Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/bert.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
0
llm_build_bert::llm_build_bert(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
6
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
7
0
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
8
9
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
10
11
0
    ggml_tensor * cur;
12
0
    ggml_tensor * inpL;
13
0
    ggml_tensor * inp_pos = nullptr;
14
15
0
    if (model.arch != LLM_ARCH_JINA_BERT_V2) {
16
0
        inp_pos = build_inp_pos();
17
0
    }
18
19
    // construct input embeddings (token, type, position)
20
0
    inpL = build_inp_embd(model.tok_embd);
21
22
    // token types are hardcoded to zero ("Sentence A")
23
0
    if (model.type_embd) {
24
0
        ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
25
0
        inpL                    = ggml_add(ctx0, inpL, type_row0);
26
0
    }
27
0
    if (model.arch == LLM_ARCH_BERT) {
28
0
        inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
29
0
    }
30
0
    cb(inpL, "inp_embd", -1);
31
32
    // embed layer norm
33
0
    inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
34
0
    cb(inpL, "inp_norm", -1);
35
36
0
    auto * inp_attn = build_attn_inp_no_cache();
37
38
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
39
40
0
    for (int il = 0; il < n_layer; ++il) {
41
0
        ggml_tensor * cur = inpL;
42
43
0
        {
44
0
            ggml_tensor * Qcur;
45
0
            ggml_tensor * Kcur;
46
0
            ggml_tensor * Vcur;
47
48
            // self-attention
49
0
            if (model.layers[il].wqkv) {
50
0
                cur = build_lora_mm(model.layers[il].wqkv, cur);
51
0
                cb(cur, "wqkv", il);
52
53
0
                if (model.layers[il].bqkv) {
54
0
                    cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
55
0
                    cb(cur, "bqkv", il);
56
0
                }
57
58
0
                Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, n_embd_head * sizeof(float), cur->nb[1],
59
0
                                    0 * sizeof(float) * (n_embd));
60
0
                Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
61
0
                                    cur->nb[1], 1 * sizeof(float) * (n_embd));
62
0
                Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head * sizeof(float),
63
0
                                    cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa));
64
0
            } else {
65
0
                Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
66
0
                Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
67
0
                Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
68
69
0
                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
70
0
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
71
0
                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
72
0
            }
73
74
0
            if (model.layers[il].attn_q_norm) {
75
0
                Qcur = ggml_reshape_2d(ctx0, Qcur, n_embd_head * n_head, n_tokens);
76
77
0
                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, model.layers[il].attn_q_norm_b, LLM_NORM, il);
78
79
0
                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
80
0
            }
81
82
0
            if (model.layers[il].attn_k_norm) {
83
0
                Kcur = ggml_reshape_2d(ctx0, Kcur, n_embd_head * n_head_kv, n_tokens);
84
85
0
                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, model.layers[il].attn_k_norm_b, LLM_NORM, il);
86
87
0
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
88
0
            }
89
90
            // RoPE
91
0
            if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE ||
92
0
                model.arch == LLM_ARCH_JINA_BERT_V3) {
93
0
                Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
94
0
                                     ext_factor, attn_factor, beta_fast, beta_slow);
95
96
0
                Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
97
0
                                     ext_factor, attn_factor, beta_fast, beta_slow);
98
0
            }
99
100
0
            cb(Qcur, "Qcur", il);
101
0
            cb(Kcur, "Kcur", il);
102
0
            cb(Vcur, "Vcur", il);
103
104
0
            cur = build_attn(inp_attn,
105
0
                    model.layers[il].wo, model.layers[il].bo,
106
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
107
0
            cb(cur, "kqv_out", il);
108
0
        }
109
110
0
        if (il == n_layer - 1 && inp_out_ids) {
111
0
            cur  = ggml_get_rows(ctx0, cur, inp_out_ids);
112
0
            inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
113
0
        }
114
115
        // re-add the layer input
116
0
        cur = ggml_add(ctx0, cur, inpL);
117
118
        // attention layer norm
119
0
        cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
120
121
0
        if (model.layers[il].attn_norm_2 != nullptr) {
122
0
            cur = ggml_add(ctx0, cur, inpL);  // re-add the layer input
123
0
            cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
124
0
        }
125
126
0
        ggml_tensor * ffn_inp = cur;
127
0
        cb(ffn_inp, "ffn_inp", il);
128
129
        // feed-forward network
130
0
        if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
131
            // MoE branch
132
0
            cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps, nullptr,
133
0
                                model.layers[il].ffn_down_exps, nullptr, hparams.n_expert, hparams.n_expert_used,
134
0
                                LLM_FFN_GELU, false, false, 0.0f, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
135
0
            cb(cur, "ffn_moe_out", il);
136
0
        } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE ||
137
0
                   model.arch == LLM_ARCH_JINA_BERT_V3) {
138
0
            cur = build_ffn(cur,
139
0
                    model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
140
0
                    NULL, NULL, NULL,
141
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
142
0
                    LLM_FFN_GELU, LLM_FFN_SEQ, il);
143
0
            cb(cur, "ffn_out", il);
144
0
        } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
145
0
            cur = build_ffn(cur,
146
0
                    model.layers[il].ffn_up, NULL, NULL,
147
0
                    model.layers[il].ffn_gate, NULL, NULL,
148
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL, NULL,
149
0
                    model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
150
0
            cb(cur, "ffn_out", il);
151
0
        } else {
152
0
            cur = build_ffn(cur,
153
0
                model.layers[il].ffn_up, NULL, NULL,
154
0
                model.layers[il].ffn_gate, NULL, NULL,
155
0
                model.layers[il].ffn_down, NULL, NULL,
156
0
                NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
157
0
            cb(cur, "ffn_out", il);
158
0
        }
159
160
        // attentions bypass the intermediate layer
161
0
        cur = ggml_add(ctx0, cur, ffn_inp);
162
163
        // output layer norm
164
0
        cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
165
166
        // input for next layer
167
0
        inpL = cur;
168
0
    }
169
170
0
    cur = inpL;
171
172
0
    cb(cur, "result_embd", -1);
173
0
    res->t_embd = cur;
174
175
0
    ggml_build_forward_expand(gf, cur);
176
0
}