/src/llama.cpp/src/models/bert.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | |
4 | | |
5 | 0 | llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) { |
6 | 0 | const int64_t n_embd_head = hparams.n_embd_head_v; |
7 | 0 | const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); |
8 | |
|
9 | 0 | GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); |
10 | |
|
11 | 0 | ggml_tensor * cur; |
12 | 0 | ggml_tensor * inpL; |
13 | 0 | ggml_tensor * inp_pos = nullptr; |
14 | |
|
15 | 0 | if (model.arch != LLM_ARCH_JINA_BERT_V2) { |
16 | 0 | inp_pos = build_inp_pos(); |
17 | 0 | } |
18 | | |
19 | | // construct input embeddings (token, type, position) |
20 | 0 | inpL = build_inp_embd(model.tok_embd); |
21 | | |
22 | | // token types are hardcoded to zero ("Sentence A") |
23 | 0 | if (model.type_embd) { |
24 | 0 | ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0); |
25 | 0 | inpL = ggml_add(ctx0, inpL, type_row0); |
26 | 0 | } |
27 | 0 | if (model.arch == LLM_ARCH_BERT) { |
28 | 0 | inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL); |
29 | 0 | } |
30 | 0 | cb(inpL, "inp_embd", -1); |
31 | | |
32 | | // embed layer norm |
33 | 0 | inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); |
34 | 0 | cb(inpL, "inp_norm", -1); |
35 | |
|
36 | 0 | auto * inp_attn = build_attn_inp_no_cache(); |
37 | |
|
38 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
39 | |
|
40 | 0 | for (int il = 0; il < n_layer; ++il) { |
41 | 0 | ggml_tensor * cur = inpL; |
42 | |
|
43 | 0 | { |
44 | 0 | ggml_tensor * Qcur; |
45 | 0 | ggml_tensor * Kcur; |
46 | 0 | ggml_tensor * Vcur; |
47 | | |
48 | | // self-attention |
49 | 0 | if (model.layers[il].wqkv) { |
50 | 0 | cur = build_lora_mm(model.layers[il].wqkv, cur); |
51 | 0 | cb(cur, "wqkv", il); |
52 | |
|
53 | 0 | if (model.layers[il].bqkv) { |
54 | 0 | cur = ggml_add(ctx0, cur, model.layers[il].bqkv); |
55 | 0 | cb(cur, "bqkv", il); |
56 | 0 | } |
57 | |
|
58 | 0 | Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1], |
59 | 0 | 0 * sizeof(float) * (n_embd)); |
60 | 0 | Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), |
61 | 0 | cur->nb[1], 1 * sizeof(float) * (n_embd)); |
62 | 0 | Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float), |
63 | 0 | cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)); |
64 | 0 | } else { |
65 | 0 | Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq); |
66 | 0 | Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk); |
67 | 0 | Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv); |
68 | |
|
69 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
70 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
71 | 0 | Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens); |
72 | 0 | } |
73 | |
|
74 | 0 | if (model.layers[il].attn_q_norm) { |
75 | 0 | Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens); |
76 | |
|
77 | 0 | Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il); |
78 | |
|
79 | 0 | Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); |
80 | 0 | } |
81 | |
|
82 | 0 | if (model.layers[il].attn_k_norm) { |
83 | 0 | Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens); |
84 | |
|
85 | 0 | Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il); |
86 | |
|
87 | 0 | Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); |
88 | 0 | } |
89 | | |
90 | | // RoPE |
91 | 0 | if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || |
92 | 0 | model.arch == LLM_ARCH_JINA_BERT_V3) { |
93 | 0 | Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
94 | 0 | ext_factor, attn_factor, beta_fast, beta_slow); |
95 | |
|
96 | 0 | Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, |
97 | 0 | ext_factor, attn_factor, beta_fast, beta_slow); |
98 | 0 | } |
99 | |
|
100 | 0 | cb(Qcur, "Qcur", il); |
101 | 0 | cb(Kcur, "Kcur", il); |
102 | 0 | cb(Vcur, "Vcur", il); |
103 | |
|
104 | 0 | cur = build_attn(inp_attn, |
105 | 0 | model.layers[il].wo, model.layers[il].bo, |
106 | 0 | Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il); |
107 | 0 | cb(cur, "kqv_out", il); |
108 | 0 | } |
109 | |
|
110 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
111 | 0 | cur = ggml_get_rows(ctx0, cur, inp_out_ids); |
112 | 0 | inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); |
113 | 0 | } |
114 | | |
115 | | // re-add the layer input |
116 | 0 | cur = ggml_add(ctx0, cur, inpL); |
117 | | |
118 | | // attention layer norm |
119 | 0 | cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il); |
120 | |
|
121 | 0 | if (model.layers[il].attn_norm_2 != nullptr) { |
122 | 0 | cur = ggml_add(ctx0, cur, inpL); // re-add the layer input |
123 | 0 | cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il); |
124 | 0 | } |
125 | |
|
126 | 0 | ggml_tensor * ffn_inp = cur; |
127 | 0 | cb(ffn_inp, "ffn_inp", il); |
128 | | |
129 | | // feed-forward network |
130 | 0 | if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) { |
131 | | // MoE branch |
132 | 0 | cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, nullptr, |
133 | 0 | model.layers[il].ffn_down_exps, nullptr, hparams.n_expert, hparams.n_expert_used, |
134 | 0 | LLM_FFN_GELU, false, false, 0.0f, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il); |
135 | 0 | cb(cur, "ffn_moe_out", il); |
136 | 0 | } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE || |
137 | 0 | model.arch == LLM_ARCH_JINA_BERT_V3) { |
138 | 0 | cur = build_ffn(cur, |
139 | 0 | model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL, |
140 | 0 | NULL, NULL, NULL, |
141 | 0 | model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, |
142 | 0 | LLM_FFN_GELU, LLM_FFN_SEQ, il); |
143 | 0 | cb(cur, "ffn_out", il); |
144 | 0 | } else if (model.arch == LLM_ARCH_JINA_BERT_V2) { |
145 | 0 | cur = build_ffn(cur, |
146 | 0 | model.layers[il].ffn_up, NULL, NULL, |
147 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
148 | 0 | model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL, |
149 | 0 | model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il); |
150 | 0 | cb(cur, "ffn_out", il); |
151 | 0 | } else { |
152 | 0 | cur = build_ffn(cur, |
153 | 0 | model.layers[il].ffn_up, NULL, NULL, |
154 | 0 | model.layers[il].ffn_gate, NULL, NULL, |
155 | 0 | model.layers[il].ffn_down, NULL, NULL, |
156 | 0 | NULL, LLM_FFN_SILU, LLM_FFN_PAR, il); |
157 | 0 | cb(cur, "ffn_out", il); |
158 | 0 | } |
159 | | |
160 | | // attentions bypass the intermediate layer |
161 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
162 | | |
163 | | // output layer norm |
164 | 0 | cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il); |
165 | | |
166 | | // input for next layer |
167 | 0 | inpL = cur; |
168 | 0 | } |
169 | |
|
170 | 0 | cur = inpL; |
171 | |
|
172 | 0 | cb(cur, "result_embd", -1); |
173 | 0 | res->t_embd = cur; |
174 | |
|
175 | 0 | ggml_build_forward_expand(gf, cur); |
176 | 0 | } |