Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/llama-memory-hybrid.cpp
Line
Count
Source
1
#include "llama-memory-hybrid.h"
2
3
#include "llama-impl.h"
4
#include "llama-model.h"
5
#include "llama-context.h"
6
7
//
8
// llama_memory_hybrid
9
//
10
11
llama_memory_hybrid::llama_memory_hybrid(
12
        const llama_model & model,
13
                            /* attn */
14
                ggml_type   type_k,
15
                ggml_type   type_v,
16
                     bool   v_trans,
17
                 uint32_t   kv_size,
18
                 uint32_t   n_pad,
19
                 uint32_t   n_swa,
20
           llama_swa_type   swa_type,
21
                            /* recurrent */
22
                ggml_type   type_r,
23
                ggml_type   type_s,
24
                 uint32_t   rs_size,
25
                            /* common */
26
                 uint32_t   n_seq_max,
27
                     bool   offload,
28
                     bool   unified,
29
                            /* layer filters */
30
    const layer_filter_cb & filter_attn,
31
    const layer_filter_cb & filter_recr) :
32
0
    hparams(model.hparams),
33
0
    mem_attn(new llama_kv_cache(
34
0
        model,
35
0
        type_k,
36
0
        type_v,
37
0
        v_trans,
38
0
        offload,
39
0
        unified,
40
0
        kv_size,
41
0
        n_seq_max,
42
0
        n_pad,
43
0
        n_swa,
44
0
        swa_type,
45
0
        filter_attn == nullptr ?
46
0
            [&](int32_t il) { return !hparams.is_recurrent(il); }
47
0
            : filter_attn,
48
0
        nullptr
49
0
    )),
50
0
    mem_recr(new llama_memory_recurrent(
51
0
        model,
52
0
        type_r,
53
0
        type_s,
54
0
        offload,
55
0
        rs_size,
56
0
        n_seq_max,
57
0
        filter_recr == nullptr ?
58
0
            [&](int32_t il) { return hparams.is_recurrent(il); }
59
0
            : filter_recr
60
0
    )) {}
61
62
0
llama_memory_context_ptr llama_memory_hybrid::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
63
0
    do {
64
0
        balloc.split_reset();
65
66
        // follow the recurrent pattern for creating the ubatch splits
67
0
        std::vector<llama_ubatch> ubatches;
68
69
0
        while (true) {
70
0
            llama_ubatch ubatch;
71
72
0
            if (embd_all) {
73
                // if all tokens are output, split by sequence
74
0
                ubatch = balloc.split_seq(n_ubatch);
75
0
            } else {
76
                // TODO: non-sequential equal split can be done if using unified KV cache
77
                //       for simplicity, we always use sequential equal split for now
78
0
                ubatch = balloc.split_equal(n_ubatch, true);
79
0
            }
80
81
0
            if (ubatch.n_tokens == 0) {
82
0
                break;
83
0
            }
84
85
0
            ubatches.push_back(std::move(ubatch)); // NOLINT
86
0
        }
87
88
0
        if (balloc.get_n_used() < balloc.get_n_tokens()) {
89
            // failed to find a suitable split
90
0
            break;
91
0
        }
92
93
        // prepare the recurrent batches first
94
0
        if (!mem_recr->prepare(ubatches)) {
95
            // TODO: will the recurrent cache be in an undefined context at this point?
96
0
            LLAMA_LOG_ERROR("%s: failed to prepare recurrent ubatches\n", __func__);
97
0
            return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
98
0
        }
99
100
        // prepare the attention cache
101
0
        auto heads_attn = mem_attn->prepare(ubatches);
102
0
        if (heads_attn.empty()) {
103
0
            LLAMA_LOG_ERROR("%s: failed to prepare attention ubatches\n", __func__);
104
0
            return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
105
0
        }
106
107
0
        return std::make_unique<llama_memory_hybrid_context>(
108
0
                this, std::move(heads_attn), std::move(ubatches));
109
0
    } while(false);
110
111
0
    return std::make_unique<llama_memory_hybrid_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
112
0
}
113
114
0
llama_memory_context_ptr llama_memory_hybrid::init_full() {
115
0
    return std::make_unique<llama_memory_hybrid_context>(this);
116
0
}
117
118
0
llama_memory_context_ptr llama_memory_hybrid::init_update(llama_context * lctx, bool optimize) {
119
0
    return std::make_unique<llama_memory_hybrid_context>(this, lctx, optimize);
120
0
}
121
122
0
bool llama_memory_hybrid::get_can_shift() const {
123
    // Shifting is trivially supported for recurrent
124
0
    return mem_attn->get_can_shift();
125
0
}
126
127
0
void llama_memory_hybrid::clear(bool data) {
128
0
    mem_attn->clear(data);
129
0
    mem_recr->clear(data);
130
0
}
131
132
0
bool llama_memory_hybrid::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
133
    // Try removing from the recurrent cache first since it may fail. If it does
134
    // fail, the cache will not have been mutated.
135
0
    if (!mem_recr->seq_rm(seq_id, p0, p1)) {
136
0
        return false;
137
0
    }
138
0
    return mem_attn->seq_rm(seq_id, p0, p1);
139
0
}
140
141
0
void llama_memory_hybrid::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
142
0
    mem_attn->seq_cp(seq_id_src, seq_id_dst, p0, p1);
143
0
    mem_recr->seq_cp(seq_id_src, seq_id_dst, p0, p1);
144
0
}
145
146
0
void llama_memory_hybrid::seq_keep(llama_seq_id seq_id) {
147
0
    mem_attn->seq_keep(seq_id);
148
0
    mem_recr->seq_keep(seq_id);
149
0
}
150
151
0
void llama_memory_hybrid::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
152
0
    mem_attn->seq_add(seq_id, p0, p1, shift);
153
0
    mem_recr->seq_add(seq_id, p0, p1, shift);
154
0
}
155
156
0
void llama_memory_hybrid::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
157
0
    mem_attn->seq_div(seq_id, p0, p1, d);
158
0
    mem_recr->seq_div(seq_id, p0, p1, d);
159
0
}
160
161
0
llama_pos llama_memory_hybrid::seq_pos_min(llama_seq_id seq_id) const {
162
    // the min of the total cache is the max of the two caches' min values
163
0
    return std::max(mem_attn->seq_pos_min(seq_id), mem_recr->seq_pos_min(seq_id));
164
0
}
165
166
0
llama_pos llama_memory_hybrid::seq_pos_max(llama_seq_id seq_id) const {
167
    // the max of the total cache is the min of the two caches' max values
168
0
    return std::min(mem_attn->seq_pos_max(seq_id), mem_recr->seq_pos_max(seq_id));
169
0
}
170
171
0
std::map<ggml_backend_buffer_type_t, size_t> llama_memory_hybrid::memory_breakdown() const {
172
0
    std::map<ggml_backend_buffer_type_t, size_t> mb = mem_attn->memory_breakdown();
173
0
    for (const auto & buft_size : mem_recr->memory_breakdown()) {
174
0
        mb[buft_size.first] += buft_size.second;
175
0
    }
176
0
    return mb;
177
0
}
178
179
0
void llama_memory_hybrid::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
180
0
    if ((flags & LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY) == 0) {
181
0
        mem_attn->state_write(io, seq_id, flags);
182
0
    }
183
0
    mem_recr->state_write(io, seq_id, flags);
184
0
}
185
186
0
void llama_memory_hybrid::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
187
0
    if ((flags & LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY) == 0) {
188
0
        mem_attn->state_read(io, seq_id, flags);
189
0
    }
190
0
    mem_recr->state_read(io, seq_id, flags);
191
0
}
192
193
0
llama_kv_cache * llama_memory_hybrid::get_mem_attn() const {
194
0
    return mem_attn.get();
195
0
}
196
197
0
llama_memory_recurrent * llama_memory_hybrid::get_mem_recr() const {
198
0
    return mem_recr.get();
199
0
}
200
201
0
llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_status status) : status(status) {}
202
203
llama_memory_hybrid_context::llama_memory_hybrid_context(llama_memory_hybrid * mem) :
204
0
    ctx_attn(mem->get_mem_attn()->init_full()),
205
0
    ctx_recr(mem->get_mem_recr()->init_full()),
206
0
    status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
207
0
}
208
209
llama_memory_hybrid_context::llama_memory_hybrid_context(
210
        llama_memory_hybrid * mem,
211
              llama_context * lctx,
212
                       bool   optimize) :
213
0
    ctx_attn(mem->get_mem_attn()->init_update(lctx, optimize)),
214
0
    ctx_recr(mem->get_mem_recr()->init_update(lctx, optimize)),
215
0
    status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
216
0
}
217
218
llama_memory_hybrid_context::llama_memory_hybrid_context(
219
              llama_memory_hybrid * mem,
220
                  slot_info_vec_t   sinfos_attn,
221
        std::vector<llama_ubatch>   ubatches) :
222
0
    ubatches(std::move(ubatches)),
223
    // note: here we copy the ubatches. not sure if this is ideal
224
0
    ctx_attn(new llama_kv_cache_context(mem->get_mem_attn(), std::move(sinfos_attn), this->ubatches)),
225
0
    ctx_recr(new llama_memory_recurrent_context(mem->get_mem_recr(),                        this->ubatches)),
226
0
    status(llama_memory_status_combine(ctx_attn->get_status(), ctx_recr->get_status())) {
227
0
}
228
229
0
bool llama_memory_hybrid_context::next() {
230
0
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
231
232
0
    ctx_attn->next();
233
0
    ctx_recr->next();
234
235
0
    if (++i_next >= ubatches.size()) {
236
0
        return false;
237
0
    }
238
239
0
    return true;
240
0
}
241
242
0
bool llama_memory_hybrid_context::apply() {
243
0
    assert(!llama_memory_status_is_fail(status));
244
245
0
    bool res = true;
246
247
0
    res = res & ctx_attn->apply();
248
0
    res = res & ctx_recr->apply();
249
250
0
    return res;
251
0
}
252
253
0
llama_memory_status llama_memory_hybrid_context::get_status() const {
254
0
    return status;
255
0
}
256
257
0
const llama_ubatch & llama_memory_hybrid_context::get_ubatch() const {
258
0
    assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
259
0
    return ubatches[i_next];
260
0
}
261
262
0
const llama_kv_cache_context * llama_memory_hybrid_context::get_attn() const {
263
0
    return static_cast<const llama_kv_cache_context *>(ctx_attn.get());
264
0
}
265
266
0
const llama_memory_recurrent_context * llama_memory_hybrid_context::get_recr() const {
267
0
    return static_cast<const llama_memory_recurrent_context *>(ctx_recr.get());
268
0
}