Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/apertus.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
0
llm_build_apertus::llm_build_apertus(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
6
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
10
11
0
    ggml_tensor * cur;
12
0
    ggml_tensor * inpL;
13
14
0
    inpL = build_inp_embd(model.tok_embd);
15
16
0
    ggml_tensor * inp_pos  = build_inp_pos();
17
0
    auto *        inp_attn = build_attn_inp_kv();
18
19
0
    const float kq_scale =
20
0
        hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        ggml_tensor * inpSA = inpL;
26
27
0
        cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
28
0
        cb(cur, "attn_norm", il);
29
30
        // self-attention
31
0
        {
32
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
33
34
            // compute Q and K and RoPE them
35
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
36
0
            cb(Qcur, "Qcur", il);
37
38
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
0
            cb(Kcur, "Kcur", il);
40
41
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
42
0
            cb(Vcur, "Vcur", il);
43
44
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
45
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
46
0
            cb(Qcur, "Qcur_normed", il);
47
48
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
49
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
50
0
            cb(Kcur, "Kcur_normed", il);
51
52
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
53
54
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
55
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
56
57
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
59
60
0
            cb(Qcur, "Qcur_pos", il);
61
0
            cb(Kcur, "Kcur_pos", il);
62
0
            cb(Vcur, "Vcur_pos", il);
63
64
0
            cur = build_attn(inp_attn,
65
0
                    model.layers[il].wo, model.layers[il].bo,
66
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
67
0
            cb(cur, "attn_out", il);
68
0
        }
69
70
0
        if (il == n_layer - 1 && inp_out_ids) {
71
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
72
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
73
0
        }
74
75
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
76
0
        cb(ffn_inp, "ffn_inp", il);
77
78
        // feed-forward network with xIELU activation
79
0
        {
80
0
            cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il);
81
0
            cb(cur, "ffn_norm", il);
82
83
            // Up projection
84
0
            ggml_tensor * up = build_lora_mm(model.layers[il].ffn_up, cur);
85
0
            cb(up, "ffn_up", il);
86
87
0
            float alpha_n_val = hparams.xielu_alpha_n[il];
88
0
            float alpha_p_val = hparams.xielu_alpha_p[il];
89
0
            float beta_val    = hparams.xielu_beta[il];
90
0
            float eps_val     = hparams.xielu_eps[il];
91
92
            // Apply xIELU activation
93
0
            ggml_tensor * activated = ggml_xielu(ctx0, up, alpha_n_val, alpha_p_val, beta_val, eps_val);
94
0
            cb(activated, "ffn_xielu", il);
95
96
            // Down projection
97
0
            cur = build_lora_mm(model.layers[il].ffn_down, activated);
98
0
            cb(cur, "ffn_down", il);
99
0
        }
100
101
0
        cur = ggml_add(ctx0, cur, ffn_inp);
102
0
        cb(cur, "ffn_out", il);
103
104
0
        cur = build_cvec(cur, il);
105
0
        cb(cur, "l_out", il);
106
107
        // input for next layer
108
0
        inpL = cur;
109
0
    }
110
111
0
    cur = inpL;
112
113
0
    cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
114
115
0
    cb(cur, "result_norm", -1);
116
0
    res->t_embd = cur;
117
118
    // lm_head
119
0
    cur = build_lora_mm(model.output, cur);
120
121
0
    cb(cur, "result_output", -1);
122
0
    res->t_logits = cur;
123
124
0
    ggml_build_forward_expand(gf, cur);
125
0
}