot_iq1_s_q8_K,
342
        .vec_dot_type             = GGML_TYPE_Q8_K,
343
        .nrows                    = 1,
344
    },
345
    [GGML_TYPE_IQ1_M] = {
346
        .from_float               = NULL,
347
        .vec_dot                  = ggml_vec_dot_iq1_m_q8_K,
348
        .vec_dot_type             = GGML_TYPE_Q8_K,
349
        .nrows                    = 1,
350
    },
351
    [GGML_TYPE_IQ4_NL] = {
352
        .from_float               = quantize_row_iq4_nl,
353
        .vec_dot                  = ggml_vec_dot_iq4_nl_q8_0,
354
        .vec_dot_type             = GGML_TYPE_Q8_0,
355
        .nrows                    = 1,
356
    },
357
    [GGML_TYPE_IQ4_XS] = {
358
        .from_float               = quantize_row_iq4_xs,
359
        .vec_dot                  = ggml_vec_dot_iq4_xs_q8_K,
360
        .vec_dot_type             = GGML_TYPE_Q8_K,
361
        .nrows                    = 1,
362
    },
363
    [GGML_TYPE_Q8_K] = {
364
        .from_float               = quantize_row_q8_K,
365
    },
366
    [GGML_TYPE_BF16] = {
367
        .from_float               = (ggml_from_float_t) ggml_cpu_fp32_to_bf16,
368
        .vec_dot                  = (ggml_vec_dot_t) ggml_vec_dot_bf16,
369
        .vec_dot_type             = GGML_TYPE_BF16,
370
        .nrows                    = 1,
371
    },
372
    [GGML_TYPE_TQ1_0] = {
373
        .from_float               = quantize_row_tq1_0,
374
        .vec_dot                  = ggml_vec_dot_tq1_0_q8_K,
375
        .vec_dot_type             = GGML_TYPE_Q8_K,
376
        .nrows                    = 1,
377
    },
378
    [GGML_TYPE_TQ2_0] = {
379
        .from_float               = quantize_row_tq2_0,
380
        .vec_dot                  = ggml_vec_dot_tq2_0_q8_K,
381
        .vec_dot_type             = GGML_TYPE_Q8_K,
382
        .nrows                    = 1,
383
    },
384
    [GGML_TYPE_I32] = {
385
        .from_float               = (ggml_from_float_t) ggml_cpu_fp32_to_i32,
386
    },
387
};
388
389
0
const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type) {
390
0
    return &type_traits_cpu[type];
391
0
}
392
393
//
394
// Threading defs
395
//
396
397
typedef pthread_t          ggml_thread_t;
398
399
#if defined(_WIN32)
400
401
typedef CONDITION_VARIABLE ggml_cond_t;
402
typedef SRWLOCK            ggml_mutex_t;
403
404
#define ggml_mutex_init(m)   InitializeSRWLock(m)
405
#define ggml_mutex_destroy(m)
406
#define ggml_mutex_lock(m)   AcquireSRWLockExclusive(m)
407
#define ggml_mutex_unlock(m) ReleaseSRWLockExclusive(m)
408
#define ggml_mutex_lock_shared(m)   AcquireSRWLockShared(m)
409
#define ggml_mutex_unlock_shared(m) ReleaseSRWLockShared(m)
410
411
#define ggml_cond_init(c)    InitializeConditionVariable(c)
412
#define ggml_cond_destroy(c)
413
#define ggml_cond_wait(c, m) SleepConditionVariableSRW(c, m, INFINITE, CONDITION_VARIABLE_LOCKMODE_SHARED)
414
#define ggml_cond_broadcast(c) WakeAllConditionVariable(c)
415
416
#define ggml_thread_create pthread_create
417
#define ggml_thread_join   pthread_join
418
419
#else
420
421
typedef pthread_cond_t     ggml_cond_t;
422
typedef pthread_mutex_t    ggml_mutex_t;
423
424
0
#define ggml_mutex_init(m)          pthread_mutex_init(m, NULL)
425
0
#define ggml_mutex_destroy(m)       pthread_mutex_destroy(m)
426
0
#define ggml_mutex_lock(m)          pthread_mutex_lock(m)
427
0
#define ggml_mutex_unlock(m)        pthread_mutex_unlock(m)
428
0
#define ggml_mutex_lock_shared(m)   pthread_mutex_lock(m)
429
0
#define ggml_mutex_unlock_shared(m) pthread_mutex_unlock(m)
430
431
#define ggml_lock_init(x)    UNUSED(x)
432
#define ggml_lock_destroy(x) UNUSED(x)
433
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
434
#define ggml_lock_lock(x)    _mm_pause()
435
#else
436
#define ggml_lock_lock(x)    UNUSED(x)
437
#endif
438
#define ggml_lock_unlock(x)  UNUSED(x)
439
440
#define GGML_LOCK_INITIALIZER 0
441
0
#define ggml_cond_init(c)      pthread_cond_init(c, NULL)
442
0
#define ggml_cond_destroy(c)   pthread_cond_destroy(c)
443
0
#define ggml_cond_wait(c, m)   pthread_cond_wait(c, m)
444
0
#define ggml_cond_broadcast(c) pthread_cond_broadcast(c)
445
446
0
#define ggml_thread_create pthread_create
447
0
#define ggml_thread_join   pthread_join
448
449
#endif
450
451
// Threadpool def
452
struct ggml_threadpool {
453
    ggml_mutex_t mutex;       // mutex for cond.var
454
    ggml_cond_t  cond;        // cond.var for waiting for new work
455
456
    struct ggml_cgraph * cgraph;
457
    struct ggml_cplan  * cplan;
458
459
    // synchronization primitives
460
    atomic_int n_graph;       // updated when there is work to be done (i.e each graph) holds graph and active thread counts.
461
    atomic_int GGML_CACHE_ALIGN n_barrier;
462
    atomic_int GGML_CACHE_ALIGN n_barrier_passed;
463
    atomic_int GGML_CACHE_ALIGN current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
464
465
    // these are atomic as an annotation for thread-sanitizer
466
    atomic_bool stop;         // Used for stopping the threadpool altogether
467
    atomic_bool pause;        // Used for pausing the threadpool or individual threads
468
    atomic_int  abort;        // Used for aborting processing of a graph
469
470
    struct ggml_compute_state * workers;   // per thread state
471
    int          n_threads;   // Number of threads in the pool
472
    int32_t      prio;        // Scheduling priority
473
    uint32_t     poll;        // Polling level (0 - no polling)
474
475
    enum ggml_status ec;
476
};
477
478
// Per-thread state
479
struct ggml_compute_state {
480
#ifndef GGML_USE_OPENMP
481
    ggml_thread_t thrd;
482
    int  last_graph;
483
    bool pending;
484
#endif
485
    bool cpumask[GGML_MAX_N_THREADS];
486
    struct ggml_threadpool * threadpool;
487
    int ith;
488
};
489
490
// Helpers for polling loops
491
#if defined(__aarch64__) && ( defined(__clang__) || defined(__GNUC__) )
492
static inline void ggml_thread_cpu_relax(void) {
493
    __asm__ volatile("yield" ::: "memory");
494
}
495
#elif defined(__x86_64__)
496
0
static inline void ggml_thread_cpu_relax(void) {
497
0
    _mm_pause();
498
0
}
499
#elif defined(__riscv)
500
static inline void ggml_thread_cpu_relax(void) {
501
    #ifdef __riscv_zihintpause
502
        __asm__ __volatile__ ("pause");
503
    #else
504
        /* Encoding of the pause instruction */
505
        __asm__ __volatile__ (".4byte 0x100000F");
506
    #endif
507
}
508
#else
509
static inline void ggml_thread_cpu_relax(void) {;}
510
#endif
511
512
//
513
// NUMA support
514
//
515
516
0
#define GGML_NUMA_MAX_NODES 8
517
0
#define GGML_NUMA_MAX_CPUS 512
518
519
struct ggml_numa_node {
520
    uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
521
    uint32_t n_cpus;
522
};
523
524
struct ggml_numa_nodes {
525
    enum ggml_numa_strategy numa_strategy;
526
    struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
527
    uint32_t n_nodes;
528
    uint32_t total_cpus; // hardware threads on system
529
    uint32_t current_node; // node on which main process is execting
530
#if defined(__gnu_linux__)
531
    cpu_set_t cpuset; // cpuset from numactl
532
#else
533
    uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
534
#endif
535
};
536
537
//
538
// ggml state
539
//
540
541
struct ggml_state {
542
    struct ggml_numa_nodes numa;
543
};
544
545
static struct ggml_state g_state = {0};
546
547
0
void ggml_barrier(struct ggml_threadpool * tp) {
548
0
    int n_threads = atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK;
549
0
    if (n_threads == 1) {
550
0
        return;
551
0
    }
552
553
#ifdef GGML_USE_OPENMP
554
    #pragma omp barrier
555
#else
556
0
    int n_passed = atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed);
557
558
    // enter barrier (full seq-cst fence)
559
0
    int n_barrier = atomic_fetch_add_explicit(&tp->n_barrier, 1, memory_order_seq_cst);
560
561
0
    if (n_barrier == (n_threads - 1)) {
562
        // last thread
563
0
        atomic_store_explicit(&tp->n_barrier, 0, memory_order_relaxed);
564
565
        // exit barrier (full seq-cst fence)
566
0
        atomic_fetch_add_explicit(&tp->n_barrier_passed, 1, memory_order_seq_cst);
567
0
        return;
568
0
    }
569
570
    // wait for other threads
571
0
    while (atomic_load_explicit(&tp->n_barrier_passed, memory_order_relaxed) == n_passed) {
572
0
        ggml_thread_cpu_relax();
573
0
    }
574
575
    // exit barrier (full seq-cst fence)
576
    // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
577
    #ifdef GGML_TSAN_ENABLED
578
    atomic_fetch_add_explicit(&tp->n_barrier_passed, 0, memory_order_seq_cst);
579
    #else
580
0
    atomic_thread_fence(memory_order_seq_cst);
581
0
    #endif
582
0
#endif
583
0
}
584
585
0
void ggml_threadpool_chunk_set(struct ggml_threadpool * tp, int value) {
586
0
    atomic_store_explicit(&tp->current_chunk, value, memory_order_relaxed);
587
0
}
588
589
0
int ggml_threadpool_chunk_add(struct ggml_threadpool * tp, int value) {
590
0
    return atomic_fetch_add_explicit(&tp->current_chunk, value, memory_order_relaxed);
591
0
}
592
593
#if defined(__gnu_linux__)
594
0
static cpu_set_t ggml_get_numa_affinity(void) {
595
0
    cpu_set_t cpuset;
596
0
    pthread_t thread;
597
0
    thread = pthread_self();
598
0
    CPU_ZERO(&cpuset);
599
0
    pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
600
0
    return cpuset;
601
0
}
602
#else
603
static uint32_t ggml_get_numa_affinity(void) {
604
    return 0; // no NUMA support
605
}
606
#endif
607
608
0
void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
609
0
    if (g_state.numa.n_nodes > 0) {
610
0
        fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
611
612
0
        return;
613
0
    }
614
615
0
#if defined(__gnu_linux__)
616
0
    struct stat st;
617
0
    char path[256];
618
0
    int rv;
619
620
    // set numa scheme
621
0
    g_state.numa.numa_strategy = numa_flag;
622
623
0
    GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
624
625
0
    g_state.numa.cpuset = ggml_get_numa_affinity();
626
627
    // enumerate nodes
628
0
    while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
629
0
        rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
630
0
        GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
631
0
        if (stat(path, &st) != 0) { break; }
632
0
        ++g_state.numa.n_nodes;
633
0
    }
634
635
    // enumerate CPUs
636
0
    while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
637
0
        rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
638
0
        GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
639
0
        if (stat(path, &st) != 0) { break; }
640
0
        ++g_state.numa.total_cpus;
641
0
    }
642
643
0
    GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
644
645
    // figure out which node we're on
646
0
    uint current_cpu;
647
0
    int getcpu_ret = 0;
648
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 33) || defined(__COSMOPOLITAN__)
649
    getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
650
#else
651
    // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
652
#   if !defined(SYS_getcpu) && defined(SYS_get_cpu)
653
#       define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
654
#   endif
655
0
    getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
656
0
#endif
657
658
0
    if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
659
0
        g_state.numa.n_nodes = 0;
660
0
        return;
661
0
    }
662
663
0
    GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
664
665
0
    for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
666
0
        struct ggml_numa_node * node = &g_state.numa.nodes[n];
667
0
        GGML_PRINT_DEBUG("CPUs on node %u:", n);
668
0
        node->n_cpus = 0;
669
0
        for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
670
0
            rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
671
0
            GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
672
0
            if (stat(path, &st) == 0) {
673
0
                node->cpus[node->n_cpus++] = c;
674
0
                GGML_PRINT_DEBUG(" %u", c);
675
0
            }
676
0
        }
677
0
        GGML_PRINT_DEBUG("\n");
678
0
    }
679
680
0
    if (ggml_is_numa()) {
681
0
        FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
682
0
        if (fptr != NULL) {
683
0
            char buf[42];
684
0
            if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
685
0
                GGML_LOG_WARN("/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
686
0
            }
687
0
            fclose(fptr);
688
0
        }
689
0
    }
690
#else
691
    UNUSED(numa_flag);
692
    // TODO
693
#endif
694
0
}
695
696
0
bool ggml_is_numa(void) {
697
0
    return g_state.numa.n_nodes > 1;
698
0
}
699
700
#if defined(__ARM_ARCH)
701
#if defined(__aarch64__) && defined(__ARM_FEATURE_SVE)
702
#include <arm_sve.h>
703
static void ggml_init_arm_arch_features(void) {
704
    ggml_arm_arch_features.sve_cnt = svcntb();
705
}
706
#else
707
static void ggml_init_arm_arch_features(void) {}
708
#endif
709
#endif // __ARM_ARCH
710
711
#if defined(__riscv) && defined(__riscv_v_intrinsic)
712
#include <riscv_vector.h>
713
static void ggml_init_riscv_arch_features(void) {
714
    ggml_riscv_arch_features.rvv_vlen = __riscv_vlenb();
715
}
716
#else
717
0
static void ggml_init_riscv_arch_features(void) {}
718
#endif
719
720
0
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
721
0
    GGML_ASSERT(!ggml_get_no_alloc(ctx));
722
723
0
    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
724
725
0
    ggml_set_i32(result, value);
726
727
0
    return result;
728
0
}
729
730
0
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
731
0
    GGML_ASSERT(!ggml_get_no_alloc(ctx));
732
733
0
    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
734
735
0
    ggml_set_f32(result, value);
736
737
0
    return result;
738
0
}
739
740
0
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
741
0
    const int n     = ggml_nrows(tensor);
742
0
    const int nc    = tensor->ne[0];
743
0
    const size_t n1 = tensor->nb[1];
744
745
0
    char * const data = tensor->data;
746
747
0
    switch (tensor->type) {
748
0
        case GGML_TYPE_I8:
749
0
            {
750
0
                assert(tensor->nb[0] == sizeof(int8_t));
751
0
                for (int i = 0; i < n; i++) {
752
0
                    ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
753
0
                }
754
0
            } break;
755
0
        case GGML_TYPE_I16:
756
0
            {
757
0
                assert(tensor->nb[0] == sizeof(int16_t));
758
0
                for (int i = 0; i < n; i++) {
759
0
                    ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
760
0
                }
761
0
            } break;
762
0
        case GGML_TYPE_I32:
763
0
            {
764
0
                assert(tensor->nb[0] == sizeof(int32_t));
765
0
                for (int i = 0; i < n; i++) {
766
0
                    ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
767
0
                }
768
0
            } break;
769
0
        case GGML_TYPE_F16:
770
0
            {
771
0
                assert(tensor->nb[0] == sizeof(ggml_fp16_t));
772
0
                for (int i = 0; i < n; i++) {
773
0
                    ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value));
774
0
                }
775
0
            } break;
776
0
        case GGML_TYPE_BF16:
777
0
            {
778
0
                assert(tensor->nb[0] == sizeof(ggml_fp16_t));
779
0
                for (int i = 0; i < n; i++) {
780
0
                    ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
781
0
                }
782
0
            } break;
783
0
        case GGML_TYPE_F32:
784
0
            {
785
0
                assert(tensor->nb[0] == sizeof(float));
786
0
                for (int i = 0; i < n; i++) {
787
0
                    ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
788
0
                }
789
0
            } break;
790
0
        default:
791
0
            {
792
0
                GGML_ABORT("fatal error");
793
0
            }
794
0
    }
795
796
0
    return tensor;
797
0
}
798
799
0
struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
800
0
    const int n     = ggml_nrows(tensor);
801
0
    const int nc    = tensor->ne[0];
802
0
    const size_t n1 = tensor->nb[1];
803
804
0
    char * const data = tensor->data;
805
806
0
    switch (tensor->type) {
807
0
        case GGML_TYPE_I8:
808
0
            {
809
0
                assert(tensor->nb[0] == sizeof(int8_t));
810
0
                for (int i = 0; i < n; i++) {
811
0
                    ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
812
0
                }
813
0
            } break;
814
0
        case GGML_TYPE_I16:
815
0
            {
816
0
                assert(tensor->nb[0] == sizeof(int16_t));
817
0
                for (int i = 0; i < n; i++) {
818
0
                    ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
819
0
                }
820
0
            } break;
821
0
        case GGML_TYPE_I32:
822
0
            {
823
0
                assert(tensor->nb[0] == sizeof(int32_t));
824
0
                for (int i = 0; i < n; i++) {
825
0
                    ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
826
0
                }
827
0
            } break;
828
0
        case GGML_TYPE_F16:
829
0
            {
830
0
                assert(tensor->nb[0] == sizeof(ggml_fp16_t));
831
0
                for (int i = 0; i < n; i++) {
832
0
                    ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_CPU_FP32_TO_FP16(value));
833
0
                }
834
0
            } break;
835
0
        case GGML_TYPE_BF16:
836
0
            {
837
0
                assert(tensor->nb[0] == sizeof(ggml_bf16_t));
838
0
                for (int i = 0; i < n; i++) {
839
0
                    ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
840
0
                }
841
0
            } break;
842
0
        case GGML_TYPE_F32:
843
0
            {
844
0
                assert(tensor->nb[0] == sizeof(float));
845
0
                for (int i = 0; i < n; i++) {
846
0
                    ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
847
0
                }
848
0
            } break;
849
0
        default:
850
0
            {
851
0
                GGML_ABORT("fatal error");
852
0
            }
853
0
    }
854
855
0
    return tensor;
856
0
}
857
858
0
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
859
0
    if (!ggml_is_contiguous(tensor)) {
860
0
        int64_t id[4] = { 0, 0, 0, 0 };
861
0
        ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
862
0
        return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
863
0
    }
864
0
    switch (tensor->type) {
865
0
        case GGML_TYPE_I8:
866
0
            {
867
0
                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
868
0
                return ((int8_t *)(tensor->data))[i];
869
0
            }
870
0
        case GGML_TYPE_I16:
871
0
            {
872
0
                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
873
0
                return ((int16_t *)(tensor->data))[i];
874
0
            }
875
0
        case GGML_TYPE_I32:
876
0
            {
877
0
                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
878
0
                return ((int32_t *)(tensor->data))[i];
879
0
            }
880
0
        case GGML_TYPE_F16:
881
0
            {
882
0
                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
883
0
                return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
884
0
            }
885
0
        case GGML_TYPE_BF16:
886
0
            {
887
0
                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
888
0
                return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
889
0
            }
890
0
        case GGML_TYPE_F32:
891
0
            {
892
0
                GGML_ASSERT(tensor->nb[0] == sizeof(float));
893
0
                return ((float *)(tensor->data))[i];
894
0
            }
895
0
        default:
896
0
            {
897
0
                GGML_ABORT("fatal error");
898
0
            }
899
0
    }
900
0
}
901
902
0
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
903
0
    if (!ggml_is_contiguous(tensor)) {
904
0
        int64_t id[4] = { 0, 0, 0, 0 };
905
0
        ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
906
0
        ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
907
0
        return;
908
0
    }
909
0
    switch (tensor->type) {
910
0
        case GGML_TYPE_I8:
911
0
            {
912
0
                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
913
0
                ((int8_t *)(tensor->data))[i] = value;
914
0
            } break;
915
0
        case GGML_TYPE_I16:
916
0
            {
917
0
                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
918
0
                ((int16_t *)(tensor->data))[i] = value;
919
0
            } break;
920
0
        case GGML_TYPE_I32:
921
0
            {
922
0
                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
923
0
                ((int32_t *)(tensor->data))[i] = value;
924
0
            } break;
925
0
        case GGML_TYPE_F16:
926
0
            {
927
0
                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
928
0
                ((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value);
929
0
            } break;
930
0
        case GGML_TYPE_BF16:
931
0
            {
932
0
                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
933
0
                ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
934
0
            } break;
935
0
        case GGML_TYPE_F32:
936
0
            {
937
0
                GGML_ASSERT(tensor->nb[0] == sizeof(float));
938
0
                ((float *)(tensor->data))[i] = value;
939
0
            } break;
940
0
        default:
941
0
            {
942
0
                GGML_ABORT("fatal error");
943
0
            }
944
0
    }
945
0
}
946
947
0
int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
948
0
    void * data   = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
949
0
    switch (tensor->type) {
950
0
        case GGML_TYPE_I8:
951
0
            return ((int8_t *) data)[0];
952
0
        case GGML_TYPE_I16:
953
0
            return ((int16_t *) data)[0];
954
0
        case GGML_TYPE_I32:
955
0
            return ((int32_t *) data)[0];
956
0
        case GGML_TYPE_F16:
957
0
            return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
958
0
        case GGML_TYPE_BF16:
959
0
            return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
960
0
        case GGML_TYPE_F32:
961
0
            return ((float *) data)[0];
962
0
        default:
963
0
            GGML_ABORT("fatal error");
964
0
    }
965
0
}
966
967
0
void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
968
0
    void * data   = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
969
0
    switch (tensor->type) {
970
0
        case GGML_TYPE_I8:
971
0
            {
972
0
                ((int8_t *)(data))[0] = value;
973
0
            } break;
974
0
        case GGML_TYPE_I16:
975
0
            {
976
0
                ((int16_t *)(data))[0] = value;
977
0
            } break;
978
0
        case GGML_TYPE_I32:
979
0
            {
980
0
                ((int32_t *)(data))[0] = value;
981
0
            } break;
982
0
        case GGML_TYPE_F16:
983
0
            {
984
0
                ((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value);
985
0
            } break;
986
0
        case GGML_TYPE_BF16:
987
0
            {
988
0
                ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
989
0
            } break;
990
0
        case GGML_TYPE_F32:
991
0
            {
992
0
                ((float *)(data))[0] = value;
993
0
            } break;
994
0
        default:
995
0
            {
996
0
                GGML_ABORT("fatal error");
997
0
            }
998
0
    }
999
0
}
1000
1001
0
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
1002
0
    if (!ggml_is_contiguous(tensor)) {
1003
0
        int64_t id[4] = { 0, 0, 0, 0 };
1004
0
        ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
1005
0
        return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
1006
0
    }
1007
0
    switch (tensor->type) {
1008
0
        case GGML_TYPE_I8:
1009
0
            {
1010
0
                return ((int8_t *)(tensor->data))[i];
1011
0
            }
1012
0
        case GGML_TYPE_I16:
1013
0
            {
1014
0
                return ((int16_t *)(tensor->data))[i];
1015
0
            }
1016
0
        case GGML_TYPE_I32:
1017
0
            {
1018
0
                return ((int32_t *)(tensor->data))[i];
1019
0
            }
1020
0
        case GGML_TYPE_F16:
1021
0
            {
1022
0
                return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
1023
0
            }
1024
0
        case GGML_TYPE_BF16:
1025
0
            {
1026
0
                return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
1027
0
            }
1028
0
        case GGML_TYPE_F32:
1029
0
            {
1030
0
                return ((float *)(tensor->data))[i];
1031
0
            }
1032
0
        default:
1033
0
            {
1034
0
                GGML_ABORT("fatal error");
1035
0
            }
1036
0
    }
1037
0
}
1038
1039
0
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
1040
0
    if (!ggml_is_contiguous(tensor)) {
1041
0
        int64_t id[4] = { 0, 0, 0, 0 };
1042
0
        ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
1043
0
        ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
1044
0
        return;
1045
0
    }
1046
0
    switch (tensor->type) {
1047
0
        case GGML_TYPE_I8:
1048
0
            {
1049
0
                ((int8_t *)(tensor->data))[i] = value;
1050
0
            } break;
1051
0
        case GGML_TYPE_I16:
1052
0
            {
1053
0
                ((int16_t *)(tensor->data))[i] = value;
1054
0
            } break;
1055
0
        case GGML_TYPE_I32:
1056
0
            {
1057
0
                ((int32_t *)(tensor->data))[i] = value;
1058
0
            } break;
1059
0
        case GGML_TYPE_F16:
1060
0
            {
1061
0
                ((ggml_fp16_t *)(tensor->data))[i] = GGML_CPU_FP32_TO_FP16(value);
1062
0
            } break;
1063
0
        case GGML_TYPE_BF16:
1064
0
            {
1065
0
                ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
1066
0
            } break;
1067
0
        case GGML_TYPE_F32:
1068
0
            {
1069
0
                ((float *)(tensor->data))[i] = value;
1070
0
            } break;
1071
0
        default:
1072
0
            {
1073
0
                GGML_ABORT("fatal error");
1074
0
            }
1075
0
    }
1076
0
}
1077
1078
0
float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
1079
0
    void * data   = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
1080
0
    switch (tensor->type) {
1081
0
        case GGML_TYPE_I8:
1082
0
            return ((int8_t *) data)[0];
1083
0
        case GGML_TYPE_I16:
1084
0
            return ((int16_t *) data)[0];
1085
0
        case GGML_TYPE_I32:
1086
0
            return ((int32_t *) data)[0];
1087
0
        case GGML_TYPE_F16:
1088
0
            return GGML_CPU_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
1089
0
        case GGML_TYPE_BF16:
1090
0
            return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
1091
0
        case GGML_TYPE_F32:
1092
0
            return ((float *) data)[0];
1093
0
        default:
1094
0
            GGML_ABORT("fatal error");
1095
0
    }
1096
0
}
1097
1098
0
void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
1099
0
    void * data   = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
1100
0
    switch (tensor->type) {
1101
0
        case GGML_TYPE_I8:
1102
0
            {
1103
0
                ((int8_t *)(data))[0] = value;
1104
0
            } break;
1105
0
        case GGML_TYPE_I16:
1106
0
            {
1107
0
                ((int16_t *)(data))[0] = value;
1108
0
            } break;
1109
0
        case GGML_TYPE_I32:
1110
0
            {
1111
0
                ((int32_t *)(data))[0] = value;
1112
0
            } break;
1113
0
        case GGML_TYPE_F16:
1114
0
            {
1115
0
                ((ggml_fp16_t *)(data))[0] = GGML_CPU_FP32_TO_FP16(value);
1116
0
            } break;
1117
0
        case GGML_TYPE_BF16:
1118
0
            {
1119
0
                ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
1120
0
            } break;
1121
0
        case GGML_TYPE_F32:
1122
0
            {
1123
0
                ((float *)(data))[0] = value;
1124
0
            } break;
1125
0
        default:
1126
0
            {
1127
0
                GGML_ABORT("fatal error");
1128
0
            }
1129
0
    }
1130
0
}
1131
1132
////////////////////////////////////////////////////////////////////////////////
1133
1134
// ggml_compute_forward_mul_mat
1135
1136
static void ggml_compute_forward_mul_mat_one_chunk(
1137
    const struct ggml_compute_params * params,
1138
    struct ggml_tensor * dst,
1139
    const enum ggml_type type,
1140
    const int64_t num_rows_per_vec_dot,
1141
    const int64_t ir0_start,
1142
    const int64_t ir0_end,
1143
    const int64_t ir1_start,
1144
0
    const int64_t ir1_end) {
1145
1146
0
    const struct ggml_tensor * src0 = dst->src[0];
1147
0
    const struct ggml_tensor * src1 = dst->src[1];
1148
1149
0
    GGML_TENSOR_BINARY_OP_LOCALS
1150
1151
0
    const bool src1_cont = ggml_is_contiguous(src1);
1152
1153
0
    ggml_vec_dot_t const vec_dot      = type_traits_cpu[type].vec_dot;
1154
0
    enum ggml_type const vec_dot_type = type_traits_cpu[type].vec_dot_type;
1155
1156
    // broadcast factors
1157
0
    const int64_t r2 = ne12 / ne02;
1158
0
    const int64_t r3 = ne13 / ne03;
1159
1160
    //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
1161
1162
    // threads with no work simply yield (not sure if it helps)
1163
0
    if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
1164
0
        return;
1165
0
    }
1166
1167
0
    const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
1168
0
    const size_t row_size = ggml_row_size(vec_dot_type, ne10);
1169
1170
0
    assert(ne12 % ne02 == 0);
1171
0
    assert(ne13 % ne03 == 0);
1172
1173
    // block-tiling attempt
1174
0
    const int64_t blck_0 = 16;
1175
0
    const int64_t blck_1 = 16;
1176
1177
0
    const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
1178
1179
    // attempt to reduce false-sharing (does not seem to make a difference)
1180
    // 16 * 2, accounting for mmla kernels
1181
0
    float tmp[32];
1182
1183
0
    for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
1184
0
        for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
1185
0
            for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
1186
0
                const int64_t i13 = (ir1 / (ne12 * ne1));
1187
0
                const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
1188
0
                const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
1189
1190
                // broadcast src0 into src1
1191
0
                const int64_t i03 = i13 / r3;
1192
0
                const int64_t i02 = i12 / r2;
1193
1194
0
                const int64_t i1 = i11;
1195
0
                const int64_t i2 = i12;
1196
0
                const int64_t i3 = i13;
1197
1198
0
                const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
1199
1200
                // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
1201
                //       if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
1202
                //       the original src1 data pointer, so we should index using the indices directly
1203
                // TODO: this is a bit of a hack, we should probably have a better way to handle this
1204
0
                const char * src1_col = (const char*)wdata +
1205
0
                    (src1_cont || src1->type != vec_dot_type
1206
0
                        ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
1207
0
                        : (i11 * nb11 + i12 * nb12 + i13 * nb13));
1208
0
                float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
1209
1210
                //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
1211
                //    vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
1212
                //}
1213
1214
0
                for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
1215
0
                    vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
1216
0
                }
1217
1218
0
                for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
1219
0
                    memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
1220
0
                }
1221
0
            }
1222
0
        }
1223
0
    }
1224
0
}
1225
1226
void ggml_compute_forward_mul_mat(
1227
        const struct ggml_compute_params * params,
1228
0
              struct ggml_tensor * dst) {
1229
1230
0
    const struct ggml_tensor * src0 = dst->src[0];
1231
0
    const struct ggml_tensor * src1 = dst->src[1];
1232
1233
0
    GGML_TENSOR_BINARY_OP_LOCALS
1234
1235
0
    const int ith = params->ith;
1236
0
    const int nth = params->nth;
1237
1238
0
    enum ggml_type           const vec_dot_type         = type_traits_cpu[src0->type].vec_dot_type;
1239
0
    ggml_from_float_t        const from_float           = type_traits_cpu[vec_dot_type].from_float;
1240
0
    int64_t                  const vec_dot_num_rows     = type_traits_cpu[src0->type].nrows;
1241
1242
0
    GGML_ASSERT(ne0 == ne01);
1243
0
    GGML_ASSERT(ne1 == ne11);
1244
0
    GGML_ASSERT(ne2 == ne12);
1245
0
    GGML_ASSERT(ne3 == ne13);
1246
1247
    // we don't support permuted src0 or src1
1248
0
    GGML_ASSERT(nb00 == ggml_type_size(src0->type));
1249
0
    GGML_ASSERT(nb10 == ggml_type_size(src1->type));
1250
1251
    // dst cannot be transposed or permuted
1252
0
    GGML_ASSERT(nb0 == sizeof(float));
1253
0
    GGML_ASSERT(nb0 <= nb1);
1254
0
    GGML_ASSERT(nb1 <= nb2);
1255
0
    GGML_ASSERT(nb2 <= nb3);
1256
1257
    // nb01 >= nb00 - src0 is not transposed
1258
    //   compute by src0 rows
1259
1260
    // TODO: extract to "extra_op"
1261
0
#if GGML_USE_LLAMAFILE
1262
    // broadcast factors
1263
0
    const int64_t r2 = ne12 / ne02;
1264
0
    const int64_t r3 = ne13 / ne03;
1265
1266
0
    const bool src1_cont = ggml_is_contiguous(src1);
1267
1268
0
    if (src1_cont) {
1269
0
        for (int64_t i13 = 0; i13 < ne13; i13++)
1270
0
            for (int64_t i12 = 0; i12 < ne12; i12++)
1271
0
                if (!llamafile_sgemm(params,
1272
0
                                     ne01, ne11, ne00/ggml_blck_size(src0->type),
1273
0
                                     (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
1274
0
                                     nb01/ggml_type_size(src0->type),
1275
0
                                     (const char *)src1->data + i12*nb12 + i13*nb13,
1276
0
                                     nb11/ggml_type_size(src1->type),
1277
0
                                     (char *)dst->data + i12*nb2 + i13*nb3,
1278
0
                                     nb1/ggml_type_size(dst->type),
1279
0
                                     src0->type,
1280
0
                                     src1->type,
1281
0
                                     dst->type))
1282
0
                    goto UseGgmlGemm1;
1283
0
        return;
1284
0
    }
1285
0
UseGgmlGemm1:;
1286
0
#endif
1287
1288
0
    if (src1->type != vec_dot_type) {
1289
0
        char * wdata = params->wdata;
1290
1291
0
        const size_t nbw0 = ggml_type_size(vec_dot_type);
1292
0
        const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
1293
0
        const size_t nbw2 = nbw1*ne11;
1294
0
        const size_t nbw3 = nbw2*ne12;
1295
1296
0
        assert(params->wsize >= ne13*nbw3);
1297
0
        GGML_ASSERT(src1->type == GGML_TYPE_F32);
1298
1299
    #if 0
1300
        for (int64_t i13 = 0; i13 < ne13; ++i13) {
1301
            for (int64_t i12 = 0; i12 < ne12; ++i12) {
1302
                for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
1303
                    from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
1304
                               (void *)               (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
1305
                                ne10);
1306
                }
1307
            }
1308
        }
1309
    #else
1310
0
        for (int64_t i13 = 0; i13 < ne13; ++i13) {
1311
0
            for (int64_t i12 = 0; i12 < ne12; ++i12) {
1312
0
                for (int64_t i11 = 0; i11 < ne11; ++i11) {
1313
0
                    size_t bs = ggml_blck_size(vec_dot_type);
1314
0
                    int64_t ne10_block_start = (ith * ne10/bs) / nth;
1315
0
                    int64_t ne10_block_end   = ((ith + 1) * ne10/bs) / nth;
1316
0
                    from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
1317
0
                               (void *)               (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
1318
0
                               (ne10_block_end - ne10_block_start) * bs);
1319
0
                }
1320
0
            }
1321
0
        }
1322
0
    #endif
1323
0
    }
1324
1325
0
    if (ith == 0) {
1326
        // Every thread starts at ith, so the first unprocessed chunk is nth.  This save a bit of coordination right at the start.
1327
0
        atomic_store_explicit(&params->threadpool->current_chunk, nth, memory_order_relaxed);
1328
0
    }
1329
1330
0
    ggml_barrier(params->threadpool);
1331
1332
0
#if GGML_USE_LLAMAFILE
1333
0
    if (src1->type != vec_dot_type) {
1334
0
        const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
1335
0
        const size_t row_size = ggml_row_size(vec_dot_type, ne10);
1336
1337
0
        for (int64_t i13 = 0; i13 < ne13; i13++)
1338
0
            for (int64_t i12 = 0; i12 < ne12; i12++)
1339
0
                if (!llamafile_sgemm(params,
1340
0
                                     ne01, ne11, ne00/ggml_blck_size(src0->type),
1341
0
                                     (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
1342
0
                                     nb01/ggml_type_size(src0->type),
1343
0
                                     (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
1344
0
                                     row_size/ggml_type_size(vec_dot_type),
1345
0
                                     (char *)dst->data + i12*nb2 + i13*nb3,
1346
0
                                     nb1/ggml_type_size(dst->type),
1347
0
                                     src0->type,
1348
0
                                     vec_dot_type,
1349
0
                                     dst->type))
1350
0
                    goto UseGgmlGemm2;
1351
0
        return;
1352
0
    }
1353
0
UseGgmlGemm2:;
1354
0
#endif
1355
1356
    // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
1357
0
    const int64_t nr0 = ne0;
1358
1359
    // This is the size of the rest of the dimensions of the result
1360
0
    const int64_t nr1 = ne1 * ne2 * ne3;
1361
1362
    // Now select a reasonable chunk size.
1363
0
    int chunk_size = 16;
1364
1365
    // We need to step up the size if it's small
1366
0
    if (nr0 == 1 || nr1 == 1) {
1367
0
        chunk_size = 64;
1368
0
    }
1369
1370
    // distribute the work across the inner or outer loop based on which one is larger
1371
    // The number of chunks in the 0/1 dim.
1372
    // CEIL(nr0/chunk_size)
1373
0
    int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
1374
0
    int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
1375
1376
    // If the chunking is poor for the number of threads on this setup, scrap the whole plan.  Re-chunk it by thread.
1377
    //   Also, chunking by thread was measured to have perform better on NUMA systems.  See https://github.com/ggml-org/llama.cpp/pull/6915
1378
    //   In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
1379
0
    if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
1380
        // distribute the thread work across the inner or outer loop based on which one is larger
1381
0
        nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
1382
0
        nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
1383
0
    }
1384
1385
    // The number of elements in each chunk
1386
0
    const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
1387
0
    const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
1388
1389
    // The first chunk comes from our thread_id, the rest will get auto-assigned.
1390
0
    int current_chunk = ith;
1391
1392
0
    while (current_chunk < nchunk0 * nchunk1) {
1393
0
        const int64_t ith0 = current_chunk % nchunk0;
1394
0
        const int64_t ith1 = current_chunk / nchunk0;
1395
1396
0
        const int64_t ir0_start = dr0 * ith0;
1397
0
        const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
1398
1399
0
        const int64_t ir1_start = dr1 * ith1;
1400
0
        const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
1401
1402
        // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
1403
0
        int64_t num_rows_per_vec_dot = vec_dot_num_rows;
1404
1405
        // these checks are needed to avoid crossing dim1 boundaries
1406
        // can be optimized, but the logic would become more complicated, so keeping it like this for simplicity
1407
0
        if ((nr0 % 2 != 0) || (ne11 % 2 != 0) || ((ir0_end - ir0_start) % 2 != 0) || ((ir1_end - ir1_start) % 2 != 0)) {
1408
0
            num_rows_per_vec_dot = 1;
1409
0
        }
1410
0
        ggml_compute_forward_mul_mat_one_chunk(params, dst, src0->type, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
1411
1412
0
        if (nth >= nchunk0 * nchunk1) {
1413
0
            break;
1414
0
        }
1415
1416
0
        current_chunk = atomic_fetch_add_explicit(&params->threadpool->current_chunk, 1, memory_order_relaxed);
1417
0
    }
1418
0
}
1419
1420
// ggml_compute_forward_mul_mat_id
1421
1422
0
#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ids->ne[0]*ids->ne[1] + (i1)]
1423
1424
struct mmid_row_mapping {
1425
    int32_t i1;
1426
    int32_t i2;
1427
};
1428
1429
static void ggml_compute_forward_mul_mat_id_one_chunk(
1430
    struct ggml_tensor * dst,
1431
    const struct ggml_tensor * src0,
1432
    const struct ggml_tensor * src1,
1433
    const struct ggml_tensor * ids,
1434
    const int64_t cur_a,
1435
    const int64_t ir0_start,
1436
    const int64_t ir0_end,
1437
    const int64_t ir1_start,
1438
    const int64_t ir1_end,
1439
    const char * src0_cur,
1440
    const struct mmid_row_mapping * matrix_rows,
1441
    const size_t row_size,
1442
    const bool src1_cont,
1443
0
    const void * wdata) {
1444
1445
0
    GGML_TENSOR_BINARY_OP_LOCALS
1446
1447
0
    const enum ggml_type type = src0->type;
1448
1449
0
    ggml_vec_dot_t    const vec_dot      = type_traits_cpu[type].vec_dot;
1450
0
    enum ggml_type    const vec_dot_type = type_traits_cpu[type].vec_dot_type;
1451
1452
0
    const int64_t blck_0 = 16;
1453
0
    const int64_t blck_1 = 16;
1454
1455
0
    float tmp[16];
1456
1457
0
    for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
1458
0
        for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
1459
0
            for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ++ir1) {
1460
0
                const int64_t _i12 = ir1; // logical row index for this expert
1461
1462
0
                struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
1463
0
                const int id       = row_mapping.i1; // selected expert index
1464
1465
0
                const int64_t  i11 = id % ne11;
1466
0
                const int64_t  i12 = row_mapping.i2; // row index in src1
1467
1468
0
                const int64_t  i1 = id;  // selected expert index
1469
0
                const int64_t  i2 = i12; // row
1470
1471
                // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
1472
                //       if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
1473
                //       the original src1 data pointer, so we should index using the indices directly
1474
                // TODO: this is a bit of a hack, we should probably have a better way to handle this
1475
0
                const char * src1_col = (const char *) wdata +
1476
0
                    (src1_cont || src1->type != vec_dot_type
1477
0
                    ? (i11      + i12*ne11)*row_size
1478
0
                    : (i11*nb11 + i12*nb12));
1479
1480
0
                float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
1481
1482
0
                for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
1483
0
                    vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
1484
0
                }
1485
1486
0
                memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir0_end) - iir0)*sizeof(float));
1487
0
            }
1488
0
        }
1489
0
    }
1490
0
}
1491
1492
0
static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
1493
1494
0
    void * ptr = *p;
1495
0
    ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
1496
0
    *p = (void *) ((char *) ptr + size);
1497
0
    return ptr;
1498
0
}
1499
1500
static void ggml_compute_forward_mul_mat_id(
1501
        const struct ggml_compute_params * params,
1502
0
              struct ggml_tensor * dst) {
1503
1504
0
    const struct ggml_tensor * src0 = dst->src[0];
1505
0
    const struct ggml_tensor * src1 = dst->src[1];
1506
0
    const struct ggml_tensor * ids = dst->src[2];
1507
1508
0
    GGML_TENSOR_BINARY_OP_LOCALS
1509
1510
0
    const int ith = params->ith;
1511
0
    const int nth = params->nth;
1512
1513
0
    const enum ggml_type type = src0->type;
1514
1515
0
    const bool src1_cont = ggml_is_contiguous(src1);
1516
1517
0
    enum ggml_type    const vec_dot_type    = type_traits_cpu[type].vec_dot_type;
1518
0
    ggml_from_float_t const from_float      = type_traits_cpu[vec_dot_type].from_float;
1519
1520
    // we don't support permuted src0 or src1
1521
0
    GGML_ASSERT(nb00 == ggml_type_size(type));
1522
0
    GGML_ASSERT(nb10 == ggml_type_size(src1->type));
1523
1524
    // dst cannot be transposed or permuted
1525
0
    GGML_ASSERT(nb0 == sizeof(float));
1526
0
    GGML_ASSERT(nb0 <= nb1);
1527
0
    GGML_ASSERT(nb1 <= nb2);
1528
0
    GGML_ASSERT(nb2 <= nb3);
1529
1530
    // row groups
1531
0
    const int n_ids = ids->ne[0]; // n_expert_used
1532
0
    const int n_as  = ne02;       // n_expert
1533
1534
0
    void * wdata_cur = params->wdata;
1535
1536
0
    if (src1->type != vec_dot_type) {
1537
0
        incr_ptr_aligned(&wdata_cur, ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
1538
0
    }
1539
1540
0
    int64_t * matrix_row_counts = // [n_as]
1541
0
        incr_ptr_aligned(&wdata_cur, n_as*sizeof(int64_t), sizeof(int64_t));
1542
1543
0
    struct mmid_row_mapping * matrix_rows = // [n_as][ids->ne[0]*ids->ne[1]]
1544
0
        incr_ptr_aligned(&wdata_cur, n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping), sizeof(int64_t));
1545
1546
0
    char (*atomic_current_chunk)[CACHE_LINE_SIZE] = // [n_as]
1547
0
        incr_ptr_aligned(&wdata_cur, CACHE_LINE_SIZE * n_as, CACHE_LINE_SIZE);
1548
1549
0
    GGML_ASSERT(params->wsize >= (size_t)((char *) wdata_cur - (char *) params->wdata));
1550
1551
0
    if (src1->type != vec_dot_type) {
1552
0
        char * wdata = params->wdata;
1553
1554
0
        const size_t nbw0 = ggml_type_size(vec_dot_type);
1555
0
        const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
1556
0
        const size_t nbw2 = nbw1*ne11;
1557
0
        const size_t nbw3 = nbw2*ne12;
1558
1559
0
        assert(params->wsize >= ne13*nbw3);
1560
0
        GGML_ASSERT(src1->type == GGML_TYPE_F32);
1561
1562
#if 0
1563
        for (int64_t i13 = 0; i13 < ne13; ++i13) {
1564
            for (int64_t i12 = ith; i12 < ne12; i12 += nth) {
1565
                for (int64_t i11 = 0; i11 < ne11; ++i11) {
1566
                    from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
1567
                               (void *)               (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
1568
                               ne10);
1569
                }
1570
            }
1571
        }
1572
#else
1573
0
        for (int64_t i13 = 0; i13 < ne13; ++i13) {
1574
0
            for (int64_t i12 = 0; i12 < ne12; ++i12) {
1575
0
                for (int64_t i11 = 0; i11 < ne11; ++i11) {
1576
0
                    size_t bs = ggml_blck_size(vec_dot_type);
1577
0
                    int64_t ne10_block_start = (ith * ne10/bs) / nth;
1578
0
                    int64_t ne10_block_end   = ((ith + 1) * ne10/bs) / nth;
1579
0
                    from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + ne10_block_start*bs*nb10),
1580
0
                               (void *)               (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1 + ne10_block_start*nbw0),
1581
0
                               (ne10_block_end - ne10_block_start) * bs);
1582
0
                }
1583
0
            }
1584
0
        }
1585
0
#endif
1586
0
    }
1587
1588
0
    if (ith == 0) {
1589
        // initialize matrix_row_counts
1590
0
        memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
1591
1592
        // group rows by src0 matrix
1593
0
        for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
1594
0
            for (int id = 0; id < n_ids; ++id) {
1595
0
                const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
1596
1597
0
                assert(i02 >= 0 && i02 < n_as);
1598
1599
0
                MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
1600
0
                matrix_row_counts[i02] += 1;
1601
0
            }
1602
0
        }
1603
0
    }
1604
1605
    // reset current_chunk
1606
0
    for (int cur_a = ith; cur_a < n_as; cur_a += nth) {
1607
0
        atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
1608
0
        *current_chunk_ctr = nth;
1609
0
    }
1610
1611
0
    ggml_barrier(params->threadpool);
1612
1613
0
    for (int cur_a = 0; cur_a < n_as; ++cur_a) {
1614
0
        const int64_t cne1 = matrix_row_counts[cur_a];
1615
1616
0
        if (cne1 == 0) {
1617
0
            continue;
1618
0
        }
1619
1620
0
        const char * src0_cur = (const char *) src0->data + cur_a * nb02;
1621
0
        const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
1622
0
        const size_t row_size = ggml_row_size(vec_dot_type, ne10);
1623
1624
0
        const int64_t nr0 = ne01;
1625
0
        const int64_t nr1 = cne1;
1626
1627
0
        int chunk_size = 16;
1628
0
        if (nr0 == 1 || nr1 == 1) {
1629
0
            chunk_size = 64;
1630
0
        }
1631
1632
        // disable for NUMA
1633
0
        const bool disable_chunking = ggml_is_numa();
1634
1635
0
        int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
1636
0
        int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
1637
1638
0
        if (nchunk0 * nchunk1 < nth * 4 || disable_chunking) {
1639
0
            nchunk0 = nr0 > nr1 ? nth : 1;
1640
0
            nchunk1 = nr0 > nr1 ? 1 : nth;
1641
0
        }
1642
1643
0
        const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
1644
0
        const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
1645
1646
0
        int current_chunk = ith;
1647
1648
0
        atomic_int * current_chunk_ctr = (atomic_int *)(atomic_current_chunk + cur_a);
1649
1650
0
        while (current_chunk < nchunk0 * nchunk1) {
1651
0
            const int64_t ith0 = current_chunk % nchunk0;
1652
0
            const int64_t ith1 = current_chunk / nchunk0;
1653
1654
0
            const int64_t ir0_start = dr0 * ith0;
1655
0
            const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
1656
1657
0
            const int64_t ir1_start = dr1 * ith1;
1658
0
            const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
1659
1660
0
            ggml_compute_forward_mul_mat_id_one_chunk(
1661
0
                dst, src0, src1, ids, cur_a,
1662
0
                ir0_start, ir0_end, ir1_start, ir1_end,
1663
0
                src0_cur, matrix_rows, row_size, src1_cont, wdata
1664
0
            );
1665
1666
0
            if (nth >= nchunk0 * nchunk1) {
1667
0
                break;
1668
0
            }
1669
1670
0
            current_chunk = atomic_fetch_add_explicit(current_chunk_ctr, 1, memory_order_relaxed);
1671
0
        }
1672
0
    }
1673
0
}
1674
1675
/////////////////////////////////
1676
1677
0
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
1678
0
    GGML_ASSERT(params);
1679
1680
0
    if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
1681
0
        return;
1682
0
    }
1683
1684
    // extra_buffer op?
1685
0
    if (ggml_cpu_extra_compute_forward(params, tensor)) {
1686
0
        return;
1687
0
    }
1688
1689
0
    switch (tensor->op) {
1690
0
        case GGML_OP_DUP:
1691
0
            {
1692
0
                ggml_compute_forward_dup(params, tensor);
1693
0
            } break;
1694
0
        case GGML_OP_ADD:
1695
0
            {
1696
0
                ggml_compute_forward_add(params, tensor);
1697
0
            } break;
1698
0
        case GGML_OP_ADD_ID:
1699
0
            {
1700
0
                ggml_compute_forward_add_id(params, tensor);
1701
0
            } break;
1702
0
        case GGML_OP_ADD1:
1703
0
            {
1704
0
                ggml_compute_forward_add1(params, tensor);
1705
0
            } break;
1706
0
        case GGML_OP_ACC:
1707
0
            {
1708
0
                ggml_compute_forward_acc(params, tensor);
1709
0
            } break;
1710
0
        case GGML_OP_SUB:
1711
0
            {
1712
0
                ggml_compute_forward_sub(params, tensor);
1713
0
            } break;
1714
0
        case GGML_OP_MUL:
1715
0
            {
1716
0
                ggml_compute_forward_mul(params, tensor);
1717
0
            } break;
1718
0
        case GGML_OP_DIV:
1719
0
            {
1720
0
                ggml_compute_forward_div(params, tensor);
1721
0
            } break;
1722
0
        case GGML_OP_SQR:
1723
0
            {
1724
0
                ggml_compute_forward_sqr(params, tensor);
1725
0
            } break;
1726
0
        case GGML_OP_SQRT:
1727
0
            {
1728
0
                ggml_compute_forward_sqrt(params, tensor);
1729
0
            } break;
1730
0
        case GGML_OP_LOG:
1731
0
            {
1732
0
                ggml_compute_forward_log(params, tensor);
1733
0
            } break;
1734
0
        case GGML_OP_SIN:
1735
0
            {
1736
0
                ggml_compute_forward_sin(params, tensor);
1737
0
            } break;
1738
0
        case GGML_OP_COS:
1739
0
            {
1740
0
                ggml_compute_forward_cos(params, tensor);
1741
0
            } break;
1742
0
        case GGML_OP_SUM:
1743
0
            {
1744
0
                ggml_compute_forward_sum(params, tensor);
1745
0
            } break;
1746
0
        case GGML_OP_SUM_ROWS:
1747
0
            {
1748
0
                ggml_compute_forward_sum_rows(params, tensor);
1749
0
            } break;
1750
0
        case GGML_OP_CUMSUM:
1751
0
            {
1752
0
                ggml_compute_forward_cumsum(params, tensor);
1753
0
            } break;
1754
0
        case GGML_OP_MEAN:
1755
0
            {
1756
0
                ggml_compute_forward_mean(params, tensor);
1757
0
            } break;
1758
0
        case GGML_OP_ARGMAX:
1759
0
            {
1760
0
                ggml_compute_forward_argmax(params, tensor);
1761
0
            } break;
1762
0
        case GGML_OP_COUNT_EQUAL:
1763
0
            {
1764
0
                ggml_compute_forward_count_equal(params, tensor);
1765
0
            } break;
1766
0
        case GGML_OP_REPEAT:
1767
0
            {
1768
0
                ggml_compute_forward_repeat(params, tensor);
1769
0
            } break;
1770
0
        case GGML_OP_REPEAT_BACK:
1771
0
            {
1772
0
                ggml_compute_forward_repeat_back(params, tensor);
1773
0
            } break;
1774
0
        case GGML_OP_CONCAT:
1775
0
            {
1776
0
                ggml_compute_forward_concat(params, tensor);
1777
0
            } break;
1778
0
        case GGML_OP_SILU_BACK:
1779
0
            {
1780
0
                ggml_compute_forward_silu_back(params, tensor);
1781
0
            } break;
1782
0
        case GGML_OP_NORM:
1783
0
            {
1784
0
                ggml_compute_forward_norm(params, tensor);
1785
0
            } break;
1786
0
        case GGML_OP_RMS_NORM:
1787
0
            {
1788
0
                ggml_compute_forward_rms_norm(params, tensor);
1789
0
            } break;
1790
0
        case GGML_OP_RMS_NORM_BACK:
1791
0
            {
1792
0
                ggml_compute_forward_rms_norm_back(params, tensor);
1793
0
            } break;
1794
0
        case GGML_OP_GROUP_NORM:
1795
0
            {
1796
0
                ggml_compute_forward_group_norm(params, tensor);
1797
0
            } break;
1798
0
        case GGML_OP_L2_NORM:
1799
0
            {
1800
0
                ggml_compute_forward_l2_norm(params, tensor);
1801
0
            } break;
1802
0
        case GGML_OP_MUL_MAT:
1803
0
            {
1804
0
                ggml_compute_forward_mul_mat(params, tensor);
1805
0
            } break;
1806
0
        case GGML_OP_MUL_MAT_ID:
1807
0
            {
1808
0
                ggml_compute_forward_mul_mat_id(params, tensor);
1809
0
            } break;
1810
0
        case GGML_OP_OUT_PROD:
1811
0
            {
1812
0
                ggml_compute_forward_out_prod(params, tensor);
1813
0
            } break;
1814
0
        case GGML_OP_SCALE:
1815
0
            {
1816
0
                ggml_compute_forward_scale(params, tensor);
1817
0
            } break;
1818
0
        case GGML_OP_SET:
1819
0
            {
1820
0
                ggml_compute_forward_set(params, tensor);
1821
0
            } break;
1822
0
        case GGML_OP_CPY:
1823
0
            {
1824
0
                ggml_compute_forward_cpy(params, tensor);
1825
0
            } break;
1826
0
        case GGML_OP_CONT:
1827
0
            {
1828
0
                ggml_compute_forward_cont(params, tensor);
1829
0
            } break;
1830
0
        case GGML_OP_GET_ROWS:
1831
0
            {
1832
0
                ggml_compute_forward_get_rows(params, tensor);
1833
0
            } break;
1834
0
        case GGML_OP_GET_ROWS_BACK:
1835
0
            {
1836
0
                ggml_compute_forward_get_rows_back(params, tensor);
1837
0
            } break;
1838
0
        case GGML_OP_SET_ROWS:
1839
0
            {
1840
0
                ggml_compute_forward_set_rows(params, tensor);
1841
0
            } break;
1842
0
        case GGML_OP_DIAG:
1843
0
            {
1844
0
                ggml_compute_forward_diag(params, tensor);
1845
0
            } break;
1846
0
        case GGML_OP_DIAG_MASK_INF:
1847
0
            {
1848
0
                ggml_compute_forward_diag_mask_inf(params, tensor);
1849
0
            } break;
1850
0
        case GGML_OP_DIAG_MASK_ZERO:
1851
0
            {
1852
0
                ggml_compute_forward_diag_mask_zero(params, tensor);
1853
0
            } break;
1854
0
        case GGML_OP_SOFT_MAX:
1855
0
            {
1856
0
                ggml_compute_forward_soft_max(params, tensor);
1857
0
            } break;
1858
0
        case GGML_OP_SOFT_MAX_BACK:
1859
0
            {
1860
0
                ggml_compute_forward_soft_max_ext_back(params, tensor);
1861
0
            } break;
1862
0
        case GGML_OP_ROPE:
1863
0
            {
1864
0
                ggml_compute_forward_rope(params, tensor);
1865
0
            } break;
1866
0
        case GGML_OP_ROPE_BACK:
1867
0
            {
1868
0
                ggml_compute_forward_rope_back(params, tensor);
1869
0
            } break;
1870
0
        case GGML_OP_CLAMP:
1871
0
            {
1872
0
                ggml_compute_forward_clamp(params, tensor);
1873
0
            } break;
1874
0
        case GGML_OP_CONV_TRANSPOSE_1D:
1875
0
            {
1876
0
                ggml_compute_forward_conv_transpose_1d(params, tensor);
1877
0
            } break;
1878
0
        case GGML_OP_IM2COL:
1879
0
            {
1880
0
                ggml_compute_forward_im2col(params, tensor);
1881
0
            } break;
1882
0
        case GGML_OP_IM2COL_BACK:
1883
0
            {
1884
0
                ggml_compute_forward_im2col_back_f32(params, tensor);
1885
0
            } break;
1886
0
        case GGML_OP_IM2COL_3D:
1887
0
            {
1888
0
                ggml_compute_forward_im2col_3d(params, tensor);
1889
0
            } break;
1890
0
        case GGML_OP_CONV_2D:
1891
0
            {
1892
0
                ggml_compute_forward_conv_2d(params, tensor);
1893
0
            } break;
1894
0
        case GGML_OP_CONV_3D:
1895
0
            {
1896
0
                ggml_compute_forward_conv_3d(params, tensor);
1897
0
            } break;
1898
0
        case GGML_OP_CONV_2D_DW:
1899
0
            {
1900
0
                ggml_compute_forward_conv_2d_dw(params, tensor);
1901
0
            } break;
1902
0
        case GGML_OP_CONV_TRANSPOSE_2D:
1903
0
            {
1904
0
                ggml_compute_forward_conv_transpose_2d(params, tensor);
1905
0
            } break;
1906
0
        case GGML_OP_POOL_1D:
1907
0
            {
1908
0
                ggml_compute_forward_pool_1d(params, tensor);
1909
0
            } break;
1910
0
        case GGML_OP_POOL_2D:
1911
0
            {
1912
0
                ggml_compute_forward_pool_2d(params, tensor);
1913
0
            } break;
1914
0
        case GGML_OP_POOL_2D_BACK:
1915
0
            {
1916
0
                ggml_compute_forward_pool_2d_back(params, tensor);
1917
0
            } break;
1918
0
        case GGML_OP_UPSCALE:
1919
0
            {
1920
0
                ggml_compute_forward_upscale(params, tensor);
1921
0
            } break;
1922
0
        case GGML_OP_PAD:
1923
0
            {
1924
0
                ggml_compute_forward_pad(params, tensor);
1925
0
            } break;
1926
0
        case GGML_OP_PAD_REFLECT_1D:
1927
0
            {
1928
0
                ggml_compute_forward_pad_reflect_1d(params, tensor);
1929
0
            } break;
1930
0
        case GGML_OP_ROLL:
1931
0
            {
1932
0
                ggml_compute_forward_roll(params, tensor);
1933
0
            } break;
1934
0
        case GGML_OP_ARANGE:
1935
0
            {
1936
0
                ggml_compute_forward_arange(params, tensor);
1937
0
            } break;
1938
0
        case GGML_OP_TIMESTEP_EMBEDDING:
1939
0
            {
1940
0
                ggml_compute_forward_timestep_embedding(params, tensor);
1941
0
            } break;
1942
0
        case GGML_OP_ARGSORT:
1943
0
            {
1944
0
                ggml_compute_forward_argsort(params, tensor);
1945
0
            } break;
1946
0
        case GGML_OP_TOP_K:
1947
0
            {
1948
0
                ggml_compute_forward_top_k(params, tensor);
1949
0
            } break;
1950
0
        case GGML_OP_LEAKY_RELU:
1951
0
            {
1952
0
                ggml_compute_forward_leaky_relu(params, tensor);
1953
0
            } break;
1954
0
        case GGML_OP_TRI:
1955
0
            {
1956
0
                ggml_compute_forward_tri(params, tensor);
1957
0
            } break;
1958
0
        case GGML_OP_FILL:
1959
0
            {
1960
0
                ggml_compute_forward_fill(params, tensor);
1961
0
            } break;
1962
0
        case GGML_OP_FLASH_ATTN_EXT:
1963
0
            {
1964
0
                ggml_compute_forward_flash_attn_ext(params, tensor);
1965
0
            } break;
1966
0
        case GGML_OP_FLASH_ATTN_BACK:
1967
0
            {
1968
0
                int32_t t = ggml_get_op_params_i32(tensor, 0);
1969
0
                GGML_ASSERT(t == 0 || t == 1);
1970
0
                bool masked = t != 0;
1971
0
                ggml_compute_forward_flash_attn_back(params, masked, tensor);
1972
0
            } break;
1973
0
        case GGML_OP_SSM_CONV:
1974
0
            {
1975
0
                ggml_compute_forward_ssm_conv(params, tensor);
1976
0
            } break;
1977
0
        case GGML_OP_SSM_SCAN:
1978
0
            {
1979
0
                ggml_compute_forward_ssm_scan(params, tensor);
1980
0
            } break;
1981
0
        case GGML_OP_WIN_PART:
1982
0
            {
1983
0
                ggml_compute_forward_win_part(params, tensor);
1984
0
            } break;
1985
0
        case GGML_OP_WIN_UNPART:
1986
0
            {
1987
0
                ggml_compute_forward_win_unpart(params, tensor);
1988
0
            } break;
1989
0
        case GGML_OP_UNARY:
1990
0
            {
1991
0
                ggml_compute_forward_unary(params, tensor);
1992
0
            } break;
1993
0
        case GGML_OP_GLU:
1994
0
            {
1995
0
                ggml_compute_forward_glu(params, tensor);
1996
0
            } break;
1997
0
        case GGML_OP_GET_REL_POS:
1998
0
            {
1999
0
                ggml_compute_forward_get_rel_pos(params, tensor);
2000
0
            } break;
2001
0
        case GGML_OP_ADD_REL_POS:
2002
0
            {
2003
0
                ggml_compute_forward_add_rel_pos(params, tensor);
2004
0
            } break;
2005
0
        case GGML_OP_RWKV_WKV6:
2006
0
            {
2007
0
                ggml_compute_forward_rwkv_wkv6(params, tensor);
2008
0
            } break;
2009
0
        case GGML_OP_GATED_LINEAR_ATTN:
2010
0
            {
2011
0
                ggml_compute_forward_gla(params, tensor);
2012
0
            } break;
2013
0
        case GGML_OP_RWKV_WKV7:
2014
0
            {
2015
0
                ggml_compute_forward_rwkv_wkv7(params, tensor);
2016
0
            } break;
2017
0
        case GGML_OP_SOLVE_TRI:
2018
0
            {
2019
0
                ggml_compute_forward_solve_tri(params, tensor);
2020
0
            } break;
2021
0
        case GGML_OP_MAP_CUSTOM1:
2022
0
            {
2023
0
                ggml_compute_forward_map_custom1(params, tensor);
2024
0
            }
2025
0
            break;
2026
0
        case GGML_OP_MAP_CUSTOM2:
2027
0
            {
2028
0
                ggml_compute_forward_map_custom2(params, tensor);
2029
0
            }
2030
0
            break;
2031
0
        case GGML_OP_MAP_CUSTOM3:
2032
0
            {
2033
0
                ggml_compute_forward_map_custom3(params, tensor);
2034
0
            }
2035
0
            break;
2036
0
        case GGML_OP_CUSTOM:
2037
0
            {
2038
0
                ggml_compute_forward_custom(params, tensor);
2039
0
            }
2040
0
            break;
2041
0
        case GGML_OP_CROSS_ENTROPY_LOSS:
2042
0
            {
2043
0
                ggml_compute_forward_cross_entropy_loss(params, tensor);
2044
0
            }
2045
0
            break;
2046
0
        case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
2047
0
            {
2048
0
                ggml_compute_forward_cross_entropy_loss_back(params, tensor);
2049
0
            }
2050
0
            break;
2051
0
        case GGML_OP_OPT_STEP_ADAMW:
2052
0
            {
2053
0
                ggml_compute_forward_opt_step_adamw(params, tensor);
2054
0
            }
2055
0
            break;
2056
0
        case GGML_OP_OPT_STEP_SGD:
2057
0
            {
2058
0
                ggml_compute_forward_opt_step_sgd(params, tensor);
2059
0
            }
2060
0
            break;
2061
0
        case GGML_OP_NONE:
2062
0
            {
2063
                // nop
2064
0
            } break;
2065
0
        case GGML_OP_RESHAPE:
2066
0
            {
2067
                // nop
2068
0
            } break;
2069
0
        case GGML_OP_PERMUTE:
2070
0
            {
2071
                // nop
2072
0
            } break;
2073
0
        case GGML_OP_VIEW:
2074
0
            {
2075
                // nop
2076
0
            } break;
2077
0
        case GGML_OP_TRANSPOSE:
2078
0
            {
2079
                // nop
2080
0
            } break;
2081
0
        case GGML_OP_COUNT:
2082
0
            {
2083
0
                GGML_ABORT("fatal error");
2084
0
            }
2085
0
    }
2086
0
}
2087
2088
// Android's libc implementation "bionic" does not support setting affinity
2089
#if defined(__gnu_linux__)
2090
0
static void set_numa_thread_affinity(int thread_n) {
2091
0
    if (!ggml_is_numa()) {
2092
0
        return;
2093
0
    }
2094
2095
0
    int node_num;
2096
0
    int rv;
2097
0
    size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
2098
2099
0
    switch(g_state.numa.numa_strategy) {
2100
0
        case GGML_NUMA_STRATEGY_DISTRIBUTE:
2101
            // run thread on node_num thread_n / (threads per node)
2102
0
            node_num = thread_n % g_state.numa.n_nodes;
2103
0
            break;
2104
0
        case GGML_NUMA_STRATEGY_ISOLATE:
2105
            // run thread on current_node
2106
0
            node_num = g_state.numa.current_node;
2107
0
            break;
2108
0
        case GGML_NUMA_STRATEGY_NUMACTL:
2109
            // use the cpuset that numactl gave us
2110
0
            rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
2111
0
            if (rv) {
2112
0
                fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
2113
0
            }
2114
0
            return;
2115
0
        default:
2116
0
            return;
2117
0
    }
2118
2119
0
    struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
2120
2121
0
    cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
2122
0
    CPU_ZERO_S(setsize, cpus);
2123
0
    for (size_t i = 0; i < node->n_cpus; ++i) {
2124
0
        CPU_SET_S(node->cpus[i], setsize, cpus);
2125
0
    }
2126
2127
0
    rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
2128
0
    if (rv) {
2129
0
            fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
2130
0
    }
2131
2132
0
    CPU_FREE(cpus);
2133
0
}
2134
2135
0
static void clear_numa_thread_affinity(void) {
2136
0
    if (!ggml_is_numa()) {
2137
0
        return;
2138
0
    }
2139
2140
0
    size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
2141
2142
0
    cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
2143
0
    CPU_ZERO_S(setsize, cpus);
2144
0
    for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
2145
0
        CPU_SET_S(i, setsize, cpus);
2146
0
    }
2147
2148
0
    int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
2149
0
    if (rv) {
2150
0
        fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
2151
0
    }
2152
2153
0
    CPU_FREE(cpus);
2154
0
}
2155
#else
2156
// TODO: Windows etc.
2157
// (the linux implementation may also work on BSD, someone should test)
2158
static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n);  }
2159
static void clear_numa_thread_affinity(void) {}
2160
#endif
2161
2162
0
static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
2163
0
    int n_tasks = 0;
2164
2165
0
    if (ggml_is_empty(node)) {
2166
        // no need to multi-thread a no-op
2167
0
        n_tasks = 1;
2168
0
        return n_tasks;
2169
0
    }
2170
2171
0
    switch (node->op) {
2172
0
        case GGML_OP_CPY:
2173
0
        case GGML_OP_DUP:
2174
0
        case GGML_OP_CONT:
2175
0
        case GGML_OP_ADD:
2176
0
        case GGML_OP_ADD_ID:
2177
0
        case GGML_OP_ADD1:
2178
0
        case GGML_OP_ACC:
2179
0
        case GGML_OP_CUMSUM:
2180
0
        case GGML_OP_TRI:
2181
0
        case GGML_OP_FILL:
2182
0
            {
2183
0
                n_tasks = n_threads;
2184
0
            } break;
2185
0
        case GGML_OP_SUB:
2186
0
        case GGML_OP_SQR:
2187
0
        case GGML_OP_SQRT:
2188
0
        case GGML_OP_LOG:
2189
0
        case GGML_OP_SIN:
2190
0
        case GGML_OP_COS:
2191
0
        case GGML_OP_SUM:
2192
0
        case GGML_OP_SUM_ROWS:
2193
0
        case GGML_OP_MEAN:
2194
0
        case GGML_OP_ARGMAX:
2195
0
            {
2196
0
                n_tasks = 1;
2197
0
            } break;
2198
0
        case GGML_OP_COUNT_EQUAL:
2199
0
        case GGML_OP_SOLVE_TRI:
2200
0
            {
2201
0
                n_tasks = n_threads;
2202
0
            } break;
2203
0
        case GGML_OP_REPEAT:
2204
0
        case GGML_OP_REPEAT_BACK:
2205
0
        case GGML_OP_LEAKY_RELU:
2206
0
            {
2207
0
                n_tasks = 1;
2208
0
            } break;
2209
0
        case GGML_OP_UNARY:
2210
0
            switch (ggml_get_unary_op(node)) {
2211
0
                case GGML_UNARY_OP_ABS:
2212
0
                case GGML_UNARY_OP_SGN:
2213
0
                case GGML_UNARY_OP_NEG:
2214
0
                case GGML_UNARY_OP_STEP:
2215
0
                case GGML_UNARY_OP_TANH:
2216
0
                case GGML_UNARY_OP_ELU:
2217
0
                case GGML_UNARY_OP_RELU:
2218
0
                case GGML_UNARY_OP_SIGMOID:
2219
0
                case GGML_UNARY_OP_HARDSWISH:
2220
0
                case GGML_UNARY_OP_HARDSIGMOID:
2221
0
                case GGML_UNARY_OP_EXP:
2222
0
                case GGML_UNARY_OP_SOFTPLUS:
2223
0
                case GGML_UNARY_OP_EXPM1:
2224
0
                case GGML_UNARY_OP_FLOOR:
2225
0
                case GGML_UNARY_OP_CEIL:
2226
0
                case GGML_UNARY_OP_ROUND:
2227
0
                case GGML_UNARY_OP_TRUNC:
2228
0
                    {
2229
0
                        n_tasks = 1;
2230
0
                    } break;
2231
2232
0
                case GGML_UNARY_OP_GELU:
2233
0
                case GGML_UNARY_OP_GELU_ERF:
2234
0
                case GGML_UNARY_OP_GELU_QUICK:
2235
0
                case GGML_UNARY_OP_SILU:
2236
0
                case GGML_UNARY_OP_XIELU:
2237
0
                    {
2238
0
                        n_tasks = n_threads;
2239
0
                    } break;
2240
0
                default:
2241
0
                    GGML_ABORT("fatal error");
2242
0
            }
2243
0
            break;
2244
0
        case GGML_OP_GLU:
2245
0
            switch (ggml_get_glu_op(node)) {
2246
0
                case GGML_GLU_OP_REGLU:
2247
0
                case GGML_GLU_OP_GEGLU:
2248
0
                case GGML_GLU_OP_SWIGLU:
2249
0
                case GGML_GLU_OP_SWIGLU_OAI:
2250
0
                case GGML_GLU_OP_GEGLU_ERF:
2251
0
                case GGML_GLU_OP_GEGLU_QUICK:
2252
0
                    {
2253
0
                        n_tasks = n_threads;
2254
0
                    } break;
2255
0
                default:
2256
0
                    GGML_ABORT("fatal error");
2257
0
            }
2258
0
            break;
2259
0
        case GGML_OP_SILU_BACK:
2260
0
        case GGML_OP_MUL:
2261
0
        case GGML_OP_DIV:
2262
0
        case GGML_OP_NORM:
2263
0
        case GGML_OP_RMS_NORM:
2264
0
        case GGML_OP_RMS_NORM_BACK:
2265
0
        case GGML_OP_L2_NORM:
2266
0
        case GGML_OP_GROUP_NORM:
2267
0
        case GGML_OP_CONCAT:
2268
0
        case GGML_OP_MUL_MAT:
2269
0
        case GGML_OP_MUL_MAT_ID:
2270
0
        case GGML_OP_OUT_PROD:
2271
0
            {
2272
0
                n_tasks = n_threads;
2273
0
            } break;
2274
0
        case GGML_OP_GET_ROWS:
2275
0
        case GGML_OP_SET_ROWS:
2276
0
            {
2277
                // FIXME: get_rows can use additional threads, but the cost of launching additional threads
2278
                // decreases performance with GPU offloading
2279
                //n_tasks = n_threads;
2280
0
                n_tasks = 1;
2281
0
            } break;
2282
0
        case GGML_OP_SCALE:
2283
0
        case GGML_OP_SET:
2284
0
        case GGML_OP_RESHAPE:
2285
0
        case GGML_OP_VIEW:
2286
0
        case GGML_OP_PERMUTE:
2287
0
        case GGML_OP_TRANSPOSE:
2288
0
        case GGML_OP_GET_ROWS_BACK:
2289
0
        case GGML_OP_DIAG:
2290
0
            {
2291
0
                n_tasks = 1;
2292
0
            } break;
2293
0
        case GGML_OP_DIAG_MASK_ZERO:
2294
0
        case GGML_OP_DIAG_MASK_INF:
2295
0
        case GGML_OP_SOFT_MAX_BACK:
2296
0
        case GGML_OP_ROPE:
2297
0
        case GGML_OP_ROPE_BACK:
2298
0
        case GGML_OP_ADD_REL_POS:
2299
0
            {
2300
0
                n_tasks = n_threads;
2301
0
            } break;
2302
0
        case GGML_OP_CLAMP:
2303
0
            {
2304
0
                n_tasks = 1; //TODO
2305
0
            } break;
2306
0
        case GGML_OP_SOFT_MAX:
2307
0
            {
2308
0
                n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
2309
0
            } break;
2310
0
        case GGML_OP_IM2COL:
2311
0
        case GGML_OP_IM2COL_BACK:
2312
0
        case GGML_OP_IM2COL_3D:
2313
0
        case GGML_OP_CONV_2D:
2314
0
        case GGML_OP_CONV_3D:
2315
0
        case GGML_OP_CONV_2D_DW:
2316
0
        case GGML_OP_CONV_TRANSPOSE_1D:
2317
0
        case GGML_OP_CONV_TRANSPOSE_2D:
2318
0
            {
2319
0
                n_tasks = n_threads;
2320
0
            } break;
2321
0
        case GGML_OP_POOL_1D:
2322
0
        case GGML_OP_POOL_2D:
2323
0
        case GGML_OP_POOL_2D_BACK:
2324
0
            {
2325
0
                n_tasks = 1;
2326
0
            } break;
2327
0
        case GGML_OP_UPSCALE:
2328
0
        case GGML_OP_PAD:
2329
0
        case GGML_OP_PAD_REFLECT_1D:
2330
0
        case GGML_OP_ROLL:
2331
0
        case GGML_OP_ARANGE:
2332
0
        case GGML_OP_TIMESTEP_EMBEDDING:
2333
0
        case GGML_OP_ARGSORT:
2334
0
        case GGML_OP_TOP_K:
2335
0
        case GGML_OP_FLASH_ATTN_EXT:
2336
0
        case GGML_OP_FLASH_ATTN_BACK:
2337
0
        case GGML_OP_SSM_CONV:
2338
0
        case GGML_OP_SSM_SCAN:
2339
0
        case GGML_OP_RWKV_WKV6:
2340
0
        case GGML_OP_GATED_LINEAR_ATTN:
2341
0
        case GGML_OP_RWKV_WKV7:
2342
0
            {
2343
0
                n_tasks = n_threads;
2344
0
            } break;
2345
0
        case GGML_OP_WIN_PART:
2346
0
        case GGML_OP_WIN_UNPART:
2347
0
        case GGML_OP_GET_REL_POS:
2348
0
            {
2349
0
                n_tasks = 1;
2350
0
            } break;
2351
0
        case GGML_OP_MAP_CUSTOM1:
2352
0
            {
2353
0
                struct ggml_map_custom1_op_params p;
2354
0
                memcpy(&p, node->op_params, sizeof(p));
2355
0
                if (p.n_tasks == GGML_N_TASKS_MAX) {
2356
0
                    n_tasks = n_threads;
2357
0
                } else {
2358
0
                    n_tasks = MIN(p.n_tasks, n_threads);
2359
0
                }
2360
0
            } break;
2361
0
        case GGML_OP_MAP_CUSTOM2:
2362
0
            {
2363
0
                struct ggml_map_custom2_op_params p;
2364
0
                memcpy(&p, node->op_params, sizeof(p));
2365
0
                if (p.n_tasks == GGML_N_TASKS_MAX) {
2366
0
                    n_tasks = n_threads;
2367
0
                } else {
2368
0
                    n_tasks = MIN(p.n_tasks, n_threads);
2369
0
                }
2370
0
            } break;
2371
0
        case GGML_OP_MAP_CUSTOM3:
2372
0
            {
2373
0
                struct ggml_map_custom3_op_params p;
2374
0
                memcpy(&p, node->op_params, sizeof(p));
2375
0
                if (p.n_tasks == GGML_N_TASKS_MAX) {
2376
0
                    n_tasks = n_threads;
2377
0
                } else {
2378
0
                    n_tasks = MIN(p.n_tasks, n_threads);
2379
0
                }
2380
0
            } break;
2381
0
        case GGML_OP_CUSTOM:
2382
0
            {
2383
0
                struct ggml_custom_op_params p;
2384
0
                memcpy(&p, node->op_params, sizeof(p));
2385
0
                if (p.n_tasks == GGML_N_TASKS_MAX) {
2386
0
                    n_tasks = n_threads;
2387
0
                } else {
2388
0
                    n_tasks = MIN(p.n_tasks, n_threads);
2389
0
                }
2390
0
            } break;
2391
0
        case GGML_OP_CROSS_ENTROPY_LOSS:
2392
0
        case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
2393
0
        case GGML_OP_OPT_STEP_ADAMW:
2394
0
        case GGML_OP_OPT_STEP_SGD:
2395
0
            {
2396
0
                n_tasks = n_threads;
2397
0
            } break;
2398
0
        case GGML_OP_NONE:
2399
0
            {
2400
0
                n_tasks = 1;
2401
0
            } break;
2402
0
        case GGML_OP_COUNT:
2403
0
            {
2404
0
                GGML_ABORT("fatal error");
2405
0
            }
2406
0
        default:
2407
0
            {
2408
0
                fprintf(stderr, "%s: op not implemented: ", __func__);
2409
0
                if (node->op < GGML_OP_COUNT) {
2410
0
                    fprintf(stderr, "%s\n", ggml_op_name(node->op));
2411
0
                } else {
2412
0
                    fprintf(stderr, "%d\n", node->op);
2413
0
                }
2414
0
                GGML_ABORT("fatal error");
2415
0
            }
2416
0
    }
2417
2418
0
    assert(n_tasks > 0);
2419
2420
0
    return n_tasks;
2421
0
}
2422
2423
static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
2424
2425
#if defined(_WIN32)
2426
#include "windows.h"
2427
2428
// TODO: support > 64 CPUs
2429
static bool ggml_thread_apply_affinity(bool * mask) {
2430
    HANDLE    h = GetCurrentThread();
2431
    uint64_t  bitmask = 0ULL;
2432
2433
    assert(GGML_MAX_N_THREADS >= 64);
2434
2435
    for (int32_t i = 0; i < 8; i++) {
2436
        int32_t idx = i * 8;
2437
        uint8_t val = 0;
2438
        val |= mask[idx + 0] << 0;
2439
        val |= mask[idx + 1] << 1;
2440
        val |= mask[idx + 2] << 2;
2441
        val |= mask[idx + 3] << 3;
2442
        val |= mask[idx + 4] << 4;
2443
        val |= mask[idx + 5] << 5;
2444
        val |= mask[idx + 6] << 6;
2445
        val |= mask[idx + 7] << 7;
2446
        bitmask |= (uint64_t)val << idx;
2447
    }
2448
2449
    for (int32_t i = 64; i < GGML_MAX_N_THREADS; i++) {
2450
        if (mask[i]) {
2451
            fprintf(stderr, "warn: setting thread-affinity for > 64 CPUs isn't supported on windows!\n");
2452
            break;
2453
        }
2454
    }
2455
2456
    DWORD_PTR m = (DWORD_PTR)bitmask;
2457
2458
    m = SetThreadAffinityMask(h, m);
2459
2460
    return m != 0;
2461
}
2462
2463
static bool ggml_thread_apply_priority(int32_t prio) {
2464
    // Note that on Windows the Process Priority Class must be updated in order to set Thread priority.
2465
    // This is up to the applications.
2466
    DWORD p = THREAD_PRIORITY_NORMAL;
2467
    switch (prio) {
2468
        case GGML_SCHED_PRIO_LOW:      p = THREAD_PRIORITY_BELOW_NORMAL;  break;
2469
        case GGML_SCHED_PRIO_NORMAL:   p = THREAD_PRIORITY_NORMAL;        break;
2470
        case GGML_SCHED_PRIO_MEDIUM:   p = THREAD_PRIORITY_ABOVE_NORMAL;  break;
2471
        case GGML_SCHED_PRIO_HIGH:     p = THREAD_PRIORITY_HIGHEST;       break;
2472
        case GGML_SCHED_PRIO_REALTIME: p = THREAD_PRIORITY_TIME_CRITICAL; break;
2473
    }
2474
2475
    if (prio != GGML_SCHED_PRIO_LOW) {
2476
        // Tell Windows that this thread should not be throttled (needs its own CPU core).
2477
        // Newer Windows 11 versions aggresively park (offline) CPU cores and often place
2478
        // all our threads onto the first 4 cores which results in terrible performance with
2479
        // n_threads > 4
2480
        #if _WIN32_WINNT >= 0x0602
2481
        THREAD_POWER_THROTTLING_STATE t;
2482
        ZeroMemory(&t, sizeof(t));
2483
        t.Version     = THREAD_POWER_THROTTLING_CURRENT_VERSION;
2484
        t.ControlMask = THREAD_POWER_THROTTLING_EXECUTION_SPEED;
2485
        t.StateMask   = 0;
2486
2487
        if (!SetThreadInformation(GetCurrentThread(), ThreadPowerThrottling, &t, sizeof(t))) {
2488
            GGML_LOG_DEBUG("failed to disable thread power throttling %d : (%d)\n", prio, (int) GetLastError());
2489
            return false;
2490
        }
2491
        #endif
2492
    }
2493
2494
    if (prio == GGML_SCHED_PRIO_NORMAL) {
2495
        // Keep inherited policy/priority
2496
        return true;
2497
    }
2498
2499
    if (!SetThreadPriority(GetCurrentThread(), p)) {
2500
        fprintf(stderr, "warn: failed to set thread priority %d : (%d)\n", prio, (int) GetLastError());
2501
        return false;
2502
    }
2503
2504
    return true;
2505
}
2506
2507
#elif defined(__APPLE__)
2508
#include <sys/types.h>
2509
#include <sys/resource.h>
2510
2511
static bool ggml_thread_apply_affinity(const bool * mask) {
2512
    // Not supported on Apple platforms
2513
    UNUSED(mask);
2514
    return true;
2515
}
2516
2517
static bool ggml_thread_apply_priority(int32_t prio) {
2518
    struct sched_param p;
2519
    int32_t policy = SCHED_OTHER;
2520
    switch (prio) {
2521
        // TODO: there seems to be no way to set lower prio on Apple platforms
2522
        case GGML_SCHED_PRIO_LOW:      policy = SCHED_OTHER; p.sched_priority = 0;  break;
2523
        case GGML_SCHED_PRIO_NORMAL:   policy = SCHED_OTHER; p.sched_priority = 0;  break;
2524
        case GGML_SCHED_PRIO_MEDIUM:   policy = SCHED_FIFO;  p.sched_priority = 40; break;
2525
        case GGML_SCHED_PRIO_HIGH:     policy = SCHED_FIFO;  p.sched_priority = 80; break;
2526
        case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO;  p.sched_priority = 90; break;
2527
    }
2528
2529
    if (prio == GGML_SCHED_PRIO_NORMAL) {
2530
        // Keep inherited policy/priority
2531
        return true;
2532
    }
2533
2534
    int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
2535
    if (err != 0) {
2536
        fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
2537
        return false;
2538
    }
2539
2540
    return true;
2541
}
2542
2543
#elif defined(__gnu_linux__)
2544
// TODO: this may not work on BSD, to be verified
2545
2546
0
static bool ggml_thread_apply_affinity(const bool * mask) {
2547
0
    cpu_set_t cpuset;
2548
0
    int err;
2549
2550
0
    CPU_ZERO(&cpuset);
2551
2552
0
    for (uint32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
2553
0
        if (mask[i]) {
2554
0
            GGML_PRINT_DEBUG("Thread %lx: adding %d to cpuset\n", pthread_self(), i);
2555
0
            CPU_SET(i, &cpuset);
2556
0
        }
2557
0
    }
2558
2559
#ifdef __ANDROID__
2560
    err = sched_setaffinity(0, sizeof(cpuset), &cpuset);
2561
    if (err < 0) {
2562
        err = errno;
2563
    }
2564
#else
2565
0
    err = pthread_setaffinity_np(pthread_self(), sizeof(cpuset), &cpuset);
2566
0
#endif
2567
0
    if (err != 0) {
2568
0
        fprintf(stderr, "warn: failed to set affinity mask 0x%llx : %s (%d)\n", (unsigned long long)mask, strerror(err), err);
2569
0
        return false;
2570
0
    }
2571
2572
0
    return true;
2573
0
}
2574
2575
0
static bool ggml_thread_apply_priority(int32_t prio) {
2576
0
    struct sched_param p;
2577
0
    int32_t policy = SCHED_OTHER;
2578
0
    switch (prio) {
2579
0
        case GGML_SCHED_PRIO_LOW:      policy = SCHED_BATCH; p.sched_priority = 0;  break;
2580
0
        case GGML_SCHED_PRIO_NORMAL:   policy = SCHED_OTHER; p.sched_priority = 0;  break;
2581
0
        case GGML_SCHED_PRIO_MEDIUM:   policy = SCHED_FIFO;  p.sched_priority = 40; break;
2582
0
        case GGML_SCHED_PRIO_HIGH:     policy = SCHED_FIFO;  p.sched_priority = 80; break;
2583
0
        case GGML_SCHED_PRIO_REALTIME: policy = SCHED_FIFO;  p.sched_priority = 90; break;
2584
0
    }
2585
2586
0
    if (prio == GGML_SCHED_PRIO_NORMAL) {
2587
        // Keep inherited policy/priority
2588
0
        return true;
2589
0
    }
2590
2591
0
    int32_t err = pthread_setschedparam(pthread_self(), policy, &p);
2592
0
    if (err != 0) {
2593
0
        fprintf(stderr, "warn: failed to set thread priority %d : %s (%d)\n", prio, strerror(err), err);
2594
0
        return false;
2595
0
    }
2596
2597
0
    return true;
2598
0
}
2599
2600
#else // unsupported platforms
2601
2602
static bool ggml_thread_apply_affinity(const bool * mask) {
2603
    UNUSED(mask);
2604
    return true;
2605
}
2606
2607
static bool ggml_thread_apply_priority(int32_t prio) {
2608
    UNUSED(prio);
2609
    return true;
2610
}
2611
2612
#endif
2613
2614
0
static bool ggml_thread_cpumask_is_valid(const bool * mask) {
2615
0
    for (int i = 0; i < GGML_MAX_N_THREADS; i++) {
2616
0
        if (mask[i]) { return true; }
2617
0
    }
2618
0
    return false;
2619
0
}
2620
2621
0
static void ggml_thread_cpumask_next(const bool * global_mask, bool * local_mask, bool strict, int32_t* iter) {
2622
0
    if (!strict) {
2623
0
        memcpy(local_mask, global_mask, GGML_MAX_N_THREADS);
2624
0
        return;
2625
0
    } else {
2626
0
        memset(local_mask, 0, GGML_MAX_N_THREADS);
2627
0
        int32_t base_idx = *iter;
2628
0
        for (int32_t i = 0; i < GGML_MAX_N_THREADS; i++) {
2629
0
            int32_t idx = base_idx + i;
2630
0
            if (idx >= GGML_MAX_N_THREADS) {
2631
                // Just a cheaper modulo
2632
0
                idx -= GGML_MAX_N_THREADS;
2633
0
            }
2634
0
            if (global_mask[idx]) {
2635
0
                local_mask[idx] = 1;
2636
0
                *iter = idx + 1;
2637
0
                return;
2638
0
            }
2639
0
        }
2640
0
    }
2641
0
}
2642
2643
0
void ggml_threadpool_free(struct ggml_threadpool* threadpool) {
2644
0
    if (!threadpool) return;
2645
2646
0
    const int n_threads = threadpool->n_threads;
2647
2648
0
#ifndef GGML_USE_OPENMP
2649
0
    struct ggml_compute_state* workers = threadpool->workers;
2650
2651
0
    ggml_mutex_lock(&threadpool->mutex);
2652
2653
0
    threadpool->stop = true;
2654
0
    threadpool->pause = false;
2655
2656
0
    ggml_cond_broadcast(&threadpool->cond);
2657
0
    ggml_mutex_unlock(&threadpool->mutex);
2658
2659
0
    for (int j = 1; j < n_threads; j++) {
2660
0
        int32_t rc = ggml_thread_join(workers[j].thrd, NULL);
2661
0
        GGML_ASSERT(rc == GGML_EXIT_SUCCESS || rc == GGML_EXIT_ABORTED);
2662
0
        UNUSED(rc);
2663
0
    }
2664
2665
0
    ggml_mutex_destroy(&threadpool->mutex);
2666
0
    ggml_cond_destroy(&threadpool->cond);
2667
0
#endif // GGML_USE_OPENMP
2668
2669
0
    const size_t workers_size = sizeof(struct ggml_compute_state) * n_threads;
2670
0
    ggml_aligned_free(threadpool->workers, workers_size);
2671
0
    ggml_aligned_free(threadpool, sizeof(struct ggml_threadpool));
2672
0
}
2673
2674
#ifndef GGML_USE_OPENMP
2675
// pause/resume must be called under mutex
2676
0
static void ggml_threadpool_pause_locked(struct ggml_threadpool * threadpool) {
2677
0
    GGML_PRINT_DEBUG("Pausing threadpool\n");
2678
0
    threadpool->pause = true;
2679
0
    ggml_cond_broadcast(&threadpool->cond);
2680
0
}
2681
2682
0
static void ggml_threadpool_resume_locked(struct ggml_threadpool * threadpool) {
2683
0
    GGML_PRINT_DEBUG("Resuming threadpool\n");
2684
0
    threadpool->pause = false;
2685
0
    ggml_cond_broadcast(&threadpool->cond);
2686
0
}
2687
#endif
2688
2689
0
void ggml_threadpool_pause(struct ggml_threadpool * threadpool) {
2690
0
#ifndef GGML_USE_OPENMP
2691
0
    ggml_mutex_lock(&threadpool->mutex);
2692
0
    if (!threadpool->pause) {
2693
0
       ggml_threadpool_pause_locked(threadpool);
2694
0
    }
2695
0
    ggml_mutex_unlock(&threadpool->mutex);
2696
#else
2697
    UNUSED(threadpool);
2698
#endif
2699
0
}
2700
2701
0
void ggml_threadpool_resume(struct ggml_threadpool * threadpool) {
2702
0
#ifndef GGML_USE_OPENMP
2703
0
    ggml_mutex_lock(&threadpool->mutex);
2704
0
    if (threadpool->pause) {
2705
0
       ggml_threadpool_resume_locked(threadpool);
2706
0
    }
2707
0
    ggml_mutex_unlock(&threadpool->mutex);
2708
#else
2709
    UNUSED(threadpool);
2710
#endif
2711
0
}
2712
2713
struct ggml_cplan ggml_graph_plan(
2714
          const struct ggml_cgraph * cgraph,
2715
                               int   n_threads,
2716
0
            struct ggml_threadpool * threadpool) {
2717
2718
0
    if (threadpool == NULL) {
2719
        //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
2720
0
    }
2721
0
    if (n_threads <= 0) {
2722
0
        n_threads = threadpool ? threadpool->n_threads : GGML_DEFAULT_N_THREADS;
2723
0
    }
2724
2725
#if defined(__EMSCRIPTEN__) && !defined(__EMSCRIPTEN_PTHREADS__)
2726
    // Emscripten without pthreads support can only use a single thread
2727
    n_threads = 1;
2728
#endif
2729
2730
0
    size_t work_size = 0;
2731
2732
0
    struct ggml_cplan cplan;
2733
0
    memset(&cplan, 0, sizeof(struct ggml_cplan));
2734
2735
0
    int max_tasks = 1;
2736
2737
    // thread scheduling for the different operations + work buffer size estimation
2738
0
    for (int i = 0; i < cgraph->n_nodes; i++) {
2739
0
        struct ggml_tensor * node = cgraph->nodes[i];
2740
2741
0
        const int n_tasks = ggml_get_n_tasks(node, n_threads);
2742
2743
0
        max_tasks = MAX(max_tasks, n_tasks);
2744
2745
0
        size_t cur = 0;
2746
2747
0
        if (!ggml_cpu_extra_work_size(n_threads, node, &cur)) {
2748
0
            switch (node->op) {
2749
0
                case GGML_OP_CPY:
2750
0
                case GGML_OP_DUP:
2751
0
                    {
2752
0
                        if (ggml_is_quantized(node->type) ||
2753
                            // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
2754
0
                            (node->src[0]->type == GGML_TYPE_F16  && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
2755
0
                            (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16) ||
2756
                            // conversion between F32 and I32
2757
0
                            (node->src[0]->type == GGML_TYPE_F32 && node->src[1] && node->src[1]->type == GGML_TYPE_I32) ||
2758
0
                            (node->src[0]->type == GGML_TYPE_I32 && node->src[1] && node->src[1]->type == GGML_TYPE_F32)) {
2759
0
                            cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
2760
0
                        }
2761
0
                    } break;
2762
0
                case GGML_OP_ADD:
2763
0
                case GGML_OP_ADD_ID:
2764
0
                case GGML_OP_ADD1:
2765
0
                    {
2766
0
                        if (ggml_is_quantized(node->src[0]->type)) {
2767
0
                            cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
2768
0
                        }
2769
0
                    } break;
2770
0
                case GGML_OP_ACC:
2771
0
                    {
2772
0
                        if (ggml_is_quantized(node->src[0]->type)) {
2773
0
                            cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
2774
0
                        }
2775
0
                    } break;
2776
0
                case GGML_OP_COUNT_EQUAL:
2777
0
                    {
2778
0
                        cur = ggml_type_size(node->type)*n_tasks;
2779
0
                    } break;
2780
0
                case GGML_OP_MUL_MAT:
2781
0
                    {
2782
0
                        const enum ggml_type vec_dot_type = type_traits_cpu[node->src[0]->type].vec_dot_type;
2783
2784
0
                        if (node->src[1]->type != vec_dot_type) {
2785
0
                            cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
2786
0
                        }
2787
0
                    } break;
2788
0
                case GGML_OP_MUL_MAT_ID:
2789
0
                    {
2790
0
                        cur = 0;
2791
0
                        const struct ggml_tensor * src0 = node->src[0];
2792
0
                        const struct ggml_tensor * src1 = node->src[1];
2793
0
                        const struct ggml_tensor * ids = node->src[2];
2794
0
                        const enum ggml_type vec_dot_type = type_traits_cpu[src0->type].vec_dot_type;
2795
0
                        const int n_as = src0->ne[2];
2796
                        // src1
2797
0
                        if (src1->type != vec_dot_type) {
2798
0
                            cur += ggml_row_size(vec_dot_type, ggml_nelements(src1)) + sizeof(int64_t);
2799
0
                        }
2800
                        // matrix_row_counts
2801
0
                        cur += n_as * sizeof(int64_t) + sizeof(int64_t);
2802
                        // matrix_rows
2803
0
                        cur += n_as*ids->ne[0]*ids->ne[1]*sizeof(struct mmid_row_mapping) + sizeof(int64_t);
2804
                        // atomic_current_chunk
2805
0
                        cur += CACHE_LINE_SIZE*n_as + CACHE_LINE_SIZE;
2806
0
                    } break;
2807
0
                case GGML_OP_OUT_PROD:
2808
0
                    {
2809
0
                        if (ggml_is_quantized(node->src[0]->type)) {
2810
0
                            cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
2811
0
                        }
2812
0
                    } break;
2813
0
                case GGML_OP_SOFT_MAX:
2814
0
                case GGML_OP_ROPE:
2815
0
                case GGML_OP_ROPE_BACK:
2816
0
                    {
2817
0
                        cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
2818
0
                    } break;
2819
0
                case GGML_OP_CONV_TRANSPOSE_1D:
2820
0
                    {
2821
0
                        GGML_ASSERT(node->src[0]->ne[3] == 1);
2822
0
                        GGML_ASSERT(node->src[1]->ne[2] == 1);
2823
0
                        GGML_ASSERT(node->src[1]->ne[3] == 1);
2824
2825
0
                        const int64_t ne00 = node->src[0]->ne[0];  // K
2826
0
                        const int64_t ne01 = node->src[0]->ne[1];  // Cout
2827
0
                        const int64_t ne02 = node->src[0]->ne[2];  // Cin
2828
0
                        const int64_t ne10 = node->src[1]->ne[0];  // L
2829
0
                        const int64_t ne11 = node->src[1]->ne[1];  // Cin
2830
2831
0
                        if ((node->src[0]->type == GGML_TYPE_F16 ||
2832
0
                             node->src[0]->type == GGML_TYPE_BF16) &&
2833
0
                            node->src[1]->type == GGML_TYPE_F32) {
2834
0
                            cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
2835
0
                            cur += sizeof(ggml_fp16_t)*ne10*ne11;
2836
0
                        } else if (node->src[0]->type == GGML_TYPE_F32 &&
2837
0
                                   node->src[1]->type == GGML_TYPE_F32) {
2838
0
                            cur += sizeof(float)*ne00*ne01*ne02;
2839
0
                            cur += sizeof(float)*ne10*ne11;
2840
0
                        } else {
2841
0
                            GGML_ABORT("fatal error");
2842
0
                        }
2843
0
                    } break;
2844
0
                case GGML_OP_CONV_2D:
2845
0
                case GGML_OP_CONV_3D:
2846
0
                    {
2847
0
                        cur = GGML_IM2COL_WORK_SIZE;
2848
0
                    } break;
2849
0
                case GGML_OP_CONV_TRANSPOSE_2D:
2850
0
                    {
2851
0
                        const int64_t ne00 = node->src[0]->ne[0]; // W
2852
0
                        const int64_t ne01 = node->src[0]->ne[1]; // H
2853
0
                        const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
2854
0
                        const int64_t ne03 = node->src[0]->ne[3]; // Channels In
2855
2856
0
                        const int64_t ne10 = node->src[1]->ne[0]; // W
2857
0
                        const int64_t ne11 = node->src[1]->ne[1]; // H
2858
0
                        const int64_t ne12 = node->src[1]->ne[2]; // Channels In
2859
2860
0
                        cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
2861
0
                        cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
2862
0
                    } break;
2863
0
                case GGML_OP_TOP_K:
2864
0
                    {
2865
0
                        cur += sizeof(int32_t)*node->src[0]->ne[0]*n_tasks;
2866
0
                    } break;
2867
0
                case GGML_OP_FLASH_ATTN_EXT:
2868
0
                    {
2869
0
                        const int64_t ne10 = node->src[1]->ne[0]; // DK
2870
0
                        const int64_t ne20 = node->src[2]->ne[0]; // DV
2871
2872
0
                        cur = sizeof(float)*(1*ne10 + 2*ne20)*n_tasks; // 1x head size K + 2x head size V (per thread)
2873
0
                    } break;
2874
0
                case GGML_OP_FLASH_ATTN_BACK:
2875
0
                    {
2876
0
                        const int64_t    D = node->src[0]->ne[0];
2877
0
                        const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
2878
0
                        const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
2879
0
                        if (node->src[1]->type == GGML_TYPE_F32) {
2880
0
                            cur  = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
2881
0
                            cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
2882
0
                        } else if (node->src[1]->type == GGML_TYPE_F16) {
2883
0
                            cur  = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
2884
0
                            cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
2885
0
                        } else if (node->src[1]->type == GGML_TYPE_BF16) {
2886
0
                            cur  = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
2887
0
                            cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
2888
0
                        }
2889
0
                    } break;
2890
2891
0
                case GGML_OP_CROSS_ENTROPY_LOSS:
2892
0
                    {
2893
0
                        cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
2894
0
                    } break;
2895
0
                case GGML_OP_COUNT:
2896
0
                    {
2897
0
                        GGML_ABORT("fatal error");
2898
0
                    }
2899
0
                default:
2900
0
                    break;
2901
0
            }
2902
0
        }
2903
2904
0
        work_size = MAX(work_size, cur);
2905
0
    }
2906
2907
0
    if (work_size > 0) {
2908
0
        work_size += CACHE_LINE_SIZE*(n_threads);
2909
0
    }
2910
2911
0
    cplan.threadpool = threadpool;
2912
0
    cplan.n_threads  = MIN(max_tasks, n_threads);
2913
0
    cplan.work_size  = work_size;
2914
0
    cplan.work_data  = NULL;
2915
2916
0
    return cplan;
2917
0
}
2918
2919
0
static thread_ret_t ggml_graph_compute_thread(void * data) {
2920
0
    struct ggml_compute_state * state = (struct ggml_compute_state *) data;
2921
0
    struct ggml_threadpool    * tp    = state->threadpool;
2922
2923
0
    const struct ggml_cgraph * cgraph = tp->cgraph;
2924
0
    const struct ggml_cplan  * cplan  = tp->cplan;
2925
2926
0
    set_numa_thread_affinity(state->ith);
2927
2928
0
    struct ggml_compute_params params = {
2929
0
        /*.ith       =*/ state->ith,
2930
0
        /*.nth       =*/ atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK,
2931
0
        /*.wsize     =*/ cplan->work_size,
2932
0
        /*.wdata     =*/ cplan->work_data,
2933
0
        /*.threadpool=*/ tp,
2934
0
    };
2935
2936
0
    GGML_PRINT_DEBUG("thread #%d compute-start cplan %p last-graph %d \n", state->ith, cplan, state->last_graph);
2937
2938
0
    for (int node_n = 0; node_n < cgraph->n_nodes && atomic_load_explicit(&tp->abort, memory_order_relaxed) != node_n; node_n++) {
2939
0
        struct ggml_tensor * node = cgraph->nodes[node_n];
2940
2941
0
        if (ggml_op_is_empty(node->op)) {
2942
            // skip NOPs
2943
0
            continue;
2944
0
        }
2945
2946
0
        ggml_compute_forward(&params, node);
2947
2948
0
        if (state->ith == 0 && cplan->abort_callback &&
2949
0
                cplan->abort_callback(cplan->abort_callback_data)) {
2950
0
            atomic_store_explicit(&tp->abort, node_n + 1, memory_order_relaxed);
2951
0
            tp->ec    = GGML_STATUS_ABORTED;
2952
0
        }
2953
2954
0
        if (node_n + 1 < cgraph->n_nodes) {
2955
0
            ggml_barrier(state->threadpool);
2956
0
        }
2957
0
    }
2958
2959
0
    GGML_PRINT_DEBUG("thread #%d compute-done cplan %p last-graph %d \n", state->ith, cplan, state->last_graph);
2960
2961
0
    ggml_barrier(state->threadpool);
2962
2963
0
    return 0;
2964
0
}
2965
2966
#ifndef GGML_USE_OPENMP
2967
2968
// check if thread is ready to proceed (exit from polling or sleeping)
2969
// returns true if loops should exit, sets state->pending to indicate new work
2970
0
static inline bool ggml_graph_compute_thread_ready(struct ggml_compute_state * state) {
2971
0
    struct ggml_threadpool * threadpool = state->threadpool;
2972
2973
0
    if (state->pending || threadpool->stop || threadpool->pause) { return true; }
2974
2975
    // check for new graph/work
2976
0
    int n_graph   = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed);
2977
0
    int n_threads = n_graph & GGML_THREADPOOL_N_THREADS_MASK;
2978
0
    if (n_graph != state->last_graph) {
2979
0
        state->pending    = (state->ith < n_threads);
2980
0
        state->last_graph = n_graph;
2981
0
        return true;
2982
0
    }
2983
2984
0
    return false;
2985
0
}
2986
2987
// sync thread state after polling
2988
0
static inline void ggml_graph_compute_thread_sync(struct ggml_compute_state * state) {
2989
    // TSAN doesn't support standalone fence yet, we use a dummy read-modify-write instead
2990
    #ifdef GGML_TSAN_ENABLED
2991
    atomic_fetch_add_explicit(&state->threadpool->n_graph, 0, memory_order_seq_cst);
2992
    #else
2993
0
    atomic_thread_fence(memory_order_seq_cst);
2994
0
    #endif
2995
0
    UNUSED(state);
2996
0
}
2997
2998
0
static inline bool ggml_graph_compute_poll_for_work(struct ggml_compute_state * state) {
2999
0
    struct ggml_threadpool * threadpool = state->threadpool;
3000
3001
    // This seems to make 0 ... 100 a decent range for polling level across modern processors.
3002
    // Perhaps, we can adjust it dynamically based on load and things.
3003
0
    const uint64_t n_rounds = 1024UL * 128 * threadpool->poll;
3004
3005
0
    for (uint64_t i=0; !ggml_graph_compute_thread_ready(state) && i < n_rounds; i++) {
3006
        // No new work. Keep polling.
3007
0
        ggml_thread_cpu_relax();
3008
0
    }
3009
3010
0
    return state->pending;
3011
0
}
3012
3013
0
static inline bool ggml_graph_compute_check_for_work(struct ggml_compute_state * state) {
3014
0
    struct ggml_threadpool * threadpool = state->threadpool;
3015
3016
0
    if (ggml_graph_compute_poll_for_work(state)) {
3017
0
        ggml_graph_compute_thread_sync(state);
3018
0
        return state->pending;
3019
0
    }
3020
3021
0
    ggml_mutex_lock_shared(&threadpool->mutex);
3022
0
    while (!ggml_graph_compute_thread_ready(state)) {
3023
        // No new work. Wait for the signal.
3024
0
        GGML_PRINT_DEBUG("thread #%d waiting for work (sleeping)\n", state->ith);
3025
0
        ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
3026
0
    }
3027
0
    ggml_mutex_unlock_shared(&threadpool->mutex);
3028
3029
0
    return state->pending;
3030
0
}
3031
3032
0
static thread_ret_t ggml_graph_compute_secondary_thread(void* data) {
3033
0
    struct ggml_compute_state * state = (struct ggml_compute_state *) data;
3034
0
    struct ggml_threadpool * threadpool = state->threadpool;
3035
3036
0
    ggml_thread_apply_priority(threadpool->prio);
3037
0
    if (ggml_thread_cpumask_is_valid(state->cpumask)) {
3038
0
        ggml_thread_apply_affinity(state->cpumask);
3039
0
    }
3040
3041
0
    while (true) {
3042
        // Check if we need to sleep
3043
0
        while (threadpool->pause) {
3044
0
            GGML_PRINT_DEBUG("thread #%d inside pause loop\n", state->ith);
3045
0
            ggml_mutex_lock_shared(&threadpool->mutex);
3046
0
            if (threadpool->pause) {
3047
0
                ggml_cond_wait(&threadpool->cond, &threadpool->mutex);
3048
0
            }
3049
0
            GGML_PRINT_DEBUG("thread #%d resuming after wait\n", state->ith);
3050
0
            ggml_mutex_unlock_shared(&threadpool->mutex);
3051
0
        }
3052
3053
        // This needs to be checked for after the cond_wait
3054
0
        if (threadpool->stop) break;
3055
3056
        // Check if there is new work
3057
        // The main thread is the only one that can dispatch new work
3058
3059
0
        ggml_graph_compute_check_for_work(state);
3060
0
        if (state->pending) {
3061
0
            state->pending = false;
3062
0
            ggml_graph_compute_thread(state);
3063
0
        }
3064
0
    }
3065
3066
0
    return (thread_ret_t) 0;
3067
0
}
3068
3069
// Start processing new graph
3070
static void ggml_graph_compute_kickoff(struct ggml_threadpool * threadpool, int n_threads)
3071
0
{
3072
    // Always take the mutex here because the worker threads are doing hybrid poll/wait
3073
3074
0
    ggml_mutex_lock(&threadpool->mutex);
3075
3076
    // Update the number of active threads and the graph count
3077
0
    int n_graph = atomic_load_explicit(&threadpool->n_graph, memory_order_relaxed) >> GGML_THREADPOOL_N_THREADS_BITS;
3078
0
    n_graph = ((n_graph + 1) << GGML_THREADPOOL_N_THREADS_BITS) | (n_threads & GGML_THREADPOOL_N_THREADS_MASK);
3079
3080
0
    GGML_PRINT_DEBUG("compute-kickoff: n_threads %d n_graph %d\n", n_threads, n_graph);
3081
3082
    // Indicate the graph is ready to be processed
3083
    // We need the full seq-cst fence here because of the polling threads (used in thread_sync)
3084
0
    atomic_store_explicit(&threadpool->n_graph, n_graph, memory_order_seq_cst);
3085
3086
0
    if (threadpool->pause) {
3087
       // Update main thread prio and affinity to match the threadpool settings
3088
0
       ggml_thread_apply_priority(threadpool->prio);
3089
0
       if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
3090
0
           ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
3091
0
       }
3092
3093
       // resume does cond broadcast
3094
0
       ggml_threadpool_resume_locked(threadpool);
3095
0
    } else {
3096
0
       ggml_cond_broadcast(&threadpool->cond);
3097
0
    }
3098
3099
0
    ggml_mutex_unlock(&threadpool->mutex);
3100
0
}
3101
3102
#endif // GGML_USE_OPENMP
3103
3104
static struct ggml_threadpool * ggml_threadpool_new_impl(
3105
    struct ggml_threadpool_params * tpp,
3106
               struct ggml_cgraph * cgraph,
3107
0
                struct ggml_cplan * cplan) {
3108
3109
0
    struct ggml_threadpool * threadpool =
3110
0
        ggml_aligned_malloc(sizeof(struct ggml_threadpool));
3111
0
    {
3112
0
        threadpool->cgraph           = cgraph;
3113
0
        threadpool->cplan            = cplan;
3114
0
        threadpool->n_graph          = 0;
3115
0
        threadpool->n_barrier        = 0;
3116
0
        threadpool->n_barrier_passed = 0;
3117
0
        threadpool->current_chunk    = 0;
3118
0
        threadpool->stop             = false;
3119
0
        threadpool->pause            = tpp->paused;
3120
0
        threadpool->abort            = -1;
3121
0
        threadpool->workers          = NULL;
3122
0
        threadpool->n_threads        = tpp->n_threads;
3123
0
        threadpool->poll             = tpp->poll;
3124
0
        threadpool->prio             = tpp->prio;
3125
0
        threadpool->ec               = GGML_STATUS_SUCCESS;
3126
0
    }
3127
3128
    // Allocate and init workers state
3129
0
    const size_t workers_size = sizeof(struct ggml_compute_state) * tpp->n_threads;
3130
0
    struct ggml_compute_state * workers = ggml_aligned_malloc(workers_size);
3131
3132
0
    memset(workers, 0, workers_size);
3133
0
    for (int j = 0; j < tpp->n_threads; j++) {
3134
0
        workers[j].threadpool = threadpool;
3135
0
        workers[j].ith        = j;
3136
0
    }
3137
3138
0
    threadpool->workers = workers;
3139
3140
#ifdef GGML_USE_OPENMP
3141
    int32_t cpumask_iter = 0;
3142
3143
    // Compute CPU masks for each thread
3144
    for (int j = 0; j < tpp->n_threads; j++) {
3145
        ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
3146
    }
3147
#else // GGML_USE_OPENMP
3148
0
    ggml_mutex_init(&threadpool->mutex);
3149
0
    ggml_cond_init(&threadpool->cond);
3150
3151
    // Spin the threads for all workers, and update CPU placements.
3152
    // Place the main thread last (towards the higher numbered CPU cores).
3153
3154
0
    int32_t cpumask_iter = 0;
3155
3156
0
    for (int j = 1; j < tpp->n_threads; j++) {
3157
0
        ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
3158
3159
0
        int32_t rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_secondary_thread, &workers[j]);
3160
0
        GGML_ASSERT(rc == 0);
3161
0
    }
3162
3163
0
    ggml_thread_cpumask_next(tpp->cpumask, workers[0].cpumask, tpp->strict_cpu, &cpumask_iter);
3164
3165
0
    if (!threadpool->pause) {
3166
        // Update main thread prio and affinity at the start, otherwise we'll do it in resume
3167
0
        ggml_thread_apply_priority(threadpool->prio);
3168
0
        if (ggml_thread_cpumask_is_valid(threadpool->workers[0].cpumask)) {
3169
0
            ggml_thread_apply_affinity(threadpool->workers[0].cpumask);
3170
0
        }
3171
0
    }
3172
0
#endif // GGML_USE_OPENMP
3173
3174
0
    return threadpool;
3175
0
}
3176
3177
0
struct ggml_threadpool * ggml_threadpool_new(struct ggml_threadpool_params * tpp) {
3178
0
    return ggml_threadpool_new_impl(tpp, NULL, NULL);
3179
0
}
3180
3181
0
enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
3182
0
    ggml_cpu_init();
3183
3184
0
    GGML_ASSERT(cplan);
3185
0
    GGML_ASSERT(cplan->n_threads > 0);
3186
0
    GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
3187
3188
0
    int n_threads                               = cplan->n_threads;
3189
0
    struct ggml_threadpool * threadpool = cplan->threadpool;
3190
3191
0
    bool disposable_threadpool = false;
3192
3193
0
    if (threadpool == NULL) {
3194
        //GGML_PRINT_DEBUG("Threadpool is not specified. Will create a disposable threadpool : n_threads %d\n", n_threads);
3195
0
        disposable_threadpool = true;
3196
3197
0
        struct ggml_threadpool_params ttp = ggml_threadpool_params_default(n_threads);
3198
0
        threadpool = ggml_threadpool_new_impl(&ttp, cgraph, cplan);
3199
0
    } else {
3200
        // Reset some of the parameters that need resetting
3201
        // No worker threads should be accessing the parameters below at this stage
3202
0
        threadpool->cgraph           = cgraph;
3203
0
        threadpool->cplan            = cplan;
3204
0
        threadpool->current_chunk    = 0;
3205
0
        threadpool->abort            = -1;
3206
0
        threadpool->ec               = GGML_STATUS_SUCCESS;
3207
0
    }
3208
3209
#ifdef GGML_USE_OPENMP
3210
    if (n_threads > 1) {
3211
        #pragma omp parallel num_threads(n_threads)
3212
        {
3213
            #pragma omp single
3214
            {
3215
                // update the number of threads from the actual number of threads that we got from OpenMP
3216
                n_threads = omp_get_num_threads();
3217
                atomic_store_explicit(&threadpool->n_graph, n_threads, memory_order_relaxed);
3218
            }
3219
3220
            // Apply thread CPU mask and priority
3221
            int ith = omp_get_thread_num();
3222
3223
            ggml_thread_apply_priority(threadpool->prio);
3224
            if (ggml_thread_cpumask_is_valid(threadpool->workers[ith].cpumask)) {
3225
                ggml_thread_apply_affinity(threadpool->workers[ith].cpumask);
3226
            }
3227
            ggml_graph_compute_thread(&threadpool->workers[ith]);
3228
        }
3229
    } else {
3230
        atomic_store_explicit(&threadpool->n_graph, 1, memory_order_relaxed);
3231
        ggml_graph_compute_thread(&threadpool->workers[0]);
3232
    }
3233
#else
3234
0
    if (n_threads > threadpool->n_threads) {
3235
0
        GGML_LOG_WARN("cplan requested more threads (%d) than available (%d)\n", n_threads, threadpool->n_threads);
3236
0
        n_threads = threadpool->n_threads;
3237
0
    }
3238
3239
    // Kick all threads to start the new graph
3240
0
    ggml_graph_compute_kickoff(threadpool, n_threads);
3241
3242
    // This is a work thread too
3243
0
    ggml_graph_compute_thread(&threadpool->workers[0]);
3244
0
#endif
3245
3246
    // don't leave affinity set on the main thread
3247
0
    clear_numa_thread_affinity();
3248
3249
0
    enum ggml_status ret = threadpool->ec;
3250
3251
0
    if (disposable_threadpool) {
3252
0
        ggml_threadpool_free(threadpool);
3253
0
    }
3254
3255
0
    return ret;
3256
0
}
3257
3258
0
enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
3259
0
    struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads, NULL);
3260
3261
0
    cplan.work_data = (uint8_t *)ggml_new_buffer(ctx, cplan.work_size);
3262
3263
0
    return ggml_graph_compute(cgraph, &cplan);
3264
0
}
3265
3266
0
void ggml_cpu_fp32_to_fp32(const float * x, float * y, int64_t n) {
3267
0
    memcpy(y, x, n * sizeof(float));
3268
0
}
3269
3270
0
void ggml_cpu_fp32_to_fp16(const float * x, ggml_fp16_t * y, int64_t n) {
3271
0
    int64_t i = 0;
3272
0
#if defined(__F16C__)
3273
#if defined(__AVX512F__)
3274
    for (; i + 15 < n; i += 16) {
3275
        __m512 x_vec = _mm512_loadu_ps(x + i);
3276
        __m256i y_vec = _mm512_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
3277
        _mm256_storeu_si256((__m256i *)(y + i), y_vec);
3278
    }
3279
#endif
3280
0
    for (; i + 7 < n; i += 8) {
3281
0
        __m256 x_vec = _mm256_loadu_ps(x + i);
3282
0
        __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
3283
0
        _mm_storeu_si128((__m128i *)(y + i), y_vec);
3284
0
    }
3285
0
    for (; i + 3 < n; i += 4) {
3286
0
        __m128 x_vec = _mm_loadu_ps(x + i);
3287
0
        __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
3288
0
        _mm_storel_epi64((__m128i *)(y + i), y_vec);
3289
0
    }
3290
#elif defined(__riscv_zvfh)
3291
    for (int vl; i < n; i += vl) {
3292
        vl = __riscv_vsetvl_e32m2(n - i);
3293
        vfloat32m2_t vx = __riscv_vle32_v_f32m2(&x[i], vl);
3294
        vfloat16m1_t vy = __riscv_vfncvt_f_f_w_f16m1(vx, vl);
3295
        __riscv_vse16_v_f16m1((_Float16 *)&y[i], vy, vl);
3296
    }
3297
#endif
3298
0
    for (; i < n; ++i) {
3299
0
        y[i] = GGML_CPU_FP32_TO_FP16(x[i]);
3300
0
    }
3301
0
}
3302
3303
0
void ggml_cpu_fp16_to_fp32(const ggml_fp16_t * x, float * y, int64_t n) {
3304
0
    int64_t i = 0;
3305
0
#if defined(__F16C__)
3306
#if defined(__AVX512F__)
3307
    for (; i + 15 < n; i += 16) {
3308
        __m256i x_vec = _mm256_loadu_si256((const __m256i *)(x + i));
3309
        __m512 y_vec = _mm512_cvtph_ps(x_vec);
3310
        _mm512_storeu_ps(y + i, y_vec);
3311
    }
3312
#endif
3313
0
    for (; i + 7 < n; i += 8) {
3314
0
        __m128i x_vec = _mm_loadu_si128((const __m128i *)(x + i));
3315
0
        __m256 y_vec = _mm256_cvtph_ps(x_vec);
3316
0
        _mm256_storeu_ps(y + i, y_vec);
3317
0
    }
3318
0
    for (; i + 3 < n; i += 4) {
3319
0
        __m128i x_vec = _mm_loadl_epi64((const __m128i *)(x + i));
3320
0
        __m128 y_vec = _mm_cvtph_ps(x_vec);
3321
0
        _mm_storeu_ps(y + i, y_vec);
3322
0
    }
3323
3324
#elif defined(__riscv_v_intrinsic) && defined(__riscv_zvfhmin)
3325
    // calculate step size
3326
    const int epr = __riscv_vsetvlmax_e16m2();
3327
    const int step = epr * 2;
3328
    const int np = (n & ~(step - 1));
3329
3330
    // unroll by 2
3331
    for (; i < np; i += step) {
3332
        vfloat16m2_t ax0 = __riscv_vle16_v_f16m2((const _Float16*)x + i, epr);
3333
        vfloat32m4_t ay0 = __riscv_vfwcvt_f_f_v_f32m4(ax0, epr);
3334
        __riscv_vse32_v_f32m4(y + i, ay0, epr);
3335
3336
        vfloat16m2_t ax1 = __riscv_vle16_v_f16m2((const _Float16*)x + i + epr, epr);
3337
        vfloat32m4_t ay1 = __riscv_vfwcvt_f_f_v_f32m4(ax1, epr);
3338
        __riscv_vse32_v_f32m4(y + i + epr, ay1, epr);
3339
    }
3340
3341
    // leftovers
3342
    int vl;
3343
    for (i = np; i < n; i += vl) {
3344
        vl = __riscv_vsetvl_e16m2(n - i);
3345
        vfloat16m2_t ax0 = __riscv_vle16_v_f16m2((const _Float16*)x + i, vl);
3346
        vfloat32m4_t ay0 = __riscv_vfwcvt_f_f_v_f32m4(ax0, vl);
3347
        __riscv_vse32_v_f32m4(y + i, ay0, vl);
3348
    }
3349
3350
#endif
3351
3352
0
    for (; i < n; ++i) {
3353
0
        y[i] = GGML_CPU_FP16_TO_FP32(x[i]);
3354
0
    }
3355
0
}
3356
3357
0
void ggml_cpu_fp32_to_bf16(const float * x, ggml_bf16_t * y, int64_t n) {
3358
0
    int64_t i = 0;
3359
0
    for (; i < n; ++i) {
3360
0
        y[i] = GGML_FP32_TO_BF16(x[i]);
3361
0
    }
3362
0
}
3363
3364
0
void ggml_cpu_fp32_to_i32(const float * x, int32_t * y, int64_t n) {
3365
0
    int64_t i = 0;
3366
0
    for (; i < n; ++i) {
3367
0
        y[i] = x[i];
3368
0
    }
3369
0
}
3370
3371
0
void ggml_cpu_bf16_to_fp32(const ggml_bf16_t * x, float * y, int64_t n) {
3372
0
    int64_t i = 0;
3373
0
#if defined(__AVX2__)
3374
#if defined(__AVX512F__)
3375
    for (; i + 15 < n; i += 16) {
3376
        _mm512_storeu_ps(y + i,
3377
                        _mm512_castsi512_ps(
3378
                            _mm512_slli_epi32(
3379
                                _mm512_cvtepu16_epi32(
3380
                                    _mm256_loadu_si256(
3381
                                        (const __m256i *)(x + i))),
3382
                                16)));
3383
    }
3384
#endif
3385
0
    for (; i + 7 < n; i += 8) {
3386
0
        _mm256_storeu_ps(y + i,
3387
0
                        _mm256_castsi256_ps(
3388
0
                            _mm256_slli_epi32(
3389
0
                                _mm256_cvtepu16_epi32(
3390
0
                                    _mm_loadu_si128(
3391
0
                                        (const __m128i *)(x + i))),
3392
0
                                16)));
3393
0
    }
3394
#elif defined(__riscv_v_intrinsic) && defined(__riscv_zvfbfmin)
3395
    // calculate step size
3396
    const int epr = __riscv_vsetvlmax_e16m2();
3397
    const int step = epr * 2;
3398
    const int np = (n & ~(step - 1));
3399
3400
    // unroll by 2
3401
    for (; i < np; i += step) {
3402
        vbfloat16m2_t ax0 = __riscv_vle16_v_bf16m2((const __bf16*)x + i, epr);
3403
        vfloat32m4_t ay0 = __riscv_vfwcvtbf16_f_f_v_f32m4(ax0, epr);
3404
        __riscv_vse32_v_f32m4(y + i, ay0, epr);
3405
3406
        vbfloat16m2_t ax1 = __riscv_vle16_v_bf16m2((const __bf16*)x + i + epr, epr);
3407
        vfloat32m4_t ay1 = __riscv_vfwcvtbf16_f_f_v_f32m4(ax1, epr);
3408
        __riscv_vse32_v_f32m4(y + i + epr, ay1, epr);
3409
    }
3410
3411
    // leftovers
3412
    int vl;
3413
    for (i = np; i < n; i += vl) {
3414
        vl = __riscv_vsetvl_e16m2(n - i);
3415
        vbfloat16m2_t ax0 = __riscv_vle16_v_bf16m2((const __bf16*)x + i, vl);
3416
        vfloat32m4_t ay0 = __riscv_vfwcvtbf16_f_f_v_f32m4(ax0, vl);
3417
        __riscv_vse32_v_f32m4(y + i, ay0, vl);
3418
    }
3419
#endif
3420
0
    for (; i < n; i++) {
3421
0
        y[i] = GGML_BF16_TO_FP32(x[i]);
3422
0
    }
3423
0
}
3424
3425
0
int ggml_cpu_has_avx(void) {
3426
0
#if defined(__AVX__)
3427
0
    return 1;
3428
#else
3429
    return 0;
3430
#endif
3431
0
}
3432
3433
0
int ggml_cpu_has_avx_vnni(void) {
3434
#if defined(__AVXVNNI__)
3435
    return 1;
3436
#else
3437
0
    return 0;
3438
0
#endif
3439
0
}
3440
3441
0
int ggml_cpu_has_avx2(void) {
3442
0
#if defined(__AVX2__)
3443
0
    return 1;
3444
#else
3445
    return 0;
3446
#endif
3447
0
}
3448
3449
0
int ggml_cpu_has_avx512(void) {
3450
#if defined(__AVX512F__)
3451
    return 1;
3452
#else
3453
0
    return 0;
3454
0
#endif
3455
0
}
3456
3457
0
int ggml_cpu_has_avx512_vbmi(void) {
3458
#if defined(__AVX512VBMI__)
3459
    return 1;
3460
#else
3461
0
    return 0;
3462
0
#endif
3463
0
}
3464
3465
0
int ggml_cpu_has_avx512_vnni(void) {
3466
#if defined(__AVX512VNNI__)
3467
    return 1;
3468
#else
3469
0
    return 0;
3470
0
#endif
3471
0
}
3472
3473
0
int ggml_cpu_has_avx512_bf16(void) {
3474
#if defined(__AVX512BF16__)
3475
    return 1;
3476
#else
3477
0
    return 0;
3478
0
#endif
3479
0
}
3480
3481
0
int ggml_cpu_has_amx_int8(void) {
3482
#if defined(__AMX_INT8__)
3483
    return 1;
3484
#else
3485
0
    return 0;
3486
0
#endif
3487
0
}
3488
3489
0
int ggml_cpu_has_bmi2(void) {
3490
0
#if defined(__BMI2__)
3491
0
    return 1;
3492
#else
3493
    return 0;
3494
#endif
3495
0
}
3496
3497
0
int ggml_cpu_has_fma(void) {
3498
0
#if defined(__FMA__)
3499
0
    return 1;
3500
#else
3501
    return 0;
3502
#endif
3503
0
}
3504
3505
0
int ggml_cpu_has_arm_fma(void) {
3506
#if defined(__ARM_FEATURE_FMA)
3507
    return 1;
3508
#else
3509
0
    return 0;
3510
0
#endif
3511
0
}
3512
3513
0
int ggml_cpu_has_riscv_v(void) {
3514
#if defined(__riscv_v_intrinsic)
3515
    return 1;
3516
#else
3517
0
    return 0;
3518
0
#endif
3519
0
}
3520
3521
0
int ggml_cpu_get_rvv_vlen(void) {
3522
#if defined(__riscv) && defined(__riscv_v_intrinsic)
3523
    return ggml_riscv_arch_features.rvv_vlen;
3524
#else
3525
0
    return 0;
3526
0
#endif
3527
0
}
3528
3529
0
int ggml_cpu_has_f16c(void) {
3530
0
#if defined(__F16C__)
3531
0
    return 1;
3532
#else
3533
    return 0;
3534
#endif
3535
0
}
3536
3537
0
int ggml_cpu_has_fp16_va(void) {
3538
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
3539
    return 1;
3540
#else
3541
0
    return 0;
3542
0
#endif
3543
0
}
3544
3545
0
int ggml_cpu_has_wasm_simd(void) {
3546
#if defined(__wasm_simd128__)
3547
    return 1;
3548
#else
3549
0
    return 0;
3550
0
#endif
3551
0
}
3552
3553
0
int ggml_cpu_has_llamafile(void) {
3554
0
#if defined(GGML_USE_LLAMAFILE)
3555
0
    return 1;
3556
#else
3557
    return 0;
3558
#endif
3559
0
}
3560
3561
0
int ggml_cpu_has_sse3(void) {
3562
0
#if defined(__SSE3__)
3563
0
    return 1;
3564
#else
3565
    return 0;
3566
#endif
3567
0
}
3568
3569
0
int ggml_cpu_has_ssse3(void) {
3570
0
#if defined(__SSSE3__)
3571
0
    return 1;
3572
#else
3573
    return 0;
3574
#endif
3575
0
}
3576
3577
0
int ggml_cpu_has_vsx(void) {
3578
#if defined(__POWER9_VECTOR__)
3579
    return 1;
3580
#else
3581
0
    return 0;
3582
0
#endif
3583
0
}
3584
3585
0
int ggml_cpu_has_vxe(void) {
3586
#if defined(__VXE__) || defined(__VXE2__)
3587
    return 1;
3588
#else
3589
0
    return 0;
3590
0
#endif
3591
0
}
3592
3593
0
int ggml_cpu_has_neon(void) {
3594
#if defined(__ARM_ARCH) && defined(__ARM_NEON)
3595
    return 1;
3596
#else
3597
0
    return 0;
3598
0
#endif
3599
0
}
3600
3601
0
int ggml_cpu_has_dotprod(void) {
3602
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_DOTPROD)
3603
    return 1;
3604
#else
3605
0
    return 0;
3606
0
#endif
3607
0
}
3608
3609
0
int ggml_cpu_has_sve(void) {
3610
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
3611
    return 1;
3612
#else
3613
0
    return 0;
3614
0
#endif
3615
0
}
3616
3617
0
int ggml_cpu_has_matmul_int8(void) {
3618
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_MATMUL_INT8)
3619
    return 1;
3620
#else
3621
0
    return 0;
3622
0
#endif
3623
0
}
3624
3625
0
int ggml_cpu_get_sve_cnt(void) {
3626
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SVE)
3627
    return ggml_arm_arch_features.sve_cnt;
3628
#else
3629
0
    return 0;
3630
0
#endif
3631
0
}
3632
3633
0
int ggml_cpu_has_sme(void) {
3634
#if defined(__ARM_ARCH) && defined(__ARM_FEATURE_SME)
3635
    return 1;
3636
#else
3637
0
    return 0;
3638
0
#endif
3639
0
}
3640
3641
1
void ggml_cpu_init(void) {
3642
    // needed to initialize ggml_time
3643
1
    {
3644
1
        struct ggml_init_params params = { 0, NULL, false };
3645
1
        struct ggml_context * ctx = ggml_init(params);
3646
1
        ggml_free(ctx);
3647
1
    }
3648
3649
1
    ggml_critical_section_start();
3650
3651
1
    static bool is_first_call = true;
3652
3653
1
    if (is_first_call) {
3654
        // initialize GELU, Quick GELU, SILU and EXP F32 tables
3655
1
        {
3656
1
            const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
3657
3658
65.5k
            for (int i = 0; i < (1 << 16); ++i) {
3659
65.5k
                union {
3660
65.5k
                    uint16_t u16;
3661
65.5k
                    ggml_fp16_t fp16;
3662
65.5k
                } u = {i};
3663
65.5k
                float f = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
3664
65.5k
                ggml_table_f32_f16[i] = f;
3665
65.5k
                ggml_table_gelu_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_f32(f));
3666
65.5k
                ggml_table_gelu_quick_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_quick_f32(f));
3667
65.5k
            }
3668
3669
1
            const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
3670
3671
1
            GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
3672
3673
#ifdef GGML_USE_OPENMP
3674
            //if (!getenv("OMP_WAIT_POLICY")) {
3675
            //    // set the wait policy to active, so that OpenMP threads don't sleep
3676
            //    setenv("OMP_WAIT_POLICY", "active", 0)
3677
            //}
3678
3679
            if (!getenv("KMP_BLOCKTIME")) {
3680
                // set the time to wait before sleeping a thread
3681
                // this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases
3682
#ifdef _WIN32
3683
                _putenv_s("KMP_BLOCKTIME", "200"); // 200ms
3684
#else
3685
                setenv("KMP_BLOCKTIME", "200", 0); // 200ms
3686
#endif
3687
            }
3688
#endif
3689
1
        }
3690
3691
#if defined(__ARM_ARCH)
3692
        ggml_init_arm_arch_features();
3693
#endif
3694
3695
#if defined(__riscv)
3696
        ggml_init_riscv_arch_features();
3697
#endif
3698
3699
1
        is_first_call = false;
3700
1
    }
3701
3702
1
    ggml_critical_section_end();
3703
1
}