Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/lfm2.cpp
Line
Count
Source
1
#include "models.h"
2
3
#include "../llama-memory-hybrid.h"
4
5
6
llm_build_lfm2::llm_build_lfm2(const llama_model & model, const llm_graph_params & params) :
7
0
    llm_graph_context(params),
8
0
    model(model) {
9
0
    ggml_tensor * cur = build_inp_embd(model.tok_embd);
10
0
    cb(cur, "model.embed_tokens", -1);
11
12
0
    ggml_tensor * inp_pos     = build_inp_pos();
13
0
    auto *        inp_hybrid  = build_inp_mem_hybrid();
14
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
15
16
0
    for (int il = 0; il < n_layer; ++il) {
17
0
        const bool is_moe_layer = il >= static_cast<int>(hparams.n_layer_dense_lead);
18
19
0
        auto * prev_cur = cur;
20
0
        cur             = build_norm(cur, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
21
0
        cb(cur, "model.layers.{}.operator_norm", il);
22
23
0
        cur = hparams.is_recurrent(il) ? build_shortconv_block(cur, inp_hybrid->get_recr(), il) :
24
0
                                         build_attn_block(cur, inp_pos, inp_hybrid->get_attn(), il);
25
26
0
        if (il == n_layer - 1 && inp_out_ids) {
27
0
            cur      = ggml_get_rows(ctx0, cur, inp_out_ids);
28
0
            prev_cur = ggml_get_rows(ctx0, prev_cur, inp_out_ids);
29
0
        }
30
31
0
        cur = ggml_add(ctx0, prev_cur, cur);
32
33
0
        auto * ffn_norm_out = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
34
0
        cb(ffn_norm_out, "model.layers.{}.ffn_norm", il);
35
36
0
        ggml_tensor * ffn_out =
37
0
            is_moe_layer ? build_moe_feed_forward(ffn_norm_out, il) : build_dense_feed_forward(ffn_norm_out, il);
38
0
        cb(ffn_norm_out, "model.layers.{}.ffn_out", il);
39
40
0
        cur = ggml_add(ctx0, cur, ffn_out);
41
0
    }
42
43
0
    cur = build_norm(cur, model.tok_norm, NULL, LLM_NORM_RMS, -1);
44
0
    cb(cur, "model.embedding_norm", -1);
45
0
    res->t_embd = cur;
46
47
0
    cur = build_lora_mm(model.output, cur);
48
0
    cb(cur, "lm_head", -1);
49
50
0
    res->t_logits = cur;
51
52
0
    ggml_build_forward_expand(gf, cur);
53
0
}
54
55
0
ggml_tensor * llm_build_lfm2::build_moe_feed_forward(ggml_tensor * cur, int il) const {
56
0
    return build_moe_ffn(cur,
57
0
                        model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
58
0
                        model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
59
0
                        model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, true, false, 0.0,
60
0
                        static_cast<llama_expert_gating_func_type>(hparams.expert_gating_func), il);
61
0
}
62
63
0
ggml_tensor * llm_build_lfm2::build_dense_feed_forward(ggml_tensor * cur, int il) const {
64
0
    GGML_ASSERT(!model.layers[il].ffn_up_b);
65
0
    GGML_ASSERT(!model.layers[il].ffn_gate_b);
66
0
    GGML_ASSERT(!model.layers[il].ffn_down_b);
67
0
    return build_ffn(cur,
68
0
        model.layers[il].ffn_up, NULL, NULL,
69
0
        model.layers[il].ffn_gate, NULL, NULL,
70
0
        model.layers[il].ffn_down, NULL, NULL,
71
0
        NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
72
0
}
73
74
ggml_tensor * llm_build_lfm2::build_attn_block(ggml_tensor *             cur,
75
                                               ggml_tensor *             inp_pos,
76
                                               llm_graph_input_attn_kv * inp_attn,
77
0
                                               int                       il) const {
78
0
    GGML_ASSERT(hparams.n_embd_v_gqa(il) == hparams.n_embd_k_gqa(il));
79
0
    const auto n_embd_head = hparams.n_embd_head_v;
80
0
    const auto n_head_kv   = hparams.n_head_kv(il);
81
82
0
    auto * q = build_lora_mm(model.layers[il].wq, cur);
83
0
    cb(q, "model.layers.{}.self_attn.q_proj", il);
84
0
    auto * k = build_lora_mm(model.layers[il].wk, cur);
85
0
    cb(k, "model.layers.{}.self_attn.k_proj", il);
86
0
    auto * v = build_lora_mm(model.layers[il].wv, cur);
87
0
    cb(v, "model.layers.{}.self_attn.v_proj", il);
88
89
0
    q = ggml_reshape_3d(ctx0, q, n_embd_head, n_head, n_tokens);
90
0
    k = ggml_reshape_3d(ctx0, k, n_embd_head, n_head_kv, n_tokens);
91
0
    v = ggml_reshape_3d(ctx0, v, n_embd_head, n_head_kv, n_tokens);
92
93
    // qk norm
94
0
    q = build_norm(q, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
95
0
    cb(q, "model.layers.{}.self_attn.q_layernorm", il);
96
0
    k = build_norm(k, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
97
0
    cb(k, "model.layers.{}.self_attn.k_layernorm", il);
98
99
    // RoPE
100
0
    q = ggml_rope_ext(ctx0, q, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
101
0
                      attn_factor, beta_fast, beta_slow);
102
0
    k = ggml_rope_ext(ctx0, k, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, ext_factor,
103
0
                      attn_factor, beta_fast, beta_slow);
104
105
0
    cur = build_attn(inp_attn,
106
0
            model.layers[il].wo, NULL,
107
0
            q, k, v, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
108
109
0
    cb(cur, "model.layers.{}.self_attn.out_proj", il);
110
111
0
    return cur;
112
0
}
113
114
0
ggml_tensor * llm_build_lfm2::build_shortconv_block(ggml_tensor * cur, llm_graph_input_rs * inp_recr, int il) {
115
0
    const auto *   mctx_cur     = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
116
0
    const uint32_t kv_head      = mctx_cur->get_head();
117
0
    const int64_t  n_seq_tokens = ubatch.n_seq_tokens;
118
0
    const int64_t  n_seqs       = ubatch.n_seqs;
119
0
    GGML_ASSERT(n_seqs != 0);
120
0
    GGML_ASSERT(ubatch.equal_seqs());
121
0
    GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
122
123
0
    GGML_ASSERT(hparams.n_shortconv_l_cache > 1);
124
0
    const uint32_t d_conv = hparams.n_shortconv_l_cache - 1;
125
126
    // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
127
0
    cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
128
129
0
    auto * bcx = build_lora_mm(model.layers[il].shortconv.in_proj, cur);
130
0
    cb(bcx, "model.layers.{}.conv.in_proj", il);
131
132
0
    constexpr auto n_chunks = 3;
133
0
    GGML_ASSERT(bcx->ne[0] % n_chunks == 0);
134
0
    const auto chunk_size = bcx->ne[0] / n_chunks;
135
0
    auto *     b          = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
136
0
                                         0 * chunk_size * ggml_element_size(bcx));
137
0
    auto *     c          = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
138
0
                                         1 * chunk_size * ggml_element_size(bcx));
139
0
    auto *     x          = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2],
140
0
                                         2 * chunk_size * ggml_element_size(bcx));
141
142
0
    auto * bx = ggml_transpose(ctx0, ggml_mul(ctx0, b, x));
143
144
    // read conv state
145
0
    auto * conv_state = mctx_cur->get_r_l(il);
146
0
    auto * conv_rs    = build_rs(inp_recr, conv_state, hparams.n_embd_r(), n_seqs);
147
0
    auto * conv       = ggml_reshape_3d(ctx0, conv_rs, d_conv, hparams.n_embd, n_seqs);
148
149
0
    bx = ggml_concat(ctx0, conv, bx, 0);
150
0
    GGML_ASSERT(bx->ne[0] > conv->ne[0]);
151
152
    // last d_conv columns is a new conv state
153
0
    auto * new_conv = ggml_view_3d(ctx0, bx, conv->ne[0], bx->ne[1], bx->ne[2], bx->nb[1], bx->nb[2],
154
0
                                   (bx->ne[0] - conv->ne[0]) * ggml_element_size(bx));
155
0
    GGML_ASSERT(ggml_are_same_shape(conv, new_conv));
156
157
    // write new conv conv state
158
0
    ggml_build_forward_expand(gf, ggml_cpy(ctx0, new_conv,
159
0
                                           ggml_view_1d(ctx0, conv_state, ggml_nelements(new_conv),
160
0
                                                        kv_head * d_conv * n_embd * ggml_element_size(new_conv))));
161
162
0
    auto * conv_kernel = model.layers[il].shortconv.conv;
163
0
    auto * conv_out    = ggml_ssm_conv(ctx0, bx, conv_kernel);
164
0
    cb(conv_out, "model.layers.{}.conv.conv", il);
165
166
0
    auto * y = ggml_mul(ctx0, c, conv_out);
167
0
    y        = build_lora_mm(model.layers[il].shortconv.out_proj, y);
168
0
    cb(y, "model.layers.{}.conv.out_proj", il);
169
    // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
170
0
    y = ggml_reshape_2d(ctx0, y, y->ne[0], n_seq_tokens * n_seqs);
171
172
0
    return y;
173
0
}