Coverage Report

Created: 2025-11-24 06:10

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/plamo2.cpp
Line
Count
Source
1
#include "models.h"
2
3
llm_build_plamo2::llm_build_plamo2(const llama_model & model, const llm_graph_params & params) :
4
0
    llm_graph_context_mamba(params) {
5
0
    ggml_tensor * cur;
6
0
    ggml_tensor * inpL;
7
8
    // {n_embd, n_tokens}
9
0
    inpL = build_inp_embd(model.tok_embd);
10
0
    cb(inpL, "embedding_output", -1);
11
12
0
    ggml_tensor * inp_pos = build_inp_pos();
13
14
0
    auto * inp_hybrid = build_inp_mem_hybrid();
15
16
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
17
18
0
    for (int il = 0; il < n_layer; ++il) {
19
0
        ggml_tensor * residual = inpL;
20
21
        // ggml_graph_add_node(gf, model.layers[il].attn_norm);
22
        // cb(model.layers[il].attn_norm, "attn_norm", il);
23
24
        // pre_mixer_norm
25
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
26
27
        // check if this layer is Mamba or Attention
28
0
        bool is_mamba_layer = hparams.is_recurrent(il);
29
30
0
        if (is_mamba_layer) {
31
            // PLaMo-2 Mamba layer
32
0
            cur = build_plamo2_mamba_layer(inp_hybrid->get_recr(), cur, model, ubatch, il);
33
0
        } else {
34
            // PLaMo-2 Attention layer
35
0
            cur = build_plamo2_attn_layer(inp_hybrid->get_attn(), inp_pos, cur, model, il);
36
0
        }
37
38
        // post_mixer_norm
39
0
        cur = build_norm(cur, model.layers[il].attn_post_norm, NULL, LLM_NORM_RMS, il);
40
0
        cb(cur, "attn_post_norm", il);
41
42
        // residual connection
43
0
        cur = ggml_add(ctx0, cur, residual);
44
0
        cb(cur, "attn_residual", il);
45
0
        residual = cur;
46
47
        // pre-ffn norm
48
0
        cur = build_norm(cur, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
49
0
        cb(cur, "ffn_pre_norm", il);
50
51
        // feed-forward network
52
0
        cur = build_ffn(cur,
53
0
                model.layers[il].ffn_up, NULL, NULL,
54
0
                NULL, NULL, NULL,
55
0
                model.layers[il].ffn_down, NULL, NULL,
56
0
                NULL, LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
57
0
        cb(cur, "ffn_out", il);
58
59
        // post ffn norm
60
0
        cur = build_norm(cur, model.layers[il].ffn_post_norm, NULL, LLM_NORM_RMS, il);
61
0
        cb(cur, "ffn_post_norm", il);
62
63
0
        if (il == n_layer - 1 && inp_out_ids) {
64
0
            cur      = ggml_get_rows(ctx0, cur, inp_out_ids);
65
0
            residual = ggml_get_rows(ctx0, residual, inp_out_ids);
66
0
        }
67
68
        // residual connection
69
0
        cur = ggml_add(ctx0, cur, residual);
70
0
        cb(cur, "ffn_residual", il);
71
72
0
        inpL = cur;
73
0
    }
74
75
0
    cur = inpL;
76
77
    // final norm
78
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
79
0
    cb(cur, "result_norm", -1);
80
81
0
    res->t_embd = cur;
82
83
    // lm_head
84
0
    cur = build_lora_mm(model.output, cur);
85
0
    cb(cur, "result_output", -1);
86
87
    // Explicitly mark as output tensor to ensure proper backend assignment
88
0
    ggml_set_output(cur);
89
90
0
    res->t_logits = cur;
91
92
0
    ggml_build_forward_expand(gf, cur);
93
0
}
94
95
ggml_tensor * llm_build_plamo2::build_plamo2_attn_layer(llm_graph_input_attn_kv * inp,
96
                                                        ggml_tensor *             inp_pos,
97
                                                        ggml_tensor *             cur,
98
                                                        const llama_model &       model,
99
0
                                                        int                       il) {
100
    // self-attention
101
0
    {
102
        // PLaMo-2 uses combined QKV tensor
103
0
        ggml_tensor * qkv = build_lora_mm(model.layers[il].wqkv, cur);
104
0
        cb(qkv, "wqkv", il);
105
106
        // split QKV tensor into Q, K, V
107
0
        const int64_t n_embd_head_q = hparams.n_embd_head_k;
108
0
        const int64_t n_embd_head_k = hparams.n_embd_head_k;
109
0
        const int64_t n_embd_head_v = hparams.n_embd_head_v;
110
0
        int32_t       n_head        = hparams.n_head(il);
111
0
        int32_t       n_head_kv     = hparams.n_head_kv(il);
112
113
0
        const int64_t q_offset = 0;
114
0
        const int64_t k_offset = n_embd_head_q * n_head;
115
0
        const int64_t v_offset = k_offset + n_embd_head_k * n_head_kv;
116
117
0
        ggml_tensor * Qcur = ggml_view_3d(ctx0, qkv, n_embd_head_q, n_head, n_tokens, n_embd_head_q * sizeof(float),
118
0
                                          qkv->nb[1], q_offset * ggml_element_size(qkv));
119
0
        ggml_tensor * Kcur = ggml_view_3d(ctx0, qkv, n_embd_head_k, n_head_kv, n_tokens, n_embd_head_k * sizeof(float),
120
0
                                          qkv->nb[1], k_offset * ggml_element_size(qkv));
121
0
        ggml_tensor * Vcur = ggml_view_3d(ctx0, qkv, n_embd_head_v, n_head_kv, n_tokens, n_embd_head_v * sizeof(float),
122
0
                                          qkv->nb[1], v_offset * ggml_element_size(qkv));
123
124
0
        cb(Qcur, "Qcur", il);
125
0
        cb(Kcur, "Kcur", il);
126
0
        cb(Vcur, "Vcur", il);
127
128
0
        Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
129
0
        cb(Qcur, "Qcur_normed", il);
130
131
0
        Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
132
0
                             ext_factor, attn_factor, beta_fast, beta_slow);
133
134
0
        Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
135
0
        cb(Kcur, "Kcur_normed", il);
136
137
0
        Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
138
0
                             ext_factor, attn_factor, beta_fast, beta_slow);
139
140
0
        cur = build_attn(inp,
141
0
            model.layers[il].wo, NULL,
142
0
            Qcur, Kcur, Vcur, NULL, NULL, NULL, 1.0f / sqrtf(float(n_embd_head_v)), il);
143
0
    }
144
145
0
    cb(cur, "attn_out", il);
146
147
0
    return cur;
148
0
}
149
150
ggml_tensor * llm_build_plamo2::build_plamo2_mamba_layer(llm_graph_input_rs * inp,
151
                                                         ggml_tensor *        cur,
152
                                                         const llama_model &  model,
153
                                                         const llama_ubatch & ubatch,
154
0
                                                         int                  il) {
155
0
    const auto * mctx_cur = inp->mctx;
156
157
0
    const auto kv_head = mctx_cur->get_head();
158
159
0
    const int64_t d_conv   = hparams.ssm_d_conv;
160
0
    const int64_t d_inner  = hparams.ssm_d_inner;
161
0
    const int64_t d_state  = hparams.ssm_d_state;
162
0
    const int64_t n_heads  = hparams.ssm_dt_rank;
163
0
    const int64_t head_dim = d_inner / n_heads;
164
0
    const int64_t n_group  = hparams.ssm_n_group;
165
0
    const int64_t n_seqs   = ubatch.n_seqs;
166
167
0
    const int64_t n_seq_tokens = ubatch.n_seq_tokens;
168
169
0
    GGML_ASSERT(n_seqs != 0);
170
0
    GGML_ASSERT(ubatch.equal_seqs());
171
0
    GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
172
173
0
    ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
174
0
    ggml_tensor * ssm_states_all  = mctx_cur->get_s_l(il);
175
176
0
    ggml_tensor * conv = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
177
0
    conv               = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner + 2 * n_group * d_state, n_seqs);
178
179
    // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
180
0
    cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
181
182
    // in_proj: {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
183
0
    ggml_tensor * zx = build_lora_mm(model.layers[il].ssm_in, cur);
184
0
    cb(zx, "mamba_in_proj", il);
185
    // {8192, 5, 1, 1} -> {8192, 1, 5, 1}
186
0
    zx = ggml_permute(ctx0, zx, 0, 2, 1, 3);
187
0
    zx = ggml_cont_4d(ctx0, zx, head_dim * 2, n_heads, n_seq_tokens, n_seqs);
188
0
    cb(zx, "mamba_in_proj_out", il);
189
190
    // split into z and x
191
    // => {head_dim * n_heads, n_seq_tokens, n_seqs}
192
0
    ggml_tensor * x = ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3],
193
0
                                   head_dim * ggml_element_size(zx));
194
0
    x               = ggml_cont_3d(ctx0, x, head_dim * n_heads, n_seq_tokens, n_seqs);
195
    // x = ggml_permute(ctx0, x, 0, 2, 1, 3);
196
0
    cb(x, "mamba_x_split", il);
197
198
0
    ggml_tensor * z =
199
0
        ggml_view_4d(ctx0, zx, head_dim, n_heads, n_seq_tokens, n_seqs, zx->nb[1], zx->nb[2], zx->nb[3], 0);
200
0
    cb(z, "mamba_z_split", il);
201
202
    // conv1d
203
0
    {
204
        // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
205
0
        ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
206
0
        cb(conv_x, "mamba_conv1d_input", il);
207
208
        // copy last (d_conv - 1) columns back into the state cache
209
0
        ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2],
210
0
                                               n_seq_tokens * (conv_x->nb[0]));
211
212
0
        ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv,
213
0
                                               ggml_view_1d(ctx0, conv_states_all,
214
0
                                                            (d_conv - 1) * (d_inner + 2 * n_group * d_state) * (n_seqs),
215
0
                                                            kv_head * (d_conv - 1) * (d_inner + 2 * n_group * d_state) *
216
0
                                                                ggml_element_size(conv_states_all))));
217
0
        cb(conv_states_all, "mamba_conv1d_state", il);
218
219
        // 1D convolution
220
0
        x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
221
0
        cb(x, "mamba_conv1d", il);
222
223
0
        x = ggml_silu(ctx0, x);
224
0
        cb(x, "mamba_conv1d_silu", il);
225
0
    }
226
227
    // SSM
228
0
    {
229
        // bcdt_proj: {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
230
0
        ggml_tensor * x_bcdt = build_lora_mm(model.layers[il].ssm_x, x);
231
0
        cb(x_bcdt, "mamba_bcdt_proj", il);
232
233
        // split into dt, B, C
234
0
        const int64_t dt_dim = std::max(64, int(hparams.n_embd / 16));
235
0
        ggml_tensor * B  = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2], 0);
236
0
        ggml_tensor * C  = ggml_view_3d(ctx0, x_bcdt, d_state, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2],
237
0
                                        ggml_element_size(x_bcdt) * d_state);
238
0
        ggml_tensor * dt = ggml_view_3d(ctx0, x_bcdt, dt_dim, n_seq_tokens, n_seqs, x_bcdt->nb[1], x_bcdt->nb[2],
239
0
                                        ggml_element_size(x_bcdt) * (2 * d_state));
240
0
        cb(B, "mamba_B_raw", il);
241
0
        cb(C, "mamba_C_raw", il);
242
0
        cb(dt, "mamba_dt_raw", il);
243
244
        // Apply RMS norm to dt, B, C (PLaMo-2 specific)
245
0
        B  = build_norm(B, model.layers[il].ssm_b_norm, NULL, LLM_NORM_RMS, il);
246
0
        C  = build_norm(C, model.layers[il].ssm_c_norm, NULL, LLM_NORM_RMS, il);
247
0
        dt = build_norm(dt, model.layers[il].ssm_dt_norm, NULL, LLM_NORM_RMS, il);
248
0
        cb(B, "mamba_B_normed", il);
249
0
        cb(C, "mamba_C_normed", il);
250
0
        cb(dt, "mamba_dt_normed", il);
251
252
        // dt_proj: {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
253
0
        dt = build_lora_mm(model.layers[il].ssm_dt, dt);
254
0
        dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
255
0
        cb(dt, "mamba_dt_proj", il);
256
257
0
        ggml_tensor * A = ggml_reshape_2d(ctx0, model.layers[il].ssm_a, 1, n_heads);
258
0
        cb(A, "mamba_A", il);
259
260
0
        x = ggml_view_4d(ctx0, x, head_dim, n_heads, n_seq_tokens, n_seqs, head_dim * ggml_element_size(x),
261
0
                         head_dim * n_heads * ggml_element_size(x),
262
0
                         head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
263
0
        B = ggml_view_4d(ctx0, B, d_state, 1, n_seq_tokens, n_seqs, d_state * B->nb[0], B->nb[1], B->nb[2], 0);
264
0
        C = ggml_view_4d(ctx0, C, d_state, 1, n_seq_tokens, n_seqs, d_state * C->nb[0], C->nb[1], C->nb[2], 0);
265
266
        // use the states and the indices provided by build_recurrent_state
267
        // (this is necessary in order to properly use the states before they are overwritten,
268
        //  while avoiding to make unnecessary copies of the states)
269
0
        auto get_ssm_rows = [&](ggml_context * ctx, ggml_tensor * states, ggml_tensor * ids) {
270
0
            ggml_tensor * ssm = ggml_reshape_4d(ctx, states, d_state, head_dim, n_heads, mctx_cur->get_size());
271
272
            // Custom operator to optimize the parallel associative scan
273
            // as described in the Annex D of the Mamba paper.
274
            // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
275
0
            return ggml_ssm_scan(ctx, ssm, x, dt, A, B, C, ids);
276
0
        };
277
278
0
        ggml_tensor * y_ssm = build_rs(inp, ssm_states_all, hparams.n_embd_s(), ubatch.n_seqs, get_ssm_rows);
279
0
        cb(y_ssm, "mamba_ssm_scan", il);
280
281
        // store last states
282
0
        ggml_build_forward_expand(
283
0
            gf, ggml_cpy(
284
0
                    ctx0,
285
0
                    ggml_view_1d(ctx0, y_ssm, n_heads * head_dim * d_state * n_seqs,
286
0
                                 n_heads * head_dim * n_seq_tokens * n_seqs * ggml_element_size(y_ssm)),
287
0
                    ggml_view_1d(ctx0, ssm_states_all, n_heads * head_dim * d_state * n_seqs,
288
0
                                 kv_head * n_seqs * n_heads * head_dim * d_state * ggml_element_size(ssm_states_all))));
289
0
        cb(ssm_states_all, "mamba_ssm_states", il);
290
291
0
        ggml_tensor * y = ggml_view_4d(ctx0, y_ssm, head_dim, n_heads, n_seq_tokens, n_seqs,
292
0
                                       head_dim * ggml_element_size(x), head_dim * n_heads * ggml_element_size(x),
293
0
                                       head_dim * n_heads * n_seq_tokens * ggml_element_size(x), 0);
294
0
        cb(y, "mamba_y_view", il);
295
296
        // Add D parameter and apply gating with z
297
        // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
298
0
        ggml_tensor * D = ggml_reshape_2d(ctx0, model.layers[il].ssm_d, 1, n_heads);
299
0
        y               = ggml_add(ctx0, y, ggml_mul(ctx0, x, D));
300
0
        cb(y, "mamba_y_add_d", il);
301
302
0
        y = ggml_swiglu_split(ctx0, ggml_cont(ctx0, z), y);
303
0
        cb(y, "mamba_y_swiglu_z", il);
304
305
        // out_proj: {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
306
0
        y   = ggml_view_3d(ctx0, y, head_dim * n_heads, n_seq_tokens, n_seqs, y->nb[2], y->nb[3], 0);
307
0
        cur = build_lora_mm(model.layers[il].ssm_out, y);
308
0
        cb(cur, "mamba_out_proj", il);
309
0
    }
310
311
    // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
312
0
    cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
313
0
    cb(cur, "mamba_out", il);
314
315
0
    return cur;
316
0
}