/src/llama.cpp/ggml/src/ggml-cpu/ops.cpp
Line | Count | Source |
1 | | #include "ops.h" |
2 | | |
3 | | #include "ggml-cpu.h" |
4 | | #include "ggml-impl.h" |
5 | | #include "binary-ops.h" |
6 | | #include "ggml.h" |
7 | | #include "unary-ops.h" |
8 | | #include "vec.h" |
9 | | |
10 | | #include <cfloat> |
11 | | #include <algorithm> |
12 | | #include <cmath> |
13 | | #include <functional> |
14 | | |
15 | | // ggml_compute_forward_dup |
16 | | |
17 | | static void ggml_compute_forward_dup_same_cont( |
18 | | const ggml_compute_params * params, |
19 | 0 | ggml_tensor * dst) { |
20 | |
|
21 | 0 | const ggml_tensor * src0 = dst->src[0]; |
22 | |
|
23 | 0 | GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); |
24 | 0 | GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); |
25 | 0 | GGML_ASSERT(src0->type == dst->type); |
26 | |
|
27 | 0 | const size_t nb0 = ggml_type_size(src0->type); |
28 | |
|
29 | 0 | const int ith = params->ith; // thread index |
30 | 0 | const int nth = params->nth; // number of threads |
31 | | |
32 | | // parallelize by blocks |
33 | 0 | const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type); |
34 | 0 | const int dr = (nk + nth - 1) / nth; |
35 | 0 | const int k0 = dr * ith; |
36 | 0 | const int k1 = MIN(k0 + dr, nk); |
37 | |
|
38 | 0 | if (k0 < k1) { |
39 | 0 | memcpy( |
40 | 0 | ((char *) dst->data + k0*nb0), |
41 | 0 | ((char *) src0->data + k0*nb0), |
42 | 0 | (k1 - k0) * nb0); |
43 | 0 | } |
44 | 0 | } |
45 | | |
46 | | template<typename src_t, typename dst_t> |
47 | | static void ggml_compute_forward_dup_flt( |
48 | | const ggml_compute_params * params, |
49 | 0 | ggml_tensor * dst) { |
50 | |
|
51 | 0 | const ggml_tensor * src0 = dst->src[0]; |
52 | |
|
53 | 0 | GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); |
54 | 0 | GGML_ASSERT(!ggml_is_quantized(src0->type) && !ggml_is_quantized(dst->type)); |
55 | |
|
56 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
57 | |
|
58 | 0 | const int ith = params->ith; // thread index |
59 | 0 | const int nth = params->nth; // number of threads |
60 | | |
61 | | // parallelize by rows |
62 | 0 | const int nr = ne01; |
63 | | // number of rows per thread |
64 | 0 | const int dr = (nr + nth - 1) / nth; |
65 | | // row range for this thread |
66 | 0 | const int ir0 = dr * ith; |
67 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
68 | | |
69 | | // case: type & row size equal |
70 | 0 | if (src0->type == dst->type && |
71 | 0 | ne00 == ne0 && |
72 | 0 | nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) { |
73 | | // copy by rows |
74 | 0 | const size_t rs = ne00*nb00; |
75 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
76 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
77 | 0 | for (int64_t i01 = ir0; i01 < ir1; i01++) { |
78 | 0 | memcpy( |
79 | 0 | ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), |
80 | 0 | ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), |
81 | 0 | rs); |
82 | 0 | } |
83 | 0 | } |
84 | 0 | } |
85 | 0 | return; |
86 | 0 | } |
87 | | |
88 | | // case: dst tensor is contiguous |
89 | 0 | if (ggml_is_contiguous(dst)) { |
90 | 0 | if (nb00 == sizeof(src_t)) { |
91 | 0 | if constexpr (std::is_same_v<dst_t, src_t>) { |
92 | | // same type |
93 | 0 | size_t id = 0; |
94 | 0 | const size_t rs = ne00 * nb00; |
95 | 0 | char * dst_ptr = (char *) dst->data; |
96 | |
|
97 | 0 | for (int i03 = 0; i03 < ne03; i03++) { |
98 | 0 | for (int i02 = 0; i02 < ne02; i02++) { |
99 | 0 | id += rs * ir0; |
100 | 0 | for (int i01 = ir0; i01 < ir1; i01++) { |
101 | 0 | const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; |
102 | 0 | memcpy(dst_ptr + id, src0_ptr, rs); |
103 | 0 | id += rs; |
104 | 0 | } |
105 | 0 | id += rs * (ne01 - ir1); |
106 | 0 | } |
107 | 0 | } |
108 | 0 | } else { |
109 | | // casting between non-quantized types |
110 | 0 | size_t id = 0; |
111 | 0 | dst_t * dst_ptr = (dst_t *) dst->data; |
112 | |
|
113 | 0 | for (int i03 = 0; i03 < ne03; i03++) { |
114 | 0 | for (int i02 = 0; i02 < ne02; i02++) { |
115 | 0 | id += ne00 * ir0; |
116 | 0 | for (int i01 = ir0; i01 < ir1; i01++) { |
117 | 0 | const src_t * src0_ptr = (src_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); |
118 | 0 | for (int i00 = 0; i00 < ne00; i00++) { |
119 | 0 | float tmp = type_conversion_table<src_t>::to_f32(src0_ptr[i00]); |
120 | 0 | dst_ptr[id] = type_conversion_table<dst_t>::from_f32(tmp); |
121 | 0 | id++; |
122 | 0 | } |
123 | 0 | } |
124 | 0 | id += ne00 * (ne01 - ir1); |
125 | 0 | } |
126 | 0 | } |
127 | 0 | } |
128 | 0 | } else { |
129 | | //printf("%s: this is not optimal - fix me\n", __func__); |
130 | |
|
131 | 0 | size_t id = 0; |
132 | 0 | dst_t * dst_ptr = (dst_t *) dst->data; |
133 | |
|
134 | 0 | for (int i03 = 0; i03 < ne03; i03++) { |
135 | 0 | for (int i02 = 0; i02 < ne02; i02++) { |
136 | 0 | id += ne00 * ir0; |
137 | 0 | for (int i01 = ir0; i01 < ir1; i01++) { |
138 | 0 | for (int i00 = 0; i00 < ne00; i00++) { |
139 | 0 | const src_t * src0_ptr = (src_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); |
140 | |
|
141 | 0 | float tmp = type_conversion_table<src_t>::to_f32(*src0_ptr); |
142 | 0 | dst_ptr[id] = type_conversion_table<dst_t>::from_f32(tmp); |
143 | 0 | id++; |
144 | 0 | } |
145 | 0 | } |
146 | 0 | id += ne00 * (ne01 - ir1); |
147 | 0 | } |
148 | 0 | } |
149 | 0 | } |
150 | 0 | return; |
151 | 0 | } |
152 | | |
153 | | // dst counters |
154 | 0 | int64_t i10 = 0; |
155 | 0 | int64_t i11 = 0; |
156 | 0 | int64_t i12 = 0; |
157 | 0 | int64_t i13 = 0; |
158 | |
|
159 | 0 | if constexpr (std::is_same_v<dst_t, src_t>) { |
160 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
161 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
162 | 0 | i10 += ne00 * ir0; |
163 | 0 | while (i10 >= ne0) { |
164 | 0 | i10 -= ne0; |
165 | 0 | if (++i11 == ne1) { |
166 | 0 | i11 = 0; |
167 | 0 | if (++i12 == ne2) { |
168 | 0 | i12 = 0; |
169 | 0 | if (++i13 == ne3) { |
170 | 0 | i13 = 0; |
171 | 0 | } |
172 | 0 | } |
173 | 0 | } |
174 | 0 | } |
175 | 0 | for (int64_t i01 = ir0; i01 < ir1; i01++) { |
176 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
177 | 0 | const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); |
178 | 0 | char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); |
179 | |
|
180 | 0 | memcpy(dst_ptr, src0_ptr, sizeof(dst_t)); |
181 | |
|
182 | 0 | if (++i10 == ne00) { |
183 | 0 | i10 = 0; |
184 | 0 | if (++i11 == ne01) { |
185 | 0 | i11 = 0; |
186 | 0 | if (++i12 == ne02) { |
187 | 0 | i12 = 0; |
188 | 0 | if (++i13 == ne03) { |
189 | 0 | i13 = 0; |
190 | 0 | } |
191 | 0 | } |
192 | 0 | } |
193 | 0 | } |
194 | 0 | } |
195 | 0 | } |
196 | 0 | i10 += ne00 * (ne01 - ir1); |
197 | 0 | while (i10 >= ne0) { |
198 | 0 | i10 -= ne0; |
199 | 0 | if (++i11 == ne1) { |
200 | 0 | i11 = 0; |
201 | 0 | if (++i12 == ne2) { |
202 | 0 | i12 = 0; |
203 | 0 | if (++i13 == ne3) { |
204 | 0 | i13 = 0; |
205 | 0 | } |
206 | 0 | } |
207 | 0 | } |
208 | 0 | } |
209 | 0 | } |
210 | 0 | } |
211 | |
|
212 | 0 | } else { |
213 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
214 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
215 | 0 | i10 += ne00 * ir0; |
216 | 0 | while (i10 >= ne0) { |
217 | 0 | i10 -= ne0; |
218 | 0 | if (++i11 == ne1) { |
219 | 0 | i11 = 0; |
220 | 0 | if (++i12 == ne2) { |
221 | 0 | i12 = 0; |
222 | 0 | if (++i13 == ne3) { |
223 | 0 | i13 = 0; |
224 | 0 | } |
225 | 0 | } |
226 | 0 | } |
227 | 0 | } |
228 | 0 | for (int64_t i01 = ir0; i01 < ir1; i01++) { |
229 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
230 | 0 | const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); |
231 | 0 | char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); |
232 | |
|
233 | 0 | float tmp = type_conversion_table<src_t>::to_f32(*(const src_t *) src0_ptr); |
234 | 0 | *(dst_t *) dst_ptr = type_conversion_table<dst_t>::from_f32(tmp); |
235 | |
|
236 | 0 | if (++i10 == ne0) { |
237 | 0 | i10 = 0; |
238 | 0 | if (++i11 == ne1) { |
239 | 0 | i11 = 0; |
240 | 0 | if (++i12 == ne2) { |
241 | 0 | i12 = 0; |
242 | 0 | if (++i13 == ne3) { |
243 | 0 | i13 = 0; |
244 | 0 | } |
245 | 0 | } |
246 | 0 | } |
247 | 0 | } |
248 | 0 | } |
249 | 0 | } |
250 | 0 | i10 += ne00 * (ne01 - ir1); |
251 | 0 | while (i10 >= ne0) { |
252 | 0 | i10 -= ne0; |
253 | 0 | if (++i11 == ne1) { |
254 | 0 | i11 = 0; |
255 | 0 | if (++i12 == ne2) { |
256 | 0 | i12 = 0; |
257 | 0 | if (++i13 == ne3) { |
258 | 0 | i13 = 0; |
259 | 0 | } |
260 | 0 | } |
261 | 0 | } |
262 | 0 | } |
263 | 0 | } |
264 | 0 | } |
265 | 0 | } |
266 | 0 | } Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<unsigned short, unsigned short>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<unsigned short, ggml_bf16_t>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<unsigned short, float>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<ggml_bf16_t, unsigned short>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<ggml_bf16_t, ggml_bf16_t>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<ggml_bf16_t, float>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<float, unsigned short>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<float, ggml_bf16_t>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<float, float>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<float, int>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_flt<int, float>(ggml_compute_params const*, ggml_tensor*) |
267 | | |
268 | | |
269 | | template<typename src_t> |
270 | | static void ggml_compute_forward_dup_to_q( |
271 | | const ggml_compute_params * params, |
272 | 0 | ggml_tensor * dst) { |
273 | |
|
274 | 0 | const ggml_tensor * src0 = dst->src[0]; |
275 | |
|
276 | 0 | GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); |
277 | 0 | GGML_ASSERT(!ggml_is_quantized(src0->type)); |
278 | |
|
279 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
280 | |
|
281 | 0 | const int ith = params->ith; // thread index |
282 | 0 | const int nth = params->nth; // number of threads |
283 | | |
284 | | // parallelize by rows |
285 | 0 | const int nr = ne01; |
286 | | // number of rows per thread |
287 | 0 | const int dr = (nr + nth - 1) / nth; |
288 | | // row range for this thread |
289 | 0 | const int ir0 = dr * ith; |
290 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
291 | |
|
292 | 0 | if (ggml_is_contiguous(dst) && |
293 | 0 | nb00 == sizeof(src_t) && |
294 | 0 | ggml_get_type_traits_cpu(dst->type)->from_float) { |
295 | | // casting non-quantized types --> intermediate f32 --> quantized |
296 | 0 | ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float; |
297 | 0 | float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; |
298 | |
|
299 | 0 | size_t id = 0; |
300 | 0 | size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type)); |
301 | 0 | char * dst_ptr = (char *) dst->data; |
302 | |
|
303 | 0 | for (int i03 = 0; i03 < ne03; i03++) { |
304 | 0 | for (int i02 = 0; i02 < ne02; i02++) { |
305 | 0 | id += rs * ir0; |
306 | 0 | for (int i01 = ir0; i01 < ir1; i01++) { |
307 | 0 | const src_t * src0_ptr = (src_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); |
308 | |
|
309 | 0 | for (int i00 = 0; i00 < ne00; i00++) { |
310 | 0 | src0_f32[i00] = type_conversion_table<src_t>::to_f32(src0_ptr[i00]); |
311 | 0 | } |
312 | |
|
313 | 0 | quantize_row_q(src0_f32, dst_ptr + id, ne00); |
314 | 0 | id += rs; |
315 | 0 | } |
316 | 0 | id += rs * (ne01 - ir1); |
317 | 0 | } |
318 | 0 | } |
319 | 0 | } else { |
320 | | // printf("%s %s\n", ggml_type_name(src0->type), ggml_type_name(dst->type)); |
321 | 0 | GGML_ABORT("not implemented"); |
322 | 0 | } |
323 | 0 | } Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_to_q<unsigned short>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_to_q<ggml_bf16_t>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_dup_to_q<float>(ggml_compute_params const*, ggml_tensor*) |
324 | | |
325 | | // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy. |
326 | | static void ggml_compute_forward_dup_bytes( |
327 | | const ggml_compute_params * params, |
328 | 0 | ggml_tensor * dst) { |
329 | 0 | const ggml_tensor * src0 = dst->src[0]; |
330 | |
|
331 | 0 | GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); |
332 | 0 | GGML_ASSERT(src0->type == dst->type); |
333 | |
|
334 | 0 | GGML_TENSOR_UNARY_OP_LOCALS; |
335 | |
|
336 | 0 | if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) { |
337 | 0 | ggml_compute_forward_dup_same_cont(params, dst); |
338 | 0 | return; |
339 | 0 | } |
340 | | |
341 | 0 | const size_t type_size = ggml_type_size(src0->type); |
342 | |
|
343 | 0 | const int ith = params->ith; // thread index |
344 | 0 | const int nth = params->nth; // number of threads |
345 | | |
346 | | // parallelize by rows |
347 | 0 | const int nr = ne01; |
348 | | // number of rows per thread |
349 | 0 | const int dr = (nr + nth - 1) / nth; |
350 | | // row range for this thread |
351 | 0 | const int ir0 = dr * ith; |
352 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
353 | |
|
354 | 0 | if (src0->type == dst->type && |
355 | 0 | ggml_are_same_shape(src0, dst) && |
356 | 0 | nb00 == type_size && nb0 == type_size) { |
357 | | // copy by rows |
358 | 0 | const size_t rs = ggml_row_size(src0->type, ne00); |
359 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
360 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
361 | 0 | for (int64_t i01 = ir0; i01 < ir1; i01++) { |
362 | 0 | memcpy( |
363 | 0 | ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), |
364 | 0 | ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), |
365 | 0 | rs); |
366 | 0 | } |
367 | 0 | } |
368 | 0 | } |
369 | 0 | return; |
370 | 0 | } |
371 | | |
372 | 0 | if (ggml_is_contiguous(dst)) { |
373 | 0 | size_t id = 0; |
374 | 0 | char * dst_ptr = (char *) dst->data; |
375 | 0 | const size_t rs = ne00 * type_size; |
376 | |
|
377 | 0 | if (nb00 == type_size) { |
378 | | // src0 is contigous on first dimension, copy by rows |
379 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
380 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
381 | 0 | id += rs * ir0; |
382 | 0 | for (int64_t i01 = ir0; i01 < ir1; i01++) { |
383 | 0 | const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; |
384 | 0 | memcpy(dst_ptr + id, src0_ptr, rs); |
385 | 0 | id += rs; |
386 | 0 | } |
387 | 0 | id += rs * (ne01 - ir1); |
388 | 0 | } |
389 | 0 | } |
390 | 0 | } else { |
391 | | //printf("%s: this is not optimal - fix me\n", __func__); |
392 | |
|
393 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
394 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
395 | 0 | id += rs * ir0; |
396 | 0 | for (int64_t i01 = ir0; i01 < ir1; i01++) { |
397 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
398 | 0 | const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03; |
399 | 0 | memcpy(dst_ptr + id, src0_ptr, type_size); |
400 | |
|
401 | 0 | id += type_size; |
402 | 0 | } |
403 | 0 | } |
404 | 0 | id += rs * (ne01 - ir1); |
405 | 0 | } |
406 | 0 | } |
407 | 0 | } |
408 | |
|
409 | 0 | return; |
410 | 0 | } |
411 | | |
412 | | // dst counters |
413 | 0 | int64_t k10 = 0; |
414 | 0 | int64_t i11 = 0; |
415 | 0 | int64_t i12 = 0; |
416 | 0 | int64_t i13 = 0; |
417 | | |
418 | | // number of blocks in a row |
419 | 0 | const int64_t nk00 = ne00 / ggml_blck_size(src0->type); |
420 | 0 | const int64_t nk0 = ne0 / ggml_blck_size(dst->type); |
421 | |
|
422 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
423 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
424 | 0 | k10 += nk00 * ir0; |
425 | 0 | while (k10 >= nk0) { |
426 | 0 | k10 -= nk0; |
427 | 0 | if (++i11 == ne1) { |
428 | 0 | i11 = 0; |
429 | 0 | if (++i12 == ne2) { |
430 | 0 | i12 = 0; |
431 | 0 | if (++i13 == ne3) { |
432 | 0 | i13 = 0; |
433 | 0 | } |
434 | 0 | } |
435 | 0 | } |
436 | 0 | } |
437 | 0 | for (int64_t i01 = ir0; i01 < ir1; i01++) { |
438 | 0 | for (int64_t k00 = 0; k00 < nk00; k00++) { |
439 | 0 | const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); |
440 | 0 | char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); |
441 | |
|
442 | 0 | memcpy(dst_ptr, src0_ptr, type_size); |
443 | |
|
444 | 0 | if (++k10 == nk0) { |
445 | 0 | k10 = 0; |
446 | 0 | if (++i11 == ne1) { |
447 | 0 | i11 = 0; |
448 | 0 | if (++i12 == ne2) { |
449 | 0 | i12 = 0; |
450 | 0 | if (++i13 == ne3) { |
451 | 0 | i13 = 0; |
452 | 0 | } |
453 | 0 | } |
454 | 0 | } |
455 | 0 | } |
456 | 0 | } |
457 | 0 | } |
458 | 0 | k10 += nk00 * (ne01 - ir1); |
459 | 0 | while (k10 >= nk0) { |
460 | 0 | k10 -= nk0; |
461 | 0 | if (++i11 == ne1) { |
462 | 0 | i11 = 0; |
463 | 0 | if (++i12 == ne2) { |
464 | 0 | i12 = 0; |
465 | 0 | if (++i13 == ne3) { |
466 | 0 | i13 = 0; |
467 | 0 | } |
468 | 0 | } |
469 | 0 | } |
470 | 0 | } |
471 | 0 | } |
472 | 0 | } |
473 | 0 | } |
474 | | |
475 | | static void ggml_compute_forward_dup_from_q( |
476 | | const ggml_compute_params * params, |
477 | 0 | ggml_tensor * dst) { |
478 | |
|
479 | 0 | const ggml_tensor * src0 = dst->src[0]; |
480 | 0 | const ggml_tensor * src1 = dst->src[1]; |
481 | |
|
482 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
483 | |
|
484 | 0 | const ggml_type type = src0->type; |
485 | 0 | ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; |
486 | |
|
487 | 0 | size_t qk = ggml_blck_size(type); |
488 | 0 | const int64_t nr = ggml_nelements(src1) / qk; |
489 | | |
490 | | // destination must be contiguous in the first dimension |
491 | 0 | GGML_ASSERT(nb10 == ggml_type_size(dst->type)); |
492 | | // must either have first dimension large enough to hold a row, or fully contiguous |
493 | 0 | GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst)); |
494 | |
|
495 | 0 | const int ith = params->ith; |
496 | 0 | const int nth = params->nth; |
497 | |
|
498 | 0 | const int dr = (nr + nth - 1)/nth; |
499 | | |
500 | | // row range for this thread |
501 | 0 | const int ir0 = dr*ith; |
502 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
503 | |
|
504 | 0 | for (int64_t ir = ir0; ir < ir1; ++ir) { |
505 | |
|
506 | 0 | uint32_t i = ir * qk; |
507 | |
|
508 | 0 | const int64_t i03 = i/(ne00 * ne01 * ne02); |
509 | 0 | const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01); |
510 | 0 | const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00; |
511 | 0 | const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00; |
512 | 0 | const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03; |
513 | |
|
514 | 0 | const int64_t i13 = i/(ne10 * ne11 * ne12); |
515 | 0 | const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11); |
516 | 0 | const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10; |
517 | 0 | const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10; |
518 | 0 | const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13; |
519 | |
|
520 | 0 | dequantize_row_q( |
521 | 0 | (const void *) ((char *) src0->data + x_offset), |
522 | 0 | (float *) ((char *) dst->data + dst_offset), qk); |
523 | 0 | } |
524 | 0 | } |
525 | | |
526 | | void ggml_compute_forward_dup( |
527 | | const ggml_compute_params * params, |
528 | 0 | ggml_tensor * dst) { |
529 | |
|
530 | 0 | const ggml_tensor * src0 = dst->src[0]; |
531 | |
|
532 | 0 | if (src0->type == dst->type) { |
533 | 0 | ggml_compute_forward_dup_bytes(params, dst); |
534 | 0 | return; |
535 | 0 | } |
536 | | |
537 | 0 | switch (src0->type) { |
538 | 0 | case GGML_TYPE_F16: |
539 | 0 | { |
540 | 0 | /**/ if (dst->type == GGML_TYPE_F16) ggml_compute_forward_dup_flt<ggml_fp16_t, ggml_fp16_t>(params, dst); |
541 | 0 | else if (dst->type == GGML_TYPE_BF16) ggml_compute_forward_dup_flt<ggml_fp16_t, ggml_bf16_t>(params, dst); |
542 | 0 | else if (dst->type == GGML_TYPE_F32) ggml_compute_forward_dup_flt<ggml_fp16_t, float >(params, dst); |
543 | 0 | else ggml_compute_forward_dup_to_q<ggml_fp16_t>(params, dst); |
544 | 0 | } break; |
545 | 0 | case GGML_TYPE_BF16: |
546 | 0 | { |
547 | 0 | /**/ if (dst->type == GGML_TYPE_F16) ggml_compute_forward_dup_flt<ggml_bf16_t, ggml_fp16_t>(params, dst); |
548 | 0 | else if (dst->type == GGML_TYPE_BF16) ggml_compute_forward_dup_flt<ggml_bf16_t, ggml_bf16_t>(params, dst); |
549 | 0 | else if (dst->type == GGML_TYPE_F32) ggml_compute_forward_dup_flt<ggml_bf16_t, float >(params, dst); |
550 | 0 | else ggml_compute_forward_dup_to_q<ggml_bf16_t>(params, dst); |
551 | 0 | } break; |
552 | 0 | case GGML_TYPE_F32: |
553 | 0 | { |
554 | 0 | /**/ if (dst->type == GGML_TYPE_F16) ggml_compute_forward_dup_flt<float, ggml_fp16_t>(params, dst); |
555 | 0 | else if (dst->type == GGML_TYPE_BF16) ggml_compute_forward_dup_flt<float, ggml_bf16_t>(params, dst); |
556 | 0 | else if (dst->type == GGML_TYPE_F32) ggml_compute_forward_dup_flt<float, float >(params, dst); |
557 | 0 | else if (dst->type == GGML_TYPE_I32) ggml_compute_forward_dup_flt<float, int32_t >(params, dst); |
558 | 0 | else ggml_compute_forward_dup_to_q<float>(params, dst); |
559 | 0 | } break; |
560 | 0 | case GGML_TYPE_I32: |
561 | 0 | { |
562 | 0 | if (dst->type == GGML_TYPE_F32) ggml_compute_forward_dup_flt<int32_t, float>(params, dst); |
563 | 0 | else GGML_ABORT("not implemented"); |
564 | 0 | } break; |
565 | 0 | default: |
566 | 0 | { |
567 | 0 | if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) { |
568 | 0 | ggml_compute_forward_dup_from_q(params, dst); |
569 | 0 | break; |
570 | 0 | } |
571 | 0 | GGML_ABORT("fatal error"); |
572 | 0 | } |
573 | 0 | } |
574 | 0 | } |
575 | | |
576 | | // ggml_compute_forward_add |
577 | | |
578 | | static void ggml_compute_forward_add_q_f32( |
579 | | const ggml_compute_params * params, |
580 | 0 | ggml_tensor * dst) { |
581 | |
|
582 | 0 | const ggml_tensor * src0 = dst->src[0]; |
583 | 0 | const ggml_tensor * src1 = dst->src[1]; |
584 | |
|
585 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); |
586 | |
|
587 | 0 | const int nr = ggml_nrows(src0); |
588 | |
|
589 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
590 | |
|
591 | 0 | const int ith = params->ith; |
592 | 0 | const int nth = params->nth; |
593 | |
|
594 | 0 | const ggml_type type = src0->type; |
595 | 0 | const ggml_type dtype = dst->type; |
596 | 0 | ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; |
597 | 0 | ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float; |
598 | | |
599 | | // we don't support permuted src0 or src1 |
600 | 0 | GGML_ASSERT(nb00 == ggml_type_size(type)); |
601 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
602 | | |
603 | | // dst cannot be transposed or permuted |
604 | 0 | GGML_ASSERT(nb0 <= nb1); |
605 | 0 | GGML_ASSERT(nb1 <= nb2); |
606 | 0 | GGML_ASSERT(nb2 <= nb3); |
607 | |
|
608 | 0 | GGML_ASSERT(ggml_is_quantized(src0->type)); |
609 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
610 | | |
611 | | // rows per thread |
612 | 0 | const int dr = (nr + nth - 1)/nth; |
613 | | |
614 | | // row range for this thread |
615 | 0 | const int ir0 = dr*ith; |
616 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
617 | |
|
618 | 0 | float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; |
619 | |
|
620 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
621 | | // src0 indices |
622 | 0 | const int i03 = ir/(ne02*ne01); |
623 | 0 | const int i02 = (ir - i03*ne02*ne01)/ne01; |
624 | 0 | const int i01 = (ir - i03*ne02*ne01 - i02*ne01); |
625 | | |
626 | | // src1 and dst are same shape as src0 => same indices |
627 | 0 | const int i13 = i03; |
628 | 0 | const int i12 = i02; |
629 | 0 | const int i11 = i01; |
630 | |
|
631 | 0 | const int i3 = i03; |
632 | 0 | const int i2 = i02; |
633 | 0 | const int i1 = i01; |
634 | |
|
635 | 0 | void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); |
636 | 0 | float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)); |
637 | 0 | void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); |
638 | |
|
639 | 0 | assert(ne00 % 32 == 0); |
640 | | |
641 | | // unquantize row from src0 to temp buffer |
642 | 0 | dequantize_row_q(src0_row, wdata, ne00); |
643 | | // add src1 |
644 | 0 | ggml_vec_acc_f32(ne00, wdata, src1_row); |
645 | | // quantize row to dst |
646 | 0 | if (quantize_row_q != NULL) { |
647 | 0 | quantize_row_q(wdata, dst_row, ne00); |
648 | 0 | } else { |
649 | 0 | memcpy(dst_row, wdata, ne0*nb0); |
650 | 0 | } |
651 | 0 | } |
652 | 0 | } |
653 | | |
654 | | void ggml_compute_forward_add( |
655 | | const ggml_compute_params * params, |
656 | 0 | ggml_tensor * dst) { |
657 | |
|
658 | 0 | const ggml_tensor * src0 = dst->src[0]; |
659 | |
|
660 | 0 | switch (src0->type) { |
661 | 0 | case GGML_TYPE_F32: |
662 | 0 | case GGML_TYPE_F16: |
663 | 0 | case GGML_TYPE_BF16: |
664 | 0 | { |
665 | 0 | ggml_compute_forward_add_non_quantized(params, dst); |
666 | 0 | } break; |
667 | 0 | case GGML_TYPE_Q4_0: |
668 | 0 | case GGML_TYPE_Q4_1: |
669 | 0 | case GGML_TYPE_Q5_0: |
670 | 0 | case GGML_TYPE_Q5_1: |
671 | 0 | case GGML_TYPE_Q8_0: |
672 | 0 | case GGML_TYPE_MXFP4: |
673 | 0 | case GGML_TYPE_Q2_K: |
674 | 0 | case GGML_TYPE_Q3_K: |
675 | 0 | case GGML_TYPE_Q4_K: |
676 | 0 | case GGML_TYPE_Q5_K: |
677 | 0 | case GGML_TYPE_Q6_K: |
678 | 0 | case GGML_TYPE_TQ1_0: |
679 | 0 | case GGML_TYPE_TQ2_0: |
680 | 0 | case GGML_TYPE_IQ2_XXS: |
681 | 0 | case GGML_TYPE_IQ2_XS: |
682 | 0 | case GGML_TYPE_IQ3_XXS: |
683 | 0 | case GGML_TYPE_IQ1_S: |
684 | 0 | case GGML_TYPE_IQ1_M: |
685 | 0 | case GGML_TYPE_IQ4_NL: |
686 | 0 | case GGML_TYPE_IQ4_XS: |
687 | 0 | case GGML_TYPE_IQ3_S: |
688 | 0 | case GGML_TYPE_IQ2_S: |
689 | 0 | { |
690 | 0 | ggml_compute_forward_add_q_f32(params, dst); |
691 | 0 | } break; |
692 | 0 | default: |
693 | 0 | { |
694 | 0 | GGML_ABORT("fatal error"); |
695 | 0 | } |
696 | 0 | } |
697 | 0 | } |
698 | | |
699 | | // ggml_compute_forward_add_id |
700 | | |
701 | | static void ggml_compute_forward_add_id_f32( |
702 | | const ggml_compute_params * params, |
703 | 0 | ggml_tensor * dst) { |
704 | |
|
705 | 0 | const ggml_tensor * src0 = dst->src[0]; |
706 | 0 | const ggml_tensor * src1 = dst->src[1]; |
707 | 0 | const ggml_tensor * src2 = dst->src[2]; |
708 | |
|
709 | 0 | GGML_ASSERT(dst->type == GGML_TYPE_F32); |
710 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F32); |
711 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
712 | 0 | GGML_ASSERT(src2->type == GGML_TYPE_I32); |
713 | |
|
714 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
715 | 0 | GGML_ASSERT(src1->nb[0] == sizeof(float)); |
716 | |
|
717 | 0 | const int ith = params->ith; |
718 | 0 | const int nth = params->nth; |
719 | |
|
720 | 0 | const int nr = ggml_nrows(src0); |
721 | |
|
722 | 0 | GGML_TENSOR_TERNARY_OP_LOCALS |
723 | |
|
724 | 0 | GGML_ASSERT( nb0 == sizeof(float)); |
725 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
726 | | |
727 | | // rows per thread |
728 | 0 | const int dr = (nr + nth - 1)/nth; |
729 | | |
730 | | // row range for this thread |
731 | 0 | const int ir0 = dr*ith; |
732 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
733 | |
|
734 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
735 | | // src0 indices |
736 | 0 | const int i3 = ir/(ne2*ne1); |
737 | 0 | const int i2 = (ir - i3*ne2*ne1)/ne1; |
738 | 0 | const int i1 = (ir - i3*ne2*ne1 - i2*ne1); |
739 | | |
740 | | // src1 indices |
741 | 0 | const int i11 = *(int32_t *) ((char *) src2->data + i1*nb20 + i2*nb21); |
742 | |
|
743 | 0 | GGML_ASSERT(i11 >= 0 && i11 < ne11); |
744 | |
|
745 | 0 | ggml_vec_add_f32(ne0, |
746 | 0 | (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), |
747 | 0 | (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), |
748 | 0 | (float *) ((char *) src1->data + i11*nb11)); |
749 | 0 | } |
750 | 0 | } |
751 | | |
752 | | void ggml_compute_forward_add_id( |
753 | | const ggml_compute_params * params, |
754 | 0 | ggml_tensor * dst) { |
755 | |
|
756 | 0 | const ggml_tensor * src0 = dst->src[0]; |
757 | |
|
758 | 0 | switch (src0->type) { |
759 | 0 | case GGML_TYPE_F32: |
760 | 0 | { |
761 | 0 | ggml_compute_forward_add_id_f32(params, dst); |
762 | 0 | } break; |
763 | 0 | default: |
764 | 0 | { |
765 | 0 | GGML_ABORT("unsupported type for ggml_compute_forward_add_id: %s", ggml_type_name(src0->type)); |
766 | 0 | } |
767 | 0 | } |
768 | 0 | } |
769 | | |
770 | | // ggml_compute_forward_add1 |
771 | | |
772 | | static void ggml_compute_forward_add1_f32( |
773 | | const ggml_compute_params * params, |
774 | 0 | ggml_tensor * dst) { |
775 | |
|
776 | 0 | const ggml_tensor * src0 = dst->src[0]; |
777 | 0 | const ggml_tensor * src1 = dst->src[1]; |
778 | |
|
779 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
780 | 0 | GGML_ASSERT(ggml_is_scalar(src1)); |
781 | |
|
782 | 0 | const int ith = params->ith; |
783 | 0 | const int nth = params->nth; |
784 | |
|
785 | 0 | const int nr = ggml_nrows(src0); |
786 | |
|
787 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
788 | |
|
789 | 0 | GGML_ASSERT( nb0 == sizeof(float)); |
790 | 0 | GGML_ASSERT(nb00 == sizeof(float)); |
791 | | |
792 | | // rows per thread |
793 | 0 | const int dr = (nr + nth - 1)/nth; |
794 | | |
795 | | // row range for this thread |
796 | 0 | const int ir0 = dr*ith; |
797 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
798 | |
|
799 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
800 | | // src0 and dst are same shape => same indices |
801 | 0 | const int i3 = ir/(ne2*ne1); |
802 | 0 | const int i2 = (ir - i3*ne2*ne1)/ne1; |
803 | 0 | const int i1 = (ir - i3*ne2*ne1 - i2*ne1); |
804 | |
|
805 | | #ifdef GGML_USE_ACCELERATE |
806 | | GGML_UNUSED(ggml_vec_add1_f32); |
807 | | |
808 | | vDSP_vadd( |
809 | | (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, |
810 | | (float *) ((char *) src1->data), 0, |
811 | | (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1, |
812 | | ne0); |
813 | | #else |
814 | 0 | ggml_vec_add1_f32(ne0, |
815 | 0 | (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), |
816 | 0 | (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), |
817 | 0 | *(float *) src1->data); |
818 | 0 | #endif |
819 | 0 | } |
820 | 0 | } |
821 | | |
822 | | static void ggml_compute_forward_add1_f16_f32( |
823 | | const ggml_compute_params * params, |
824 | 0 | ggml_tensor * dst) { |
825 | |
|
826 | 0 | const ggml_tensor * src0 = dst->src[0]; |
827 | 0 | const ggml_tensor * src1 = dst->src[1]; |
828 | |
|
829 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
830 | 0 | GGML_ASSERT(ggml_is_scalar(src1)); |
831 | | |
832 | | // scalar to add |
833 | 0 | const float v = *(float *) src1->data; |
834 | |
|
835 | 0 | const int ith = params->ith; |
836 | 0 | const int nth = params->nth; |
837 | |
|
838 | 0 | const int nr = ggml_nrows(src0); |
839 | |
|
840 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
841 | |
|
842 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F16); |
843 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
844 | 0 | GGML_ASSERT(dst->type == GGML_TYPE_F16); |
845 | |
|
846 | 0 | GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); |
847 | 0 | GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); |
848 | | |
849 | | // rows per thread |
850 | 0 | const int dr = (nr + nth - 1)/nth; |
851 | | |
852 | | // row range for this thread |
853 | 0 | const int ir0 = dr*ith; |
854 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
855 | |
|
856 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
857 | | // src0 and dst are same shape => same indices |
858 | 0 | const int i3 = ir/(ne2*ne1); |
859 | 0 | const int i2 = (ir - i3*ne2*ne1)/ne1; |
860 | 0 | const int i1 = (ir - i3*ne2*ne1 - i2*ne1); |
861 | |
|
862 | 0 | ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); |
863 | 0 | ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); |
864 | 0 | for (int i = 0; i < ne0; i++) { |
865 | 0 | dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v); |
866 | 0 | } |
867 | 0 | } |
868 | 0 | } |
869 | | |
870 | | static void ggml_compute_forward_add1_f16_f16( |
871 | | const ggml_compute_params * params, |
872 | 0 | ggml_tensor * dst) { |
873 | |
|
874 | 0 | const ggml_tensor * src0 = dst->src[0]; |
875 | 0 | const ggml_tensor * src1 = dst->src[1]; |
876 | |
|
877 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
878 | 0 | GGML_ASSERT(ggml_is_scalar(src1)); |
879 | | |
880 | | // scalar to add |
881 | 0 | const float v = GGML_CPU_FP16_TO_FP32(*(ggml_fp16_t *) src1->data); |
882 | |
|
883 | 0 | const int ith = params->ith; |
884 | 0 | const int nth = params->nth; |
885 | |
|
886 | 0 | const int nr = ggml_nrows(src0); |
887 | |
|
888 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
889 | |
|
890 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F16); |
891 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F16); |
892 | 0 | GGML_ASSERT(dst->type == GGML_TYPE_F16); |
893 | |
|
894 | 0 | GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); |
895 | 0 | GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); |
896 | | |
897 | | // rows per thread |
898 | 0 | const int dr = (nr + nth - 1)/nth; |
899 | | |
900 | | // row range for this thread |
901 | 0 | const int ir0 = dr*ith; |
902 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
903 | |
|
904 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
905 | | // src0 and dst are same shape => same indices |
906 | 0 | const int i3 = ir/(ne2*ne1); |
907 | 0 | const int i2 = (ir - i3*ne2*ne1)/ne1; |
908 | 0 | const int i1 = (ir - i3*ne2*ne1 - i2*ne1); |
909 | |
|
910 | 0 | ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); |
911 | 0 | ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); |
912 | 0 | for (int i = 0; i < ne0; i++) { |
913 | 0 | dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v); |
914 | 0 | } |
915 | 0 | } |
916 | 0 | } |
917 | | |
918 | | static void ggml_compute_forward_add1_q_f32( |
919 | | const ggml_compute_params * params, |
920 | 0 | ggml_tensor * dst) { |
921 | |
|
922 | 0 | const ggml_tensor * src0 = dst->src[0]; |
923 | 0 | const ggml_tensor * src1 = dst->src[1]; |
924 | |
|
925 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
926 | 0 | GGML_ASSERT(ggml_is_scalar(src1)); |
927 | | |
928 | | // scalar to add |
929 | 0 | const float v = *(float *) src1->data; |
930 | |
|
931 | 0 | const int ith = params->ith; |
932 | 0 | const int nth = params->nth; |
933 | |
|
934 | 0 | const int nr = ggml_nrows(src0); |
935 | |
|
936 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
937 | |
|
938 | 0 | const ggml_type type = src0->type; |
939 | 0 | ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; |
940 | 0 | ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float; |
941 | | |
942 | | // we don't support permuted src0 |
943 | 0 | GGML_ASSERT(nb00 == ggml_type_size(type)); |
944 | | |
945 | | // dst cannot be transposed or permuted |
946 | 0 | GGML_ASSERT(nb0 <= nb1); |
947 | 0 | GGML_ASSERT(nb1 <= nb2); |
948 | 0 | GGML_ASSERT(nb2 <= nb3); |
949 | |
|
950 | 0 | GGML_ASSERT(ggml_is_quantized(src0->type)); |
951 | 0 | GGML_ASSERT(dst->type == src0->type); |
952 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
953 | | |
954 | | // rows per thread |
955 | 0 | const int dr = (nr + nth - 1)/nth; |
956 | | |
957 | | // row range for this thread |
958 | 0 | const int ir0 = dr*ith; |
959 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
960 | |
|
961 | 0 | float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith; |
962 | |
|
963 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
964 | | // src0 and dst are same shape => same indices |
965 | 0 | const int i3 = ir/(ne2*ne1); |
966 | 0 | const int i2 = (ir - i3*ne2*ne1)/ne1; |
967 | 0 | const int i1 = (ir - i3*ne2*ne1 - i2*ne1); |
968 | |
|
969 | 0 | void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03)); |
970 | 0 | void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 )); |
971 | |
|
972 | 0 | assert(ne0 % 32 == 0); |
973 | | |
974 | | // unquantize row from src0 to temp buffer |
975 | 0 | dequantize_row_q(src0_row, wdata, ne0); |
976 | | // add src1 |
977 | 0 | ggml_vec_acc1_f32(ne0, wdata, v); |
978 | | // quantize row to dst |
979 | 0 | quantize_row_q(wdata, dst_row, ne0); |
980 | 0 | } |
981 | 0 | } |
982 | | |
983 | | static void ggml_compute_forward_add1_bf16_f32( |
984 | | const ggml_compute_params * params, |
985 | 0 | ggml_tensor * dst) { |
986 | |
|
987 | 0 | const ggml_tensor * src0 = dst->src[0]; |
988 | 0 | const ggml_tensor * src1 = dst->src[1]; |
989 | |
|
990 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
991 | 0 | GGML_ASSERT(ggml_is_scalar(src1)); |
992 | | |
993 | | // scalar to add |
994 | 0 | const float v = *(float *) src1->data; |
995 | |
|
996 | 0 | const int ith = params->ith; |
997 | 0 | const int nth = params->nth; |
998 | |
|
999 | 0 | const int nr = ggml_nrows(src0); |
1000 | |
|
1001 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
1002 | |
|
1003 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_BF16); |
1004 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
1005 | 0 | GGML_ASSERT(dst->type == GGML_TYPE_BF16); |
1006 | |
|
1007 | 0 | GGML_ASSERT( nb0 == sizeof(ggml_bf16_t)); |
1008 | 0 | GGML_ASSERT(nb00 == sizeof(ggml_bf16_t)); |
1009 | | |
1010 | | // rows per thread |
1011 | 0 | const int dr = (nr + nth - 1)/nth; |
1012 | | |
1013 | | // row range for this thread |
1014 | 0 | const int ir0 = dr*ith; |
1015 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
1016 | |
|
1017 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
1018 | | // src0 and dst are same shape => same indices |
1019 | 0 | const int i3 = ir/(ne2*ne1); |
1020 | 0 | const int i2 = (ir - i3*ne2*ne1)/ne1; |
1021 | 0 | const int i1 = (ir - i3*ne2*ne1 - i2*ne1); |
1022 | |
|
1023 | 0 | ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); |
1024 | 0 | ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); |
1025 | 0 | for (int i = 0; i < ne0; i++) { |
1026 | 0 | dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v); |
1027 | 0 | } |
1028 | 0 | } |
1029 | 0 | } |
1030 | | |
1031 | | static void ggml_compute_forward_add1_bf16_bf16( |
1032 | | const ggml_compute_params * params, |
1033 | 0 | ggml_tensor * dst) { |
1034 | |
|
1035 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1036 | 0 | const ggml_tensor * src1 = dst->src[1]; |
1037 | |
|
1038 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
1039 | 0 | GGML_ASSERT(ggml_is_scalar(src1)); |
1040 | | |
1041 | | // scalar to add |
1042 | 0 | const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data); |
1043 | |
|
1044 | 0 | const int ith = params->ith; |
1045 | 0 | const int nth = params->nth; |
1046 | |
|
1047 | 0 | const int nr = ggml_nrows(src0); |
1048 | |
|
1049 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
1050 | |
|
1051 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_BF16); |
1052 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_BF16); |
1053 | 0 | GGML_ASSERT(dst->type == GGML_TYPE_BF16); |
1054 | |
|
1055 | 0 | GGML_ASSERT( nb0 == sizeof(ggml_bf16_t)); |
1056 | 0 | GGML_ASSERT(nb00 == sizeof(ggml_bf16_t)); |
1057 | | |
1058 | | // rows per thread |
1059 | 0 | const int dr = (nr + nth - 1)/nth; |
1060 | | |
1061 | | // row range for this thread |
1062 | 0 | const int ir0 = dr*ith; |
1063 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
1064 | |
|
1065 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
1066 | | // src0 and dst are same shape => same indices |
1067 | 0 | const int i3 = ir/(ne2*ne1); |
1068 | 0 | const int i2 = (ir - i3*ne2*ne1)/ne1; |
1069 | 0 | const int i1 = (ir - i3*ne2*ne1 - i2*ne1); |
1070 | |
|
1071 | 0 | ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); |
1072 | 0 | ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); |
1073 | 0 | for (int i = 0; i < ne0; i++) { |
1074 | 0 | dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v); |
1075 | 0 | } |
1076 | 0 | } |
1077 | 0 | } |
1078 | | |
1079 | | void ggml_compute_forward_add1( |
1080 | | const ggml_compute_params * params, |
1081 | 0 | ggml_tensor * dst) { |
1082 | |
|
1083 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1084 | 0 | const ggml_tensor * src1 = dst->src[1]; |
1085 | |
|
1086 | 0 | switch (src0->type) { |
1087 | 0 | case GGML_TYPE_F32: |
1088 | 0 | { |
1089 | 0 | ggml_compute_forward_add1_f32(params, dst); |
1090 | 0 | } break; |
1091 | 0 | case GGML_TYPE_F16: |
1092 | 0 | { |
1093 | 0 | if (src1->type == GGML_TYPE_F16) { |
1094 | 0 | ggml_compute_forward_add1_f16_f16(params, dst); |
1095 | 0 | } |
1096 | 0 | else if (src1->type == GGML_TYPE_F32) { |
1097 | 0 | ggml_compute_forward_add1_f16_f32(params, dst); |
1098 | 0 | } |
1099 | 0 | else { |
1100 | 0 | GGML_ABORT("fatal error"); |
1101 | 0 | } |
1102 | 0 | } break; |
1103 | 0 | case GGML_TYPE_BF16: |
1104 | 0 | { |
1105 | 0 | if (src1->type == GGML_TYPE_BF16) { |
1106 | 0 | ggml_compute_forward_add1_bf16_bf16(params, dst); |
1107 | 0 | } |
1108 | 0 | else if (src1->type == GGML_TYPE_F32) { |
1109 | 0 | ggml_compute_forward_add1_bf16_f32(params, dst); |
1110 | 0 | } |
1111 | 0 | else { |
1112 | 0 | GGML_ABORT("fatal error"); |
1113 | 0 | } |
1114 | 0 | } break; |
1115 | 0 | case GGML_TYPE_Q4_0: |
1116 | 0 | case GGML_TYPE_Q4_1: |
1117 | 0 | case GGML_TYPE_Q5_0: |
1118 | 0 | case GGML_TYPE_Q5_1: |
1119 | 0 | case GGML_TYPE_Q8_0: |
1120 | 0 | case GGML_TYPE_Q8_1: |
1121 | 0 | case GGML_TYPE_MXFP4: |
1122 | 0 | case GGML_TYPE_Q2_K: |
1123 | 0 | case GGML_TYPE_Q3_K: |
1124 | 0 | case GGML_TYPE_Q4_K: |
1125 | 0 | case GGML_TYPE_Q5_K: |
1126 | 0 | case GGML_TYPE_Q6_K: |
1127 | 0 | case GGML_TYPE_TQ1_0: |
1128 | 0 | case GGML_TYPE_TQ2_0: |
1129 | 0 | case GGML_TYPE_IQ2_XXS: |
1130 | 0 | case GGML_TYPE_IQ2_XS: |
1131 | 0 | case GGML_TYPE_IQ3_XXS: |
1132 | 0 | case GGML_TYPE_IQ1_S: |
1133 | 0 | case GGML_TYPE_IQ1_M: |
1134 | 0 | case GGML_TYPE_IQ4_NL: |
1135 | 0 | case GGML_TYPE_IQ4_XS: |
1136 | 0 | case GGML_TYPE_IQ3_S: |
1137 | 0 | case GGML_TYPE_IQ2_S: |
1138 | 0 | { |
1139 | 0 | ggml_compute_forward_add1_q_f32(params, dst); |
1140 | 0 | } break; |
1141 | 0 | default: |
1142 | 0 | { |
1143 | 0 | GGML_ABORT("fatal error"); |
1144 | 0 | } |
1145 | 0 | } |
1146 | 0 | } |
1147 | | |
1148 | | // ggml_compute_forward_acc |
1149 | | |
1150 | | static void ggml_compute_forward_acc_f32( |
1151 | | const ggml_compute_params * params, |
1152 | 0 | ggml_tensor * dst) { |
1153 | |
|
1154 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1155 | 0 | const ggml_tensor * src1 = dst->src[1]; |
1156 | |
|
1157 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
1158 | 0 | GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); |
1159 | | |
1160 | | // view src0 and dst with these strides and data offset inbytes during acc |
1161 | | // nb0 is implicitly element_size because src0 and dst are contiguous |
1162 | 0 | size_t nb1 = ((int32_t *) dst->op_params)[0]; |
1163 | 0 | size_t nb2 = ((int32_t *) dst->op_params)[1]; |
1164 | 0 | size_t nb3 = ((int32_t *) dst->op_params)[2]; |
1165 | 0 | size_t offset = ((int32_t *) dst->op_params)[3]; |
1166 | 0 | bool inplace = (bool) ((int32_t *) dst->op_params)[4]; |
1167 | |
|
1168 | 0 | if (!inplace) { |
1169 | 0 | if (params->ith == 0) { |
1170 | | // memcpy needs to be synchronized across threads to avoid race conditions. |
1171 | | // => do it in INIT phase |
1172 | 0 | memcpy( |
1173 | 0 | ((char *) dst->data), |
1174 | 0 | ((char *) src0->data), |
1175 | 0 | ggml_nbytes(dst)); |
1176 | 0 | } |
1177 | 0 | ggml_barrier(params->threadpool); |
1178 | 0 | } |
1179 | |
|
1180 | 0 | const int ith = params->ith; |
1181 | 0 | const int nth = params->nth; |
1182 | |
|
1183 | 0 | const int nr = ggml_nrows(src1); |
1184 | 0 | const int nc = src1->ne[0]; |
1185 | |
|
1186 | 0 | GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) |
1187 | 0 | GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) |
1188 | | |
1189 | | // src0 and dst as viewed during acc |
1190 | 0 | const size_t nb0 = ggml_element_size(src0); |
1191 | |
|
1192 | 0 | const size_t nb00 = nb0; |
1193 | 0 | const size_t nb01 = nb1; |
1194 | 0 | const size_t nb02 = nb2; |
1195 | 0 | const size_t nb03 = nb3; |
1196 | |
|
1197 | 0 | GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst)); |
1198 | 0 | GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0)); |
1199 | |
|
1200 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
1201 | | |
1202 | | // rows per thread |
1203 | 0 | const int dr = (nr + nth - 1)/nth; |
1204 | | |
1205 | | // row range for this thread |
1206 | 0 | const int ir0 = dr*ith; |
1207 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
1208 | |
|
1209 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
1210 | | // src0 and dst are viewed with shape of src1 and offset |
1211 | | // => same indices |
1212 | 0 | const int i3 = ir/(ne12*ne11); |
1213 | 0 | const int i2 = (ir - i3*ne12*ne11)/ne11; |
1214 | 0 | const int i1 = (ir - i3*ne12*ne11 - i2*ne11); |
1215 | |
|
1216 | | #ifdef GGML_USE_ACCELERATE |
1217 | | vDSP_vadd( |
1218 | | (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1, |
1219 | | (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, |
1220 | | (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc); |
1221 | | #else |
1222 | 0 | ggml_vec_add_f32(nc, |
1223 | 0 | (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), |
1224 | 0 | (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), |
1225 | 0 | (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); |
1226 | 0 | #endif |
1227 | 0 | } |
1228 | 0 | } |
1229 | | |
1230 | | void ggml_compute_forward_acc( |
1231 | | const ggml_compute_params * params, |
1232 | 0 | ggml_tensor * dst) { |
1233 | |
|
1234 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1235 | |
|
1236 | 0 | switch (src0->type) { |
1237 | 0 | case GGML_TYPE_F32: |
1238 | 0 | { |
1239 | 0 | ggml_compute_forward_acc_f32(params, dst); |
1240 | 0 | } break; |
1241 | 0 | case GGML_TYPE_F16: |
1242 | 0 | case GGML_TYPE_BF16: |
1243 | 0 | case GGML_TYPE_Q4_0: |
1244 | 0 | case GGML_TYPE_Q4_1: |
1245 | 0 | case GGML_TYPE_Q5_0: |
1246 | 0 | case GGML_TYPE_Q5_1: |
1247 | 0 | case GGML_TYPE_Q8_0: |
1248 | 0 | case GGML_TYPE_Q8_1: |
1249 | 0 | case GGML_TYPE_MXFP4: |
1250 | 0 | case GGML_TYPE_Q2_K: |
1251 | 0 | case GGML_TYPE_Q3_K: |
1252 | 0 | case GGML_TYPE_Q4_K: |
1253 | 0 | case GGML_TYPE_Q5_K: |
1254 | 0 | case GGML_TYPE_Q6_K: |
1255 | 0 | case GGML_TYPE_TQ1_0: |
1256 | 0 | case GGML_TYPE_TQ2_0: |
1257 | 0 | case GGML_TYPE_IQ2_XXS: |
1258 | 0 | case GGML_TYPE_IQ2_XS: |
1259 | 0 | case GGML_TYPE_IQ3_XXS: |
1260 | 0 | case GGML_TYPE_IQ1_S: |
1261 | 0 | case GGML_TYPE_IQ1_M: |
1262 | 0 | case GGML_TYPE_IQ4_NL: |
1263 | 0 | case GGML_TYPE_IQ4_XS: |
1264 | 0 | case GGML_TYPE_IQ3_S: |
1265 | 0 | case GGML_TYPE_IQ2_S: |
1266 | 0 | default: |
1267 | 0 | { |
1268 | 0 | GGML_ABORT("fatal error"); |
1269 | 0 | } |
1270 | 0 | } |
1271 | 0 | } |
1272 | | |
1273 | | // ggml_compute_forward_sum |
1274 | | |
1275 | | static void ggml_compute_forward_sum_f32( |
1276 | | const ggml_compute_params * params, |
1277 | 0 | ggml_tensor * dst) { |
1278 | |
|
1279 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1280 | |
|
1281 | 0 | if (params->ith != 0) { |
1282 | 0 | return; |
1283 | 0 | } |
1284 | | |
1285 | 0 | assert(ggml_is_scalar(dst)); |
1286 | 0 | assert(src0->nb[0] == sizeof(float)); |
1287 | |
|
1288 | 0 | GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) |
1289 | 0 | GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) |
1290 | |
|
1291 | 0 | ggml_float sum = 0; |
1292 | 0 | ggml_float row_sum = 0; |
1293 | |
|
1294 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
1295 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
1296 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
1297 | 0 | ggml_vec_sum_f32_ggf(ne00, |
1298 | 0 | &row_sum, |
1299 | 0 | (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); |
1300 | 0 | sum += row_sum; |
1301 | 0 | } |
1302 | 0 | } |
1303 | 0 | } |
1304 | 0 | ((float *) dst->data)[0] = sum; |
1305 | 0 | } |
1306 | | |
1307 | | static void ggml_compute_forward_sum_f16( |
1308 | | const ggml_compute_params * params, |
1309 | 0 | ggml_tensor * dst) { |
1310 | |
|
1311 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1312 | |
|
1313 | 0 | if (params->ith != 0) { |
1314 | 0 | return; |
1315 | 0 | } |
1316 | | |
1317 | 0 | assert(ggml_is_scalar(dst)); |
1318 | |
|
1319 | 0 | assert(src0->nb[0] == sizeof(ggml_fp16_t)); |
1320 | |
|
1321 | 0 | GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) |
1322 | 0 | GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) |
1323 | |
|
1324 | 0 | float sum = 0; |
1325 | 0 | float row_sum = 0; |
1326 | |
|
1327 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
1328 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
1329 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
1330 | 0 | ggml_vec_sum_f16_ggf(ne00, |
1331 | 0 | &row_sum, |
1332 | 0 | (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03)); |
1333 | 0 | sum += row_sum; |
1334 | 0 | } |
1335 | 0 | } |
1336 | 0 | } |
1337 | 0 | ((ggml_fp16_t *) dst->data)[0] = GGML_CPU_FP32_TO_FP16(sum); |
1338 | 0 | } |
1339 | | |
1340 | | static void ggml_compute_forward_sum_bf16( |
1341 | | const ggml_compute_params * params, |
1342 | 0 | ggml_tensor * dst) { |
1343 | |
|
1344 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1345 | |
|
1346 | 0 | if (params->ith != 0) { |
1347 | 0 | return; |
1348 | 0 | } |
1349 | | |
1350 | 0 | assert(ggml_is_scalar(dst)); |
1351 | |
|
1352 | 0 | assert(src0->nb[0] == sizeof(ggml_bf16_t)); |
1353 | |
|
1354 | 0 | GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) |
1355 | 0 | GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) |
1356 | |
|
1357 | 0 | float sum = 0; |
1358 | 0 | float row_sum = 0; |
1359 | |
|
1360 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
1361 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
1362 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
1363 | 0 | ggml_vec_sum_bf16_ggf(ne00, |
1364 | 0 | &row_sum, |
1365 | 0 | (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03)); |
1366 | 0 | sum += row_sum; |
1367 | 0 | } |
1368 | 0 | } |
1369 | 0 | } |
1370 | 0 | ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum); |
1371 | 0 | } |
1372 | | |
1373 | | void ggml_compute_forward_sum( |
1374 | | const ggml_compute_params * params, |
1375 | 0 | ggml_tensor * dst) { |
1376 | |
|
1377 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1378 | |
|
1379 | 0 | switch (src0->type) { |
1380 | 0 | case GGML_TYPE_F32: |
1381 | 0 | { |
1382 | 0 | ggml_compute_forward_sum_f32(params, dst); |
1383 | 0 | } break; |
1384 | 0 | case GGML_TYPE_F16: |
1385 | 0 | { |
1386 | 0 | ggml_compute_forward_sum_f16(params, dst); |
1387 | 0 | } break; |
1388 | 0 | case GGML_TYPE_BF16: |
1389 | 0 | { |
1390 | 0 | ggml_compute_forward_sum_bf16(params, dst); |
1391 | 0 | } break; |
1392 | 0 | default: |
1393 | 0 | { |
1394 | 0 | GGML_ABORT("fatal error"); |
1395 | 0 | } |
1396 | 0 | } |
1397 | 0 | } |
1398 | | |
1399 | | // ggml_compute_forward_cumsum |
1400 | | |
1401 | | static void ggml_compute_forward_cumsum_f32( |
1402 | | const ggml_compute_params * params, |
1403 | 0 | ggml_tensor * dst) { |
1404 | |
|
1405 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1406 | |
|
1407 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
1408 | 0 | GGML_ASSERT(dst->nb[0] == sizeof(float)); |
1409 | |
|
1410 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
1411 | |
|
1412 | 0 | GGML_ASSERT(ne0 == ne00); |
1413 | 0 | GGML_ASSERT(ne1 == ne01); |
1414 | 0 | GGML_ASSERT(ne2 == ne02); |
1415 | 0 | GGML_ASSERT(ne3 == ne03); |
1416 | |
|
1417 | 0 | const auto [ir0, ir1] = get_thread_range(params, src0); |
1418 | |
|
1419 | 0 | for (int64_t ir = ir0; ir < ir1; ++ir) { |
1420 | 0 | const int64_t i03 = ir/(ne02*ne01); |
1421 | 0 | const int64_t i02 = (ir - i03*ne02*ne01)/ne01; |
1422 | 0 | const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); |
1423 | |
|
1424 | 0 | float * src_row = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); |
1425 | 0 | float * dst_row = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); |
1426 | |
|
1427 | 0 | ggml_vec_cumsum_f32(ne00, dst_row, src_row); |
1428 | 0 | } |
1429 | 0 | } |
1430 | | |
1431 | | void ggml_compute_forward_cumsum( |
1432 | | const ggml_compute_params * params, |
1433 | 0 | ggml_tensor * dst) { |
1434 | |
|
1435 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1436 | |
|
1437 | 0 | switch (src0->type) { |
1438 | 0 | case GGML_TYPE_F32: |
1439 | 0 | { |
1440 | 0 | ggml_compute_forward_cumsum_f32(params, dst); |
1441 | 0 | } break; |
1442 | 0 | default: |
1443 | 0 | { |
1444 | 0 | GGML_ABORT("fatal error"); |
1445 | 0 | } |
1446 | 0 | } |
1447 | 0 | } |
1448 | | |
1449 | | // ggml_compute_forward_sum_rows |
1450 | | |
1451 | | static void ggml_compute_forward_sum_rows_f32( |
1452 | | const ggml_compute_params * params, |
1453 | 0 | ggml_tensor * dst) { |
1454 | |
|
1455 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1456 | |
|
1457 | 0 | if (params->ith != 0) { |
1458 | 0 | return; |
1459 | 0 | } |
1460 | | |
1461 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
1462 | 0 | GGML_ASSERT(dst->nb[0] == sizeof(float)); |
1463 | |
|
1464 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
1465 | |
|
1466 | 0 | GGML_ASSERT(ne0 == 1); |
1467 | 0 | GGML_ASSERT(ne1 == ne01); |
1468 | 0 | GGML_ASSERT(ne2 == ne02); |
1469 | 0 | GGML_ASSERT(ne3 == ne03); |
1470 | |
|
1471 | 0 | for (int64_t i3 = 0; i3 < ne03; i3++) { |
1472 | 0 | for (int64_t i2 = 0; i2 < ne02; i2++) { |
1473 | 0 | for (int64_t i1 = 0; i1 < ne01; i1++) { |
1474 | 0 | float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03); |
1475 | 0 | float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3); |
1476 | 0 | float row_sum = 0; |
1477 | 0 | ggml_vec_sum_f32(ne00, &row_sum, src_row); |
1478 | 0 | dst_row[0] = row_sum; |
1479 | 0 | } |
1480 | 0 | } |
1481 | 0 | } |
1482 | 0 | } |
1483 | | |
1484 | | void ggml_compute_forward_sum_rows( |
1485 | | const ggml_compute_params * params, |
1486 | 0 | ggml_tensor * dst) { |
1487 | |
|
1488 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1489 | |
|
1490 | 0 | switch (src0->type) { |
1491 | 0 | case GGML_TYPE_F32: |
1492 | 0 | { |
1493 | 0 | ggml_compute_forward_sum_rows_f32(params, dst); |
1494 | 0 | } break; |
1495 | 0 | default: |
1496 | 0 | { |
1497 | 0 | GGML_ABORT("fatal error"); |
1498 | 0 | } |
1499 | 0 | } |
1500 | 0 | } |
1501 | | |
1502 | | // ggml_compute_forward_mean |
1503 | | |
1504 | | static void ggml_compute_forward_mean_f32( |
1505 | | const ggml_compute_params * params, |
1506 | 0 | ggml_tensor * dst) { |
1507 | |
|
1508 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1509 | |
|
1510 | 0 | if (params->ith != 0) { |
1511 | 0 | return; |
1512 | 0 | } |
1513 | | |
1514 | 0 | assert(src0->nb[0] == sizeof(float)); |
1515 | |
|
1516 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
1517 | |
|
1518 | 0 | assert(ne0 == 1); |
1519 | 0 | assert(ne1 == ne01); |
1520 | 0 | assert(ne2 == ne02); |
1521 | 0 | assert(ne3 == ne03); |
1522 | |
|
1523 | 0 | GGML_UNUSED(ne0); |
1524 | 0 | GGML_UNUSED(ne1); |
1525 | 0 | GGML_UNUSED(ne2); |
1526 | 0 | GGML_UNUSED(ne3); |
1527 | |
|
1528 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
1529 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
1530 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
1531 | 0 | ggml_vec_sum_f32(ne00, |
1532 | 0 | (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), |
1533 | 0 | (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); |
1534 | |
|
1535 | 0 | *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00; |
1536 | 0 | } |
1537 | 0 | } |
1538 | 0 | } |
1539 | 0 | } |
1540 | | |
1541 | | void ggml_compute_forward_mean( |
1542 | | const ggml_compute_params * params, |
1543 | 0 | ggml_tensor * dst) { |
1544 | |
|
1545 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1546 | |
|
1547 | 0 | switch (src0->type) { |
1548 | 0 | case GGML_TYPE_F32: |
1549 | 0 | { |
1550 | 0 | ggml_compute_forward_mean_f32(params, dst); |
1551 | 0 | } break; |
1552 | 0 | default: |
1553 | 0 | { |
1554 | 0 | GGML_ABORT("fatal error"); |
1555 | 0 | } |
1556 | 0 | } |
1557 | 0 | } |
1558 | | |
1559 | | // ggml_compute_forward_argmax |
1560 | | |
1561 | | static void ggml_compute_forward_argmax_f32( |
1562 | | const ggml_compute_params * params, |
1563 | 0 | ggml_tensor * dst) { |
1564 | |
|
1565 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1566 | |
|
1567 | 0 | if (params->ith != 0) { |
1568 | 0 | return; |
1569 | 0 | } |
1570 | | |
1571 | 0 | assert(src0->nb[0] == sizeof(float)); |
1572 | 0 | assert(dst->nb[0] == sizeof(float)); |
1573 | |
|
1574 | 0 | const int64_t ne00 = src0->ne[0]; |
1575 | 0 | const int64_t ne01 = src0->ne[1]; |
1576 | |
|
1577 | 0 | const size_t nb01 = src0->nb[1]; |
1578 | 0 | const size_t nb0 = dst->nb[0]; |
1579 | |
|
1580 | 0 | for (int64_t i1 = 0; i1 < ne01; i1++) { |
1581 | 0 | float * src = (float *) ((char *) src0->data + i1*nb01); |
1582 | 0 | int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0); |
1583 | 0 | int v = 0; |
1584 | 0 | ggml_vec_argmax_f32(ne00, &v, src); |
1585 | 0 | dst_[0] = v; |
1586 | 0 | } |
1587 | 0 | } |
1588 | | |
1589 | | void ggml_compute_forward_argmax( |
1590 | | const ggml_compute_params * params, |
1591 | 0 | ggml_tensor * dst) { |
1592 | |
|
1593 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1594 | |
|
1595 | 0 | switch (src0->type) { |
1596 | 0 | case GGML_TYPE_F32: |
1597 | 0 | { |
1598 | 0 | ggml_compute_forward_argmax_f32(params, dst); |
1599 | 0 | } break; |
1600 | 0 | default: |
1601 | 0 | { |
1602 | 0 | GGML_ABORT("fatal error"); |
1603 | 0 | } |
1604 | 0 | } |
1605 | 0 | } |
1606 | | |
1607 | | // ggml_compute_forward_count_equal |
1608 | | |
1609 | | static void ggml_compute_forward_count_equal_i32( |
1610 | | const ggml_compute_params * params, |
1611 | 0 | ggml_tensor * dst) { |
1612 | |
|
1613 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1614 | 0 | const ggml_tensor * src1 = dst->src[1]; |
1615 | |
|
1616 | 0 | GGML_TENSOR_BINARY_OP_LOCALS; |
1617 | |
|
1618 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_I32); |
1619 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_I32); |
1620 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, src1)); |
1621 | 0 | GGML_ASSERT(ggml_is_scalar(dst)); |
1622 | 0 | GGML_ASSERT(dst->type == GGML_TYPE_I64); |
1623 | |
|
1624 | 0 | const int64_t nr = ggml_nrows(src0); |
1625 | |
|
1626 | 0 | const int ith = params->ith; |
1627 | 0 | const int nth = params->nth; |
1628 | |
|
1629 | 0 | int64_t * sums = (int64_t *) params->wdata; |
1630 | 0 | int64_t sum_thread = 0; |
1631 | | |
1632 | | // rows per thread |
1633 | 0 | const int64_t dr = (nr + nth - 1)/nth; |
1634 | | |
1635 | | // row range for this thread |
1636 | 0 | const int64_t ir0 = dr*ith; |
1637 | 0 | const int64_t ir1 = MIN(ir0 + dr, nr); |
1638 | |
|
1639 | 0 | for (int64_t ir = ir0; ir < ir1; ++ir) { |
1640 | 0 | const int64_t i03 = ir / (ne02*ne01); |
1641 | 0 | const int64_t i02 = (ir - i03*ne03) / ne01; |
1642 | 0 | const int64_t i01 = ir - i03*ne03 - i02*ne02; |
1643 | |
|
1644 | 0 | const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01; |
1645 | 0 | const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11; |
1646 | |
|
1647 | 0 | for (int64_t i00 = 0; i00 < ne00; ++i00) { |
1648 | 0 | const int32_t val0 = *((const int32_t *) (data0 + i00*nb00)); |
1649 | 0 | const int32_t val1 = *((const int32_t *) (data1 + i00*nb10)); |
1650 | |
|
1651 | 0 | sum_thread += val0 == val1; |
1652 | 0 | } |
1653 | 0 | } |
1654 | 0 | if (ith != 0) { |
1655 | 0 | sums[ith] = sum_thread; |
1656 | 0 | } |
1657 | 0 | ggml_barrier(params->threadpool); |
1658 | |
|
1659 | 0 | if (ith != 0) { |
1660 | 0 | return; |
1661 | 0 | } |
1662 | | |
1663 | 0 | for (int ith_other = 1; ith_other < nth; ++ith_other) { |
1664 | 0 | sum_thread += sums[ith_other]; |
1665 | 0 | } |
1666 | 0 | *((int64_t *) dst->data) = sum_thread; |
1667 | 0 | } |
1668 | | |
1669 | | void ggml_compute_forward_count_equal( |
1670 | | const ggml_compute_params * params, |
1671 | 0 | ggml_tensor * dst) { |
1672 | |
|
1673 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1674 | |
|
1675 | 0 | switch (src0->type) { |
1676 | 0 | case GGML_TYPE_I32: |
1677 | 0 | { |
1678 | 0 | ggml_compute_forward_count_equal_i32(params, dst); |
1679 | 0 | } break; |
1680 | 0 | default: |
1681 | 0 | { |
1682 | 0 | GGML_ABORT("fatal error"); |
1683 | 0 | } |
1684 | 0 | } |
1685 | 0 | } |
1686 | | |
1687 | | // ggml_compute_forward_repeat |
1688 | | |
1689 | | static void ggml_compute_forward_repeat_f32( |
1690 | | const ggml_compute_params * params, |
1691 | 0 | ggml_tensor * dst) { |
1692 | |
|
1693 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1694 | |
|
1695 | 0 | if (params->ith != 0) { |
1696 | 0 | return; |
1697 | 0 | } |
1698 | | |
1699 | 0 | GGML_ASSERT(ggml_can_repeat(src0, dst)); |
1700 | |
|
1701 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
1702 | | |
1703 | | // guaranteed to be an integer due to the check in ggml_can_repeat |
1704 | 0 | const int nr0 = (int)(ne0/ne00); |
1705 | 0 | const int nr1 = (int)(ne1/ne01); |
1706 | 0 | const int nr2 = (int)(ne2/ne02); |
1707 | 0 | const int nr3 = (int)(ne3/ne03); |
1708 | | |
1709 | | // TODO: support for transposed / permuted tensors |
1710 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
1711 | 0 | GGML_ASSERT(nb00 == sizeof(float)); |
1712 | | |
1713 | | // TODO: maybe this is not optimal? |
1714 | 0 | for (int i3 = 0; i3 < nr3; i3++) { |
1715 | 0 | for (int k3 = 0; k3 < ne03; k3++) { |
1716 | 0 | for (int i2 = 0; i2 < nr2; i2++) { |
1717 | 0 | for (int k2 = 0; k2 < ne02; k2++) { |
1718 | 0 | for (int i1 = 0; i1 < nr1; i1++) { |
1719 | 0 | for (int k1 = 0; k1 < ne01; k1++) { |
1720 | 0 | for (int i0 = 0; i0 < nr0; i0++) { |
1721 | 0 | ggml_vec_cpy_f32(ne00, |
1722 | 0 | (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0), |
1723 | 0 | (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01)); |
1724 | 0 | } |
1725 | 0 | } |
1726 | 0 | } |
1727 | 0 | } |
1728 | 0 | } |
1729 | 0 | } |
1730 | 0 | } |
1731 | 0 | } |
1732 | | |
1733 | | static void ggml_compute_forward_repeat_f16( |
1734 | | const ggml_compute_params * params, |
1735 | 0 | ggml_tensor * dst) { |
1736 | |
|
1737 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1738 | |
|
1739 | 0 | if (params->ith != 0) { |
1740 | 0 | return; |
1741 | 0 | } |
1742 | | |
1743 | 0 | GGML_ASSERT(ggml_can_repeat(src0, dst)); |
1744 | |
|
1745 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
1746 | | |
1747 | | // guaranteed to be an integer due to the check in ggml_can_repeat |
1748 | 0 | const int nr0 = (int)(ne0/ne00); |
1749 | 0 | const int nr1 = (int)(ne1/ne01); |
1750 | 0 | const int nr2 = (int)(ne2/ne02); |
1751 | 0 | const int nr3 = (int)(ne3/ne03); |
1752 | | |
1753 | | // TODO: support for transposed / permuted tensors |
1754 | 0 | GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); |
1755 | 0 | GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); |
1756 | | |
1757 | | // TODO: maybe this is not optimal? |
1758 | 0 | for (int i3 = 0; i3 < nr3; i3++) { |
1759 | 0 | for (int k3 = 0; k3 < ne03; k3++) { |
1760 | 0 | for (int i2 = 0; i2 < nr2; i2++) { |
1761 | 0 | for (int k2 = 0; k2 < ne02; k2++) { |
1762 | 0 | for (int i1 = 0; i1 < nr1; i1++) { |
1763 | 0 | for (int k1 = 0; k1 < ne01; k1++) { |
1764 | 0 | for (int i0 = 0; i0 < nr0; i0++) { |
1765 | 0 | ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0); |
1766 | 0 | ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01); |
1767 | | // ggml_vec_cpy_f16(ne00, y, x) |
1768 | 0 | for (int i = 0; i < ne00; ++i) { |
1769 | 0 | y[i] = x[i]; |
1770 | 0 | } |
1771 | 0 | } |
1772 | 0 | } |
1773 | 0 | } |
1774 | 0 | } |
1775 | 0 | } |
1776 | 0 | } |
1777 | 0 | } |
1778 | 0 | } |
1779 | | |
1780 | | void ggml_compute_forward_repeat( |
1781 | | const ggml_compute_params * params, |
1782 | 0 | ggml_tensor * dst) { |
1783 | |
|
1784 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1785 | |
|
1786 | 0 | switch (src0->type) { |
1787 | 0 | case GGML_TYPE_F16: |
1788 | 0 | case GGML_TYPE_BF16: |
1789 | 0 | case GGML_TYPE_I16: |
1790 | 0 | { |
1791 | 0 | ggml_compute_forward_repeat_f16(params, dst); |
1792 | 0 | } break; |
1793 | 0 | case GGML_TYPE_F32: |
1794 | 0 | case GGML_TYPE_I32: |
1795 | 0 | { |
1796 | 0 | ggml_compute_forward_repeat_f32(params, dst); |
1797 | 0 | } break; |
1798 | | // TODO: templateify the implemenation and support for I64 |
1799 | | // ref https://github.com/ggml-org/llama.cpp/pull/14274#discussion_r2169492225 |
1800 | | //case GGML_TYPE_I64: |
1801 | | // { |
1802 | | // ggml_compute_forward_repeat_i64(params, dst); |
1803 | | // } break; |
1804 | 0 | default: |
1805 | 0 | { |
1806 | 0 | GGML_ABORT("fatal error"); |
1807 | 0 | } |
1808 | 0 | } |
1809 | 0 | } |
1810 | | |
1811 | | // ggml_compute_forward_repeat_back |
1812 | | |
1813 | | static void ggml_compute_forward_repeat_back_f32( |
1814 | | const ggml_compute_params * params, |
1815 | 0 | ggml_tensor * dst) { |
1816 | |
|
1817 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1818 | |
|
1819 | 0 | if (params->ith != 0) { |
1820 | 0 | return; |
1821 | 0 | } |
1822 | | |
1823 | 0 | GGML_ASSERT(ggml_can_repeat(dst, src0)); |
1824 | |
|
1825 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
1826 | | |
1827 | | // guaranteed to be an integer due to the check in ggml_can_repeat |
1828 | 0 | const int nr0 = (int)(ne00/ne0); |
1829 | 0 | const int nr1 = (int)(ne01/ne1); |
1830 | 0 | const int nr2 = (int)(ne02/ne2); |
1831 | 0 | const int nr3 = (int)(ne03/ne3); |
1832 | | |
1833 | | // TODO: support for transposed / permuted tensors |
1834 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
1835 | 0 | GGML_ASSERT(nb00 == sizeof(float)); |
1836 | |
|
1837 | 0 | if (ggml_is_contiguous(dst)) { |
1838 | 0 | ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0); |
1839 | 0 | } else { |
1840 | 0 | for (int k3 = 0; k3 < ne3; k3++) { |
1841 | 0 | for (int k2 = 0; k2 < ne2; k2++) { |
1842 | 0 | for (int k1 = 0; k1 < ne1; k1++) { |
1843 | 0 | ggml_vec_set_f32(ne0, |
1844 | 0 | (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3), |
1845 | 0 | 0); |
1846 | 0 | } |
1847 | 0 | } |
1848 | 0 | } |
1849 | 0 | } |
1850 | | |
1851 | | // TODO: maybe this is not optimal? |
1852 | 0 | for (int i3 = 0; i3 < nr3; i3++) { |
1853 | 0 | for (int k3 = 0; k3 < ne3; k3++) { |
1854 | 0 | for (int i2 = 0; i2 < nr2; i2++) { |
1855 | 0 | for (int k2 = 0; k2 < ne2; k2++) { |
1856 | 0 | for (int i1 = 0; i1 < nr1; i1++) { |
1857 | 0 | for (int k1 = 0; k1 < ne1; k1++) { |
1858 | 0 | for (int i0 = 0; i0 < nr0; i0++) { |
1859 | 0 | ggml_vec_acc_f32(ne0, |
1860 | 0 | (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1), |
1861 | 0 | (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00)); |
1862 | 0 | } |
1863 | 0 | } |
1864 | 0 | } |
1865 | 0 | } |
1866 | 0 | } |
1867 | 0 | } |
1868 | 0 | } |
1869 | 0 | } |
1870 | | |
1871 | | void ggml_compute_forward_repeat_back( |
1872 | | const ggml_compute_params * params, |
1873 | 0 | ggml_tensor * dst) { |
1874 | |
|
1875 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1876 | |
|
1877 | 0 | switch (src0->type) { |
1878 | 0 | case GGML_TYPE_F32: |
1879 | 0 | { |
1880 | 0 | ggml_compute_forward_repeat_back_f32(params, dst); |
1881 | 0 | } break; |
1882 | 0 | default: |
1883 | 0 | { |
1884 | 0 | GGML_ABORT("fatal error"); |
1885 | 0 | } |
1886 | 0 | } |
1887 | 0 | } |
1888 | | |
1889 | | // ggml_compute_forward_concat |
1890 | | |
1891 | | static void ggml_compute_forward_concat_any( |
1892 | | const ggml_compute_params * params, |
1893 | 0 | ggml_tensor * dst) { |
1894 | |
|
1895 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1896 | 0 | const ggml_tensor * src1 = dst->src[1]; |
1897 | |
|
1898 | 0 | const size_t len = ggml_type_size(src0->type); |
1899 | |
|
1900 | 0 | const int ith = params->ith; |
1901 | 0 | const int nth = params->nth; |
1902 | |
|
1903 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
1904 | |
|
1905 | 0 | const int32_t dim = ggml_get_op_params_i32(dst, 0); |
1906 | |
|
1907 | 0 | GGML_ASSERT(dim >= 0 && dim < 4); |
1908 | |
|
1909 | 0 | int64_t o[4] = {0, 0, 0, 0}; |
1910 | 0 | o[dim] = src0->ne[dim]; |
1911 | |
|
1912 | 0 | const char * x; |
1913 | | |
1914 | | // TODO: smarter multi-theading |
1915 | 0 | for (int i3 = 0; i3 < ne3; i3++) { |
1916 | 0 | for (int i2 = ith; i2 < ne2; i2 += nth) { |
1917 | 0 | for (int i1 = 0; i1 < ne1; i1++) { |
1918 | 0 | for (int i0 = 0; i0 < ne0; i0++) { |
1919 | 0 | if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { |
1920 | 0 | x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03; |
1921 | 0 | } else { |
1922 | 0 | x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13; |
1923 | 0 | } |
1924 | |
|
1925 | 0 | char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3; |
1926 | |
|
1927 | 0 | memcpy(y, x, len); |
1928 | 0 | } |
1929 | 0 | } |
1930 | 0 | } |
1931 | 0 | } |
1932 | 0 | } |
1933 | | |
1934 | | static void ggml_compute_forward_concat_i8( |
1935 | | const ggml_compute_params * params, |
1936 | 0 | ggml_tensor * dst) { |
1937 | |
|
1938 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1939 | 0 | const ggml_tensor * src1 = dst->src[1]; |
1940 | |
|
1941 | 0 | GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t)); |
1942 | |
|
1943 | 0 | const int ith = params->ith; |
1944 | 0 | const int nth = params->nth; |
1945 | |
|
1946 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
1947 | |
|
1948 | 0 | const int32_t dim = ggml_get_op_params_i32(dst, 0); |
1949 | |
|
1950 | 0 | GGML_ASSERT(dim >= 0 && dim < 4); |
1951 | |
|
1952 | 0 | int64_t o[4] = {0, 0, 0, 0}; |
1953 | 0 | o[dim] = src0->ne[dim]; |
1954 | |
|
1955 | 0 | const int8_t * x; |
1956 | | |
1957 | | // TODO: smarter multi-theading |
1958 | 0 | for (int i3 = 0; i3 < ne3; i3++) { |
1959 | 0 | for (int i2 = ith; i2 < ne2; i2 += nth) { |
1960 | 0 | for (int i1 = 0; i1 < ne1; i1++) { |
1961 | 0 | for (int i0 = 0; i0 < ne0; i0++) { |
1962 | 0 | if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { |
1963 | 0 | x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03); |
1964 | 0 | } else { |
1965 | 0 | x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13); |
1966 | 0 | } |
1967 | |
|
1968 | 0 | int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); |
1969 | |
|
1970 | 0 | *y = *x; |
1971 | 0 | } |
1972 | 0 | } |
1973 | 0 | } |
1974 | 0 | } |
1975 | 0 | } |
1976 | | |
1977 | | static void ggml_compute_forward_concat_f16( |
1978 | | const ggml_compute_params * params, |
1979 | 0 | ggml_tensor * dst) { |
1980 | |
|
1981 | 0 | const ggml_tensor * src0 = dst->src[0]; |
1982 | 0 | const ggml_tensor * src1 = dst->src[1]; |
1983 | |
|
1984 | 0 | GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t)); |
1985 | |
|
1986 | 0 | const int ith = params->ith; |
1987 | 0 | const int nth = params->nth; |
1988 | |
|
1989 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
1990 | |
|
1991 | 0 | const int32_t dim = ggml_get_op_params_i32(dst, 0); |
1992 | |
|
1993 | 0 | GGML_ASSERT(dim >= 0 && dim < 4); |
1994 | |
|
1995 | 0 | int64_t o[4] = {0, 0, 0, 0}; |
1996 | 0 | o[dim] = src0->ne[dim]; |
1997 | |
|
1998 | 0 | const ggml_fp16_t * x; |
1999 | | |
2000 | | // TODO: smarter multi-theading |
2001 | 0 | for (int i3 = 0; i3 < ne3; i3++) { |
2002 | 0 | for (int i2 = ith; i2 < ne2; i2 += nth) { |
2003 | 0 | for (int i1 = 0; i1 < ne1; i1++) { |
2004 | 0 | for (int i0 = 0; i0 < ne0; i0++) { |
2005 | 0 | if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { |
2006 | 0 | x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03); |
2007 | 0 | } else { |
2008 | 0 | x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13); |
2009 | 0 | } |
2010 | |
|
2011 | 0 | ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); |
2012 | |
|
2013 | 0 | *y = *x; |
2014 | 0 | } |
2015 | 0 | } |
2016 | 0 | } |
2017 | 0 | } |
2018 | 0 | } |
2019 | | |
2020 | | static void ggml_compute_forward_concat_f32( |
2021 | | const ggml_compute_params * params, |
2022 | 0 | ggml_tensor * dst) { |
2023 | |
|
2024 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2025 | 0 | const ggml_tensor * src1 = dst->src[1]; |
2026 | |
|
2027 | 0 | GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float)); |
2028 | |
|
2029 | 0 | const int ith = params->ith; |
2030 | 0 | const int nth = params->nth; |
2031 | |
|
2032 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
2033 | |
|
2034 | 0 | const int32_t dim = ggml_get_op_params_i32(dst, 0); |
2035 | |
|
2036 | 0 | GGML_ASSERT(dim >= 0 && dim < 4); |
2037 | |
|
2038 | 0 | int64_t o[4] = {0, 0, 0, 0}; |
2039 | 0 | o[dim] = src0->ne[dim]; |
2040 | |
|
2041 | 0 | const float * x; |
2042 | | |
2043 | | // TODO: smarter multi-theading |
2044 | 0 | for (int i3 = 0; i3 < ne3; i3++) { |
2045 | 0 | for (int i2 = ith; i2 < ne2; i2 += nth) { |
2046 | 0 | for (int i1 = 0; i1 < ne1; i1++) { |
2047 | 0 | for (int i0 = 0; i0 < ne0; i0++) { |
2048 | 0 | if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { |
2049 | 0 | x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03); |
2050 | 0 | } else { |
2051 | 0 | x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13); |
2052 | 0 | } |
2053 | |
|
2054 | 0 | float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); |
2055 | |
|
2056 | 0 | *y = *x; |
2057 | 0 | } |
2058 | 0 | } |
2059 | 0 | } |
2060 | 0 | } |
2061 | 0 | } |
2062 | | |
2063 | | void ggml_compute_forward_concat( |
2064 | | const ggml_compute_params * params, |
2065 | 0 | ggml_tensor * dst) { |
2066 | |
|
2067 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2068 | |
|
2069 | 0 | switch (src0->type) { |
2070 | 0 | case GGML_TYPE_F16: |
2071 | 0 | case GGML_TYPE_BF16: |
2072 | 0 | case GGML_TYPE_I16: |
2073 | 0 | { |
2074 | 0 | ggml_compute_forward_concat_f16(params, dst); |
2075 | 0 | } break; |
2076 | 0 | case GGML_TYPE_I8: |
2077 | 0 | { |
2078 | 0 | ggml_compute_forward_concat_i8(params, dst); |
2079 | 0 | } break; |
2080 | 0 | case GGML_TYPE_F32: |
2081 | 0 | case GGML_TYPE_I32: |
2082 | 0 | { |
2083 | 0 | ggml_compute_forward_concat_f32(params, dst); |
2084 | 0 | } break; |
2085 | 0 | default: |
2086 | 0 | { |
2087 | 0 | ggml_compute_forward_concat_any(params, dst); |
2088 | 0 | } |
2089 | 0 | } |
2090 | 0 | } |
2091 | | |
2092 | | // ggml_compute_forward_gelu |
2093 | | |
2094 | | static void ggml_compute_forward_gelu_f32( |
2095 | | const ggml_compute_params * params, |
2096 | 0 | ggml_tensor * dst) { |
2097 | |
|
2098 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2099 | |
|
2100 | 0 | assert(ggml_is_contiguous_1(src0)); |
2101 | 0 | assert(ggml_is_contiguous_1(dst)); |
2102 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2103 | |
|
2104 | 0 | const int ith = params->ith; |
2105 | 0 | const int nth = params->nth; |
2106 | |
|
2107 | 0 | const int nc = src0->ne[0]; |
2108 | 0 | const int nr = ggml_nrows(src0); |
2109 | | |
2110 | | // rows per thread |
2111 | 0 | const int dr = (nr + nth - 1)/nth; |
2112 | | |
2113 | | // row range for this thread |
2114 | 0 | const int ir0 = dr*ith; |
2115 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2116 | |
|
2117 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2118 | 0 | ggml_vec_gelu_f32(nc, |
2119 | 0 | (float *) ((char *) dst->data + i1*( dst->nb[1])), |
2120 | 0 | (float *) ((char *) src0->data + i1*(src0->nb[1]))); |
2121 | |
|
2122 | | #ifndef NDEBUG |
2123 | | for (int k = 0; k < nc; k++) { |
2124 | | const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2125 | | GGML_UNUSED(x); |
2126 | | assert(!isnan(x)); |
2127 | | assert(!isinf(x)); |
2128 | | } |
2129 | | #endif |
2130 | 0 | } |
2131 | 0 | } |
2132 | | |
2133 | | static void ggml_compute_forward_gelu_f16( |
2134 | | const ggml_compute_params * params, |
2135 | 0 | ggml_tensor * dst) { |
2136 | |
|
2137 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2138 | |
|
2139 | 0 | assert(ggml_is_contiguous_1(src0)); |
2140 | 0 | assert(ggml_is_contiguous_1(dst)); |
2141 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2142 | |
|
2143 | 0 | const int ith = params->ith; |
2144 | 0 | const int nth = params->nth; |
2145 | |
|
2146 | 0 | const int nc = src0->ne[0]; |
2147 | 0 | const int nr = ggml_nrows(src0); |
2148 | | |
2149 | | // rows per thread |
2150 | 0 | const int dr = (nr + nth - 1)/nth; |
2151 | | |
2152 | | // row range for this thread |
2153 | 0 | const int ir0 = dr*ith; |
2154 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2155 | |
|
2156 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2157 | 0 | ggml_vec_gelu_f16(nc, |
2158 | 0 | (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), |
2159 | 0 | (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1]))); |
2160 | |
|
2161 | | #ifndef NDEBUG |
2162 | | for (int k = 0; k < nc; k++) { |
2163 | | const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2164 | | const float v = GGML_CPU_FP16_TO_FP32(x); |
2165 | | GGML_UNUSED(v); |
2166 | | assert(!isnan(v)); |
2167 | | assert(!isinf(v)); |
2168 | | } |
2169 | | #endif |
2170 | 0 | } |
2171 | 0 | } |
2172 | | |
2173 | | static void ggml_compute_forward_gelu( |
2174 | | const ggml_compute_params * params, |
2175 | 0 | ggml_tensor * dst) { |
2176 | |
|
2177 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2178 | |
|
2179 | 0 | switch (src0->type) { |
2180 | 0 | case GGML_TYPE_F32: |
2181 | 0 | { |
2182 | 0 | ggml_compute_forward_gelu_f32(params, dst); |
2183 | 0 | } break; |
2184 | 0 | case GGML_TYPE_F16: |
2185 | 0 | { |
2186 | 0 | ggml_compute_forward_gelu_f16(params, dst); |
2187 | 0 | } break; |
2188 | 0 | default: |
2189 | 0 | { |
2190 | 0 | GGML_ABORT("fatal error"); |
2191 | 0 | } |
2192 | 0 | } |
2193 | 0 | } |
2194 | | |
2195 | | // ggml_compute_fill |
2196 | | |
2197 | 0 | static void ggml_compute_forward_fill_f32(const ggml_compute_params * params, ggml_tensor * dst) { |
2198 | 0 | const float c = ggml_get_op_params_f32(dst, 0); |
2199 | |
|
2200 | 0 | GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); |
2201 | 0 | GGML_TENSOR_LOCALS(size_t, nb, dst, nb); |
2202 | |
|
2203 | 0 | const auto [ir0, ir1] = get_thread_range(params, dst); |
2204 | |
|
2205 | 0 | for (int64_t ir = ir0; ir < ir1; ++ir) { |
2206 | 0 | const int64_t i03 = ir/(ne2*ne1); |
2207 | 0 | const int64_t i02 = (ir - i03*ne2*ne1)/ne1; |
2208 | 0 | const int64_t i01 = (ir - i03*ne2*ne1 - i02*ne1); |
2209 | |
|
2210 | 0 | float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1); |
2211 | |
|
2212 | 0 | ggml_vec_set_f32(ne0, dst_ptr, c); |
2213 | 0 | } |
2214 | 0 | } |
2215 | | |
2216 | 0 | void ggml_compute_forward_fill(const ggml_compute_params * params, ggml_tensor * dst) { |
2217 | 0 | ggml_compute_forward_fill_f32(params, dst); |
2218 | 0 | } |
2219 | | |
2220 | | // ggml_compute_tri |
2221 | | |
2222 | 0 | static void ggml_compute_forward_tri_f32(const ggml_compute_params * params, ggml_tensor * dst) { |
2223 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2224 | |
|
2225 | 0 | const ggml_tri_type ttype = (ggml_tri_type) ggml_get_op_params_i32(dst, 0); |
2226 | |
|
2227 | 0 | GGML_ASSERT(ggml_is_contiguous(src0)); |
2228 | |
|
2229 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
2230 | |
|
2231 | 0 | const auto [ir0, ir1] = get_thread_range(params, src0); |
2232 | |
|
2233 | 0 | bool (*bipred)(int, int); |
2234 | |
|
2235 | 0 | switch (ttype) { |
2236 | 0 | case GGML_TRI_TYPE_LOWER: bipred = [](int i, int r) { return i < r; }; break; |
2237 | 0 | case GGML_TRI_TYPE_LOWER_DIAG: bipred = [](int i, int r) { return i <= r; }; break; |
2238 | 0 | case GGML_TRI_TYPE_UPPER: bipred = [](int i, int r) { return i > r; }; break; |
2239 | 0 | case GGML_TRI_TYPE_UPPER_DIAG: bipred = [](int i, int r) { return i >= r; }; break; |
2240 | 0 | default: GGML_ABORT("invalid tri type"); |
2241 | 0 | } |
2242 | | |
2243 | 0 | for (int64_t ir = ir0; ir < ir1; ++ir) { |
2244 | 0 | const int64_t i03 = ir/(ne02*ne01); |
2245 | 0 | const int64_t i02 = (ir - i03*ne02*ne01)/ne01; |
2246 | 0 | const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); |
2247 | |
|
2248 | 0 | const float * src_ptr = (const float *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01); |
2249 | 0 | float * dst_ptr = ( float *) (( char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1); |
2250 | |
|
2251 | 0 | for (int i0 = 0; i0 < ne0; ++i0) { |
2252 | 0 | dst_ptr[i0] = bipred(i0, i01) ? src_ptr[i0] : 0.0f; |
2253 | 0 | } |
2254 | 0 | } |
2255 | 0 | } |
2256 | | |
2257 | 0 | void ggml_compute_forward_tri(const ggml_compute_params * params, ggml_tensor * dst) { |
2258 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2259 | |
|
2260 | 0 | switch (src0->type) { |
2261 | 0 | case GGML_TYPE_F32: |
2262 | 0 | { |
2263 | 0 | ggml_compute_forward_tri_f32(params, dst); |
2264 | 0 | } break; |
2265 | 0 | default: |
2266 | 0 | { |
2267 | 0 | GGML_ABORT("fatal error"); |
2268 | 0 | } |
2269 | 0 | } |
2270 | 0 | } |
2271 | | |
2272 | | // ggml_compute_forward_gelu_erf |
2273 | | |
2274 | | static void ggml_compute_forward_gelu_erf_f32( |
2275 | | const ggml_compute_params * params, |
2276 | 0 | ggml_tensor * dst) { |
2277 | |
|
2278 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2279 | |
|
2280 | 0 | assert(ggml_is_contiguous_1(src0)); |
2281 | 0 | assert(ggml_is_contiguous_1(dst)); |
2282 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2283 | |
|
2284 | 0 | const int ith = params->ith; |
2285 | 0 | const int nth = params->nth; |
2286 | |
|
2287 | 0 | const int nc = src0->ne[0]; |
2288 | 0 | const int nr = ggml_nrows(src0); |
2289 | | |
2290 | | // rows per thread |
2291 | 0 | const int dr = (nr + nth - 1)/nth; |
2292 | | |
2293 | | // row range for this thread |
2294 | 0 | const int ir0 = dr*ith; |
2295 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2296 | |
|
2297 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2298 | 0 | ggml_vec_gelu_erf_f32(nc, |
2299 | 0 | (float *) ((char *) dst->data + i1*( dst->nb[1])), |
2300 | 0 | (float *) ((char *) src0->data + i1*(src0->nb[1]))); |
2301 | |
|
2302 | | #ifndef NDEBUG |
2303 | | for (int k = 0; k < nc; k++) { |
2304 | | const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2305 | | GGML_UNUSED(x); |
2306 | | assert(!isnan(x)); |
2307 | | assert(!isinf(x)); |
2308 | | } |
2309 | | #endif |
2310 | 0 | } |
2311 | 0 | } |
2312 | | |
2313 | | static void ggml_compute_forward_gelu_erf_f16( |
2314 | | const ggml_compute_params * params, |
2315 | 0 | ggml_tensor * dst) { |
2316 | |
|
2317 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2318 | |
|
2319 | 0 | assert(ggml_is_contiguous_1(src0)); |
2320 | 0 | assert(ggml_is_contiguous_1(dst)); |
2321 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2322 | |
|
2323 | 0 | const int ith = params->ith; |
2324 | 0 | const int nth = params->nth; |
2325 | |
|
2326 | 0 | const int nc = src0->ne[0]; |
2327 | 0 | const int nr = ggml_nrows(src0); |
2328 | | |
2329 | | // rows per thread |
2330 | 0 | const int dr = (nr + nth - 1)/nth; |
2331 | | |
2332 | | // row range for this thread |
2333 | 0 | const int ir0 = dr*ith; |
2334 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2335 | |
|
2336 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2337 | 0 | ggml_vec_gelu_erf_f16(nc, |
2338 | 0 | (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), |
2339 | 0 | (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1]))); |
2340 | |
|
2341 | | #ifndef NDEBUG |
2342 | | for (int k = 0; k < nc; k++) { |
2343 | | const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2344 | | const float v = GGML_CPU_FP16_TO_FP32(x); |
2345 | | GGML_UNUSED(v); |
2346 | | assert(!isnan(v)); |
2347 | | assert(!isinf(v)); |
2348 | | } |
2349 | | #endif |
2350 | 0 | } |
2351 | 0 | } |
2352 | | |
2353 | | static void ggml_compute_forward_gelu_erf( |
2354 | | const ggml_compute_params * params, |
2355 | 0 | ggml_tensor * dst) { |
2356 | |
|
2357 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2358 | |
|
2359 | 0 | switch (src0->type) { |
2360 | 0 | case GGML_TYPE_F32: |
2361 | 0 | { |
2362 | 0 | ggml_compute_forward_gelu_erf_f32(params, dst); |
2363 | 0 | } break; |
2364 | 0 | case GGML_TYPE_F16: |
2365 | 0 | { |
2366 | 0 | ggml_compute_forward_gelu_erf_f16(params, dst); |
2367 | 0 | } break; |
2368 | 0 | default: |
2369 | 0 | { |
2370 | 0 | GGML_ABORT("fatal error"); |
2371 | 0 | } |
2372 | 0 | } |
2373 | 0 | } |
2374 | | |
2375 | | // ggml_compute_forward_gelu_quick |
2376 | | |
2377 | | static void ggml_compute_forward_gelu_quick_f32( |
2378 | | const ggml_compute_params * params, |
2379 | 0 | ggml_tensor * dst) { |
2380 | |
|
2381 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2382 | |
|
2383 | 0 | assert(ggml_is_contiguous_1(src0)); |
2384 | 0 | assert(ggml_is_contiguous_1(dst)); |
2385 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2386 | |
|
2387 | 0 | const int ith = params->ith; |
2388 | 0 | const int nth = params->nth; |
2389 | |
|
2390 | 0 | const int nc = src0->ne[0]; |
2391 | 0 | const int nr = ggml_nrows(src0); |
2392 | | |
2393 | | // rows per thread |
2394 | 0 | const int dr = (nr + nth - 1)/nth; |
2395 | | |
2396 | | // row range for this thread |
2397 | 0 | const int ir0 = dr*ith; |
2398 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2399 | |
|
2400 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2401 | 0 | ggml_vec_gelu_quick_f32(nc, |
2402 | 0 | (float *) ((char *) dst->data + i1*( dst->nb[1])), |
2403 | 0 | (float *) ((char *) src0->data + i1*(src0->nb[1]))); |
2404 | |
|
2405 | | #ifndef NDEBUG |
2406 | | for (int k = 0; k < nc; k++) { |
2407 | | const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2408 | | GGML_UNUSED(x); |
2409 | | assert(!isnan(x)); |
2410 | | assert(!isinf(x)); |
2411 | | } |
2412 | | #endif |
2413 | 0 | } |
2414 | 0 | } |
2415 | | |
2416 | | static void ggml_compute_forward_gelu_quick_f16( |
2417 | | const ggml_compute_params * params, |
2418 | 0 | ggml_tensor * dst) { |
2419 | |
|
2420 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2421 | |
|
2422 | 0 | assert(ggml_is_contiguous_1(src0)); |
2423 | 0 | assert(ggml_is_contiguous_1(dst)); |
2424 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2425 | |
|
2426 | 0 | const int ith = params->ith; |
2427 | 0 | const int nth = params->nth; |
2428 | |
|
2429 | 0 | const int nc = src0->ne[0]; |
2430 | 0 | const int nr = ggml_nrows(src0); |
2431 | | |
2432 | | // rows per thread |
2433 | 0 | const int dr = (nr + nth - 1)/nth; |
2434 | | |
2435 | | // row range for this thread |
2436 | 0 | const int ir0 = dr*ith; |
2437 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2438 | |
|
2439 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2440 | 0 | ggml_vec_gelu_quick_f16(nc, |
2441 | 0 | (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), |
2442 | 0 | (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1]))); |
2443 | |
|
2444 | | #ifndef NDEBUG |
2445 | | for (int k = 0; k < nc; k++) { |
2446 | | const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2447 | | const float v = GGML_CPU_FP16_TO_FP32(x); |
2448 | | GGML_UNUSED(v); |
2449 | | assert(!isnan(v)); |
2450 | | assert(!isinf(v)); |
2451 | | } |
2452 | | #endif |
2453 | 0 | } |
2454 | 0 | } |
2455 | | |
2456 | | static void ggml_compute_forward_gelu_quick( |
2457 | | const ggml_compute_params * params, |
2458 | 0 | ggml_tensor * dst) { |
2459 | |
|
2460 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2461 | |
|
2462 | 0 | switch (src0->type) { |
2463 | 0 | case GGML_TYPE_F32: |
2464 | 0 | { |
2465 | 0 | ggml_compute_forward_gelu_quick_f32(params, dst); |
2466 | 0 | } break; |
2467 | 0 | case GGML_TYPE_F16: |
2468 | 0 | { |
2469 | 0 | ggml_compute_forward_gelu_quick_f16(params, dst); |
2470 | 0 | } break; |
2471 | 0 | default: |
2472 | 0 | { |
2473 | 0 | GGML_ABORT("fatal error"); |
2474 | 0 | } |
2475 | 0 | } |
2476 | 0 | } |
2477 | | |
2478 | | // ggml_compute_forward_silu |
2479 | | |
2480 | | static void ggml_compute_forward_silu_f32( |
2481 | | const ggml_compute_params * params, |
2482 | 0 | ggml_tensor * dst) { |
2483 | |
|
2484 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2485 | |
|
2486 | 0 | assert(ggml_is_contiguous_1(src0)); |
2487 | 0 | assert(ggml_is_contiguous_1(dst)); |
2488 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2489 | |
|
2490 | 0 | const int ith = params->ith; |
2491 | 0 | const int nth = params->nth; |
2492 | |
|
2493 | 0 | const int nc = src0->ne[0]; |
2494 | 0 | const int nr = ggml_nrows(src0); |
2495 | | |
2496 | | // rows per thread |
2497 | 0 | const int dr = (nr + nth - 1)/nth; |
2498 | | |
2499 | | // row range for this thread |
2500 | 0 | const int ir0 = dr*ith; |
2501 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2502 | |
|
2503 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2504 | 0 | ggml_vec_silu_f32(nc, |
2505 | 0 | (float *) ((char *) dst->data + i1*( dst->nb[1])), |
2506 | 0 | (float *) ((char *) src0->data + i1*(src0->nb[1]))); |
2507 | |
|
2508 | | #ifndef NDEBUG |
2509 | | for (int k = 0; k < nc; k++) { |
2510 | | const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k]; |
2511 | | GGML_UNUSED(x); |
2512 | | assert(!isnan(x)); |
2513 | | assert(!isinf(x)); |
2514 | | } |
2515 | | #endif |
2516 | 0 | } |
2517 | 0 | } |
2518 | | |
2519 | | static void ggml_compute_forward_silu_f16( |
2520 | | const ggml_compute_params * params, |
2521 | 0 | ggml_tensor * dst) { |
2522 | |
|
2523 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2524 | |
|
2525 | 0 | assert(ggml_is_contiguous_1(src0)); |
2526 | 0 | assert(ggml_is_contiguous_1(dst)); |
2527 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2528 | |
|
2529 | 0 | const int ith = params->ith; |
2530 | 0 | const int nth = params->nth; |
2531 | |
|
2532 | 0 | const int nc = src0->ne[0]; |
2533 | 0 | const int nr = ggml_nrows(src0); |
2534 | | |
2535 | | // rows per thread |
2536 | 0 | const int dr = (nr + nth - 1)/nth; |
2537 | | |
2538 | | // row range for this thread |
2539 | 0 | const int ir0 = dr*ith; |
2540 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2541 | |
|
2542 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2543 | 0 | ggml_vec_silu_f16(nc, |
2544 | 0 | (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), |
2545 | 0 | (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1]))); |
2546 | |
|
2547 | | #ifndef NDEBUG |
2548 | | for (int k = 0; k < nc; k++) { |
2549 | | const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k]; |
2550 | | const float v = GGML_CPU_FP16_TO_FP32(x); |
2551 | | GGML_UNUSED(v); |
2552 | | assert(!isnan(v)); |
2553 | | assert(!isinf(v)); |
2554 | | } |
2555 | | #endif |
2556 | 0 | } |
2557 | 0 | } |
2558 | | |
2559 | | static void ggml_compute_forward_silu( |
2560 | | const ggml_compute_params * params, |
2561 | 0 | ggml_tensor * dst) { |
2562 | |
|
2563 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2564 | |
|
2565 | 0 | switch (src0->type) { |
2566 | 0 | case GGML_TYPE_F32: |
2567 | 0 | { |
2568 | 0 | ggml_compute_forward_silu_f32(params, dst); |
2569 | 0 | } break; |
2570 | 0 | case GGML_TYPE_F16: |
2571 | 0 | { |
2572 | 0 | ggml_compute_forward_silu_f16(params, dst); |
2573 | 0 | } break; |
2574 | 0 | default: |
2575 | 0 | { |
2576 | 0 | GGML_ABORT("fatal error"); |
2577 | 0 | } |
2578 | 0 | } |
2579 | 0 | } |
2580 | | // ggml_compute_forward_leaky_relu |
2581 | | |
2582 | | static void ggml_compute_forward_leaky_relu_f32( |
2583 | | const ggml_compute_params * params, |
2584 | 0 | ggml_tensor * dst) { |
2585 | |
|
2586 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2587 | |
|
2588 | 0 | if (params->ith != 0) { |
2589 | 0 | return; |
2590 | 0 | } |
2591 | | |
2592 | 0 | assert(ggml_is_contiguous_1(src0)); |
2593 | 0 | assert(ggml_is_contiguous_1(dst)); |
2594 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2595 | |
|
2596 | 0 | const int n = ggml_nrows(src0); |
2597 | 0 | const int nc = src0->ne[0]; |
2598 | |
|
2599 | 0 | float negative_slope; |
2600 | 0 | memcpy(&negative_slope, dst->op_params, sizeof(float)); |
2601 | |
|
2602 | 0 | assert(dst->nb[0] == sizeof(float)); |
2603 | 0 | assert(src0->nb[0] == sizeof(float)); |
2604 | |
|
2605 | 0 | for (int i = 0; i < n; i++) { |
2606 | 0 | ggml_vec_leaky_relu_f32(nc, |
2607 | 0 | (float *) ((char *) dst->data + i*( dst->nb[1])), |
2608 | 0 | (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope); |
2609 | 0 | } |
2610 | 0 | } |
2611 | | |
2612 | | static void ggml_compute_forward_leaky_relu_f16( |
2613 | | const ggml_compute_params * params, |
2614 | 0 | ggml_tensor * dst) { |
2615 | |
|
2616 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2617 | |
|
2618 | 0 | if (params->ith != 0) { |
2619 | 0 | return; |
2620 | 0 | } |
2621 | | |
2622 | 0 | assert(ggml_is_contiguous_1(src0)); |
2623 | 0 | assert(ggml_is_contiguous_1(dst)); |
2624 | 0 | assert(ggml_are_same_shape(src0, dst)); |
2625 | |
|
2626 | 0 | const int n = ggml_nrows(src0); |
2627 | 0 | const int nc = src0->ne[0]; |
2628 | |
|
2629 | 0 | float negative_slope; |
2630 | 0 | memcpy(&negative_slope, dst->op_params, sizeof(float)); |
2631 | |
|
2632 | 0 | assert(dst->nb[0] == sizeof(ggml_fp16_t)); |
2633 | 0 | assert(src0->nb[0] == sizeof(ggml_fp16_t)); |
2634 | |
|
2635 | 0 | for (int i = 0; i < n; i++) { |
2636 | 0 | ggml_vec_leaky_relu_f16(nc, |
2637 | 0 | (ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])), |
2638 | 0 | (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope); |
2639 | 0 | } |
2640 | 0 | } |
2641 | | |
2642 | | void ggml_compute_forward_leaky_relu( |
2643 | | const ggml_compute_params * params, |
2644 | 0 | ggml_tensor * dst) { |
2645 | |
|
2646 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2647 | |
|
2648 | 0 | switch (src0->type) { |
2649 | 0 | case GGML_TYPE_F32: |
2650 | 0 | { |
2651 | 0 | ggml_compute_forward_leaky_relu_f32(params, dst); |
2652 | 0 | } break; |
2653 | 0 | case GGML_TYPE_F16: |
2654 | 0 | { |
2655 | 0 | ggml_compute_forward_leaky_relu_f16(params, dst); |
2656 | 0 | } break; |
2657 | 0 | default: |
2658 | 0 | { |
2659 | 0 | GGML_ABORT("fatal error"); |
2660 | 0 | } |
2661 | 0 | } |
2662 | 0 | } |
2663 | | |
2664 | | // ggml_compute_forward_silu_back |
2665 | | |
2666 | | static void ggml_compute_forward_silu_back_f32( |
2667 | | const ggml_compute_params * params, |
2668 | 0 | ggml_tensor * dst) { |
2669 | |
|
2670 | 0 | const ggml_tensor * grad = dst->src[0]; |
2671 | 0 | const ggml_tensor * src1 = dst->src[1]; |
2672 | |
|
2673 | 0 | assert(ggml_is_contiguous_1(grad)); |
2674 | 0 | assert(ggml_is_contiguous_1(src1)); |
2675 | 0 | assert(ggml_is_contiguous_1(dst)); |
2676 | 0 | assert(ggml_are_same_shape(src1, dst)); |
2677 | 0 | assert(ggml_are_same_shape(src1, grad)); |
2678 | |
|
2679 | 0 | const int ith = params->ith; |
2680 | 0 | const int nth = params->nth; |
2681 | |
|
2682 | 0 | const int nc = src1->ne[0]; |
2683 | 0 | const int nr = ggml_nrows(src1); |
2684 | | |
2685 | | // rows per thread |
2686 | 0 | const int dr = (nr + nth - 1)/nth; |
2687 | | |
2688 | | // row range for this thread |
2689 | 0 | const int ir0 = dr*ith; |
2690 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2691 | |
|
2692 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2693 | 0 | ggml_vec_silu_backward_f32(nc, |
2694 | 0 | (float *) ((char *) dst->data + i1*( dst->nb[1])), |
2695 | 0 | (float *) ((char *) src1->data + i1*(src1->nb[1])), |
2696 | 0 | (float *) ((char *) grad->data + i1*(grad->nb[1]))); |
2697 | |
|
2698 | | #ifndef NDEBUG |
2699 | | for (int k = 0; k < nc; k++) { |
2700 | | const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2701 | | GGML_UNUSED(x); |
2702 | | assert(!isnan(x)); |
2703 | | assert(!isinf(x)); |
2704 | | } |
2705 | | #endif |
2706 | 0 | } |
2707 | 0 | } |
2708 | | |
2709 | | static void ggml_compute_forward_silu_back_f16( |
2710 | | const ggml_compute_params * params, |
2711 | 0 | ggml_tensor * dst) { |
2712 | |
|
2713 | 0 | const ggml_tensor * grad = dst->src[0]; |
2714 | 0 | const ggml_tensor * src1 = dst->src[1]; |
2715 | |
|
2716 | 0 | assert(ggml_is_contiguous_1(grad)); |
2717 | 0 | assert(ggml_is_contiguous_1(src1)); |
2718 | 0 | assert(ggml_is_contiguous_1(dst)); |
2719 | 0 | assert(ggml_are_same_shape(src1, dst)); |
2720 | 0 | assert(ggml_are_same_shape(src1, grad)); |
2721 | |
|
2722 | 0 | const int ith = params->ith; |
2723 | 0 | const int nth = params->nth; |
2724 | |
|
2725 | 0 | const int nc = src1->ne[0]; |
2726 | 0 | const int nr = ggml_nrows(src1); |
2727 | | |
2728 | | // rows per thread |
2729 | 0 | const int dr = (nr + nth - 1)/nth; |
2730 | | |
2731 | | // row range for this thread |
2732 | 0 | const int ir0 = dr*ith; |
2733 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2734 | |
|
2735 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2736 | 0 | ggml_vec_silu_backward_f16(nc, |
2737 | 0 | (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])), |
2738 | 0 | (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])), |
2739 | 0 | (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1]))); |
2740 | |
|
2741 | | #ifndef NDEBUG |
2742 | | for (int k = 0; k < nc; k++) { |
2743 | | const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2744 | | const float v = GGML_CPU_FP16_TO_FP32(x); |
2745 | | GGML_UNUSED(v); |
2746 | | assert(!isnan(v)); |
2747 | | assert(!isinf(v)); |
2748 | | } |
2749 | | #endif |
2750 | 0 | } |
2751 | 0 | } |
2752 | | |
2753 | | void ggml_compute_forward_silu_back( |
2754 | | const ggml_compute_params * params, |
2755 | 0 | ggml_tensor * dst) { |
2756 | |
|
2757 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2758 | |
|
2759 | 0 | switch (src0->type) { |
2760 | 0 | case GGML_TYPE_F32: |
2761 | 0 | { |
2762 | 0 | ggml_compute_forward_silu_back_f32(params, dst); |
2763 | 0 | } break; |
2764 | 0 | case GGML_TYPE_F16: |
2765 | 0 | { |
2766 | 0 | ggml_compute_forward_silu_back_f16(params, dst); |
2767 | 0 | } break; |
2768 | 0 | default: |
2769 | 0 | { |
2770 | 0 | GGML_ABORT("fatal error"); |
2771 | 0 | } |
2772 | 0 | } |
2773 | 0 | } |
2774 | | |
2775 | | // ggml_compute_forward_reglu |
2776 | | |
2777 | | static void ggml_compute_forward_reglu_f32( |
2778 | | const ggml_compute_params * params, |
2779 | 0 | ggml_tensor * dst) { |
2780 | |
|
2781 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2782 | 0 | const ggml_tensor * src1 = dst->src[1]; |
2783 | 0 | char * src0_d = (char *) src0->data; |
2784 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
2785 | 0 | const size_t src0_o = src0->nb[1]; |
2786 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
2787 | |
|
2788 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
2789 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
2790 | |
|
2791 | 0 | if (src1) { |
2792 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
2793 | 0 | GGML_ASSERT(src0->type == src1->type); |
2794 | 0 | } |
2795 | |
|
2796 | 0 | const int ith = params->ith; |
2797 | 0 | const int nth = params->nth; |
2798 | |
|
2799 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
2800 | 0 | const int nr = ggml_nrows(src0); |
2801 | |
|
2802 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
2803 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
2804 | |
|
2805 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
2806 | | |
2807 | | // rows per thread |
2808 | 0 | const int dr = (nr + nth - 1)/nth; |
2809 | | |
2810 | | // row range for this thread |
2811 | 0 | const int ir0 = dr*ith; |
2812 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2813 | |
|
2814 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2815 | 0 | float * src0_p = (float *) (src0_d + i1*src0_o); |
2816 | 0 | float * src1_p = (float *) (src1_d + i1*src1_o); |
2817 | |
|
2818 | 0 | if (!src1) { |
2819 | 0 | src0_p += swapped ? nc : 0; |
2820 | 0 | src1_p += swapped ? 0 : nc; |
2821 | 0 | } |
2822 | |
|
2823 | 0 | ggml_vec_reglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
2824 | |
|
2825 | | #ifndef NDEBUG |
2826 | | for (int k = 0; k < nc; k++) { |
2827 | | const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2828 | | GGML_UNUSED(x); |
2829 | | assert(!isnan(x)); |
2830 | | assert(!isinf(x)); |
2831 | | } |
2832 | | #endif |
2833 | 0 | } |
2834 | 0 | } |
2835 | | |
2836 | | static void ggml_compute_forward_reglu_f16( |
2837 | | const ggml_compute_params * params, |
2838 | 0 | ggml_tensor * dst) { |
2839 | |
|
2840 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2841 | 0 | const ggml_tensor * src1 = dst->src[1]; |
2842 | 0 | char * src0_d = (char *) src0->data; |
2843 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
2844 | 0 | const size_t src0_o = src0->nb[1]; |
2845 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
2846 | |
|
2847 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
2848 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
2849 | |
|
2850 | 0 | if (src1) { |
2851 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
2852 | 0 | GGML_ASSERT(src0->type == src1->type); |
2853 | 0 | } |
2854 | |
|
2855 | 0 | const int ith = params->ith; |
2856 | 0 | const int nth = params->nth; |
2857 | |
|
2858 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
2859 | 0 | const int nr = ggml_nrows(src0); |
2860 | |
|
2861 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
2862 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
2863 | |
|
2864 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
2865 | | |
2866 | | // rows per thread |
2867 | 0 | const int dr = (nr + nth - 1)/nth; |
2868 | | |
2869 | | // row range for this thread |
2870 | 0 | const int ir0 = dr*ith; |
2871 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2872 | |
|
2873 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2874 | 0 | ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o); |
2875 | 0 | ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o); |
2876 | |
|
2877 | 0 | if (!src1) { |
2878 | 0 | src0_p += swapped ? nc : 0; |
2879 | 0 | src1_p += swapped ? 0 : nc; |
2880 | 0 | } |
2881 | |
|
2882 | 0 | ggml_vec_reglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
2883 | |
|
2884 | | #ifndef NDEBUG |
2885 | | for (int k = 0; k < nc; k++) { |
2886 | | const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2887 | | const float v = GGML_FP16_TO_FP32(x); |
2888 | | GGML_UNUSED(v); |
2889 | | assert(!isnan(v)); |
2890 | | assert(!isinf(v)); |
2891 | | } |
2892 | | #endif |
2893 | 0 | } |
2894 | 0 | } |
2895 | | |
2896 | | static void ggml_compute_forward_reglu( |
2897 | | const ggml_compute_params * params, |
2898 | 0 | ggml_tensor * dst) { |
2899 | |
|
2900 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2901 | |
|
2902 | 0 | switch (src0->type) { |
2903 | 0 | case GGML_TYPE_F32: |
2904 | 0 | { |
2905 | 0 | ggml_compute_forward_reglu_f32(params, dst); |
2906 | 0 | } break; |
2907 | 0 | case GGML_TYPE_F16: |
2908 | 0 | { |
2909 | 0 | ggml_compute_forward_reglu_f16(params, dst); |
2910 | 0 | } break; |
2911 | 0 | default: |
2912 | 0 | { |
2913 | 0 | GGML_ABORT("fatal error"); |
2914 | 0 | } |
2915 | 0 | } |
2916 | 0 | } |
2917 | | |
2918 | | // ggml_compute_forward_geglu |
2919 | | |
2920 | | static void ggml_compute_forward_geglu_f32( |
2921 | | const ggml_compute_params * params, |
2922 | 0 | ggml_tensor * dst) { |
2923 | |
|
2924 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2925 | 0 | const ggml_tensor * src1 = dst->src[1]; |
2926 | 0 | char * src0_d = (char *) src0->data; |
2927 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
2928 | 0 | const size_t src0_o = src0->nb[1]; |
2929 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
2930 | |
|
2931 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
2932 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
2933 | |
|
2934 | 0 | if (src1) { |
2935 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
2936 | 0 | GGML_ASSERT(src0->type == src1->type); |
2937 | 0 | } |
2938 | |
|
2939 | 0 | const int ith = params->ith; |
2940 | 0 | const int nth = params->nth; |
2941 | |
|
2942 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
2943 | 0 | const int nr = ggml_nrows(src0); |
2944 | |
|
2945 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
2946 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
2947 | |
|
2948 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
2949 | | |
2950 | | // rows per thread |
2951 | 0 | const int dr = (nr + nth - 1)/nth; |
2952 | | |
2953 | | // row range for this thread |
2954 | 0 | const int ir0 = dr*ith; |
2955 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
2956 | |
|
2957 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
2958 | 0 | float * src0_p = (float *) (src0_d + i1*src0_o); |
2959 | 0 | float * src1_p = (float *) (src1_d + i1*src1_o); |
2960 | |
|
2961 | 0 | if (!src1) { |
2962 | 0 | src0_p += swapped ? nc : 0; |
2963 | 0 | src1_p += swapped ? 0 : nc; |
2964 | 0 | } |
2965 | |
|
2966 | 0 | ggml_vec_geglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
2967 | |
|
2968 | | #ifndef NDEBUG |
2969 | | for (int k = 0; k < nc; k++) { |
2970 | | const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
2971 | | GGML_UNUSED(x); |
2972 | | assert(!isnan(x)); |
2973 | | assert(!isinf(x)); |
2974 | | } |
2975 | | #endif |
2976 | 0 | } |
2977 | 0 | } |
2978 | | |
2979 | | static void ggml_compute_forward_geglu_f16( |
2980 | | const ggml_compute_params * params, |
2981 | 0 | ggml_tensor * dst) { |
2982 | |
|
2983 | 0 | const ggml_tensor * src0 = dst->src[0]; |
2984 | 0 | const ggml_tensor * src1 = dst->src[1]; |
2985 | 0 | char * src0_d = (char *) src0->data; |
2986 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
2987 | 0 | const size_t src0_o = src0->nb[1]; |
2988 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
2989 | |
|
2990 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
2991 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
2992 | |
|
2993 | 0 | if (src1) { |
2994 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
2995 | 0 | GGML_ASSERT(src0->type == src1->type); |
2996 | 0 | } |
2997 | |
|
2998 | 0 | const int ith = params->ith; |
2999 | 0 | const int nth = params->nth; |
3000 | |
|
3001 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
3002 | 0 | const int nr = ggml_nrows(src0); |
3003 | |
|
3004 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
3005 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
3006 | |
|
3007 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
3008 | | |
3009 | | // rows per thread |
3010 | 0 | const int dr = (nr + nth - 1)/nth; |
3011 | | |
3012 | | // row range for this thread |
3013 | 0 | const int ir0 = dr*ith; |
3014 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
3015 | |
|
3016 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
3017 | 0 | ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o); |
3018 | 0 | ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o); |
3019 | |
|
3020 | 0 | if (!src1) { |
3021 | 0 | src0_p += swapped ? nc : 0; |
3022 | 0 | src1_p += swapped ? 0 : nc; |
3023 | 0 | } |
3024 | |
|
3025 | 0 | ggml_vec_geglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
3026 | |
|
3027 | | #ifndef NDEBUG |
3028 | | for (int k = 0; k < nc; k++) { |
3029 | | const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
3030 | | const float v = GGML_FP16_TO_FP32(x); |
3031 | | GGML_UNUSED(v); |
3032 | | assert(!isnan(v)); |
3033 | | assert(!isinf(v)); |
3034 | | } |
3035 | | #endif |
3036 | 0 | } |
3037 | 0 | } |
3038 | | |
3039 | | static void ggml_compute_forward_geglu( |
3040 | | const ggml_compute_params * params, |
3041 | 0 | ggml_tensor * dst) { |
3042 | |
|
3043 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3044 | |
|
3045 | 0 | switch (src0->type) { |
3046 | 0 | case GGML_TYPE_F32: |
3047 | 0 | { |
3048 | 0 | ggml_compute_forward_geglu_f32(params, dst); |
3049 | 0 | } break; |
3050 | 0 | case GGML_TYPE_F16: |
3051 | 0 | { |
3052 | 0 | ggml_compute_forward_geglu_f16(params, dst); |
3053 | 0 | } break; |
3054 | 0 | default: |
3055 | 0 | { |
3056 | 0 | GGML_ABORT("fatal error"); |
3057 | 0 | } |
3058 | 0 | } |
3059 | 0 | } |
3060 | | |
3061 | | // ggml_compute_forward_swiglu |
3062 | | |
3063 | | static void ggml_compute_forward_swiglu_f32( |
3064 | | const ggml_compute_params * params, |
3065 | 0 | ggml_tensor * dst) { |
3066 | |
|
3067 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3068 | 0 | const ggml_tensor * src1 = dst->src[1]; |
3069 | 0 | char * src0_d = (char *) src0->data; |
3070 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
3071 | 0 | const size_t src0_o = src0->nb[1]; |
3072 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
3073 | |
|
3074 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
3075 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
3076 | |
|
3077 | 0 | if (src1) { |
3078 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
3079 | 0 | GGML_ASSERT(src0->type == src1->type); |
3080 | 0 | } |
3081 | |
|
3082 | 0 | const int ith = params->ith; |
3083 | 0 | const int nth = params->nth; |
3084 | |
|
3085 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
3086 | 0 | const int nr = ggml_nrows(src0); |
3087 | |
|
3088 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
3089 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
3090 | |
|
3091 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
3092 | | |
3093 | | // rows per thread |
3094 | 0 | const int dr = (nr + nth - 1)/nth; |
3095 | | |
3096 | | // row range for this thread |
3097 | 0 | const int ir0 = dr*ith; |
3098 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
3099 | |
|
3100 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
3101 | 0 | float * src0_p = (float *) (src0_d + i1*src0_o); |
3102 | 0 | float * src1_p = (float *) (src1_d + i1*src1_o); |
3103 | |
|
3104 | 0 | if (!src1) { |
3105 | 0 | src0_p += swapped ? nc : 0; |
3106 | 0 | src1_p += swapped ? 0 : nc; |
3107 | 0 | } |
3108 | |
|
3109 | 0 | ggml_vec_swiglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
3110 | |
|
3111 | | #ifndef NDEBUG |
3112 | | for (int k = 0; k < nc; k++) { |
3113 | | const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
3114 | | GGML_UNUSED(x); |
3115 | | assert(!isnan(x)); |
3116 | | assert(!isinf(x)); |
3117 | | } |
3118 | | #endif |
3119 | 0 | } |
3120 | 0 | } |
3121 | | |
3122 | | static void ggml_compute_forward_swiglu_f16( |
3123 | | const ggml_compute_params * params, |
3124 | 0 | ggml_tensor * dst) { |
3125 | |
|
3126 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3127 | 0 | const ggml_tensor * src1 = dst->src[1]; |
3128 | 0 | char * src0_d = (char *) src0->data; |
3129 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
3130 | 0 | const size_t src0_o = src0->nb[1]; |
3131 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
3132 | |
|
3133 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
3134 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
3135 | |
|
3136 | 0 | if (src1) { |
3137 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
3138 | 0 | GGML_ASSERT(src0->type == src1->type); |
3139 | 0 | } |
3140 | |
|
3141 | 0 | const int ith = params->ith; |
3142 | 0 | const int nth = params->nth; |
3143 | |
|
3144 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
3145 | 0 | const int nr = ggml_nrows(src0); |
3146 | |
|
3147 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
3148 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
3149 | |
|
3150 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
3151 | | |
3152 | | // rows per thread |
3153 | 0 | const int dr = (nr + nth - 1)/nth; |
3154 | | |
3155 | | // row range for this thread |
3156 | 0 | const int ir0 = dr*ith; |
3157 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
3158 | |
|
3159 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
3160 | 0 | ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o); |
3161 | 0 | ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o); |
3162 | |
|
3163 | 0 | if (!src1) { |
3164 | 0 | src0_p += swapped ? nc : 0; |
3165 | 0 | src1_p += swapped ? 0 : nc; |
3166 | 0 | } |
3167 | |
|
3168 | 0 | ggml_vec_swiglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
3169 | |
|
3170 | | #ifndef NDEBUG |
3171 | | for (int k = 0; k < nc; k++) { |
3172 | | const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
3173 | | const float v = GGML_FP16_TO_FP32(x); |
3174 | | GGML_UNUSED(v); |
3175 | | assert(!isnan(v)); |
3176 | | assert(!isinf(v)); |
3177 | | } |
3178 | | #endif |
3179 | 0 | } |
3180 | 0 | } |
3181 | | |
3182 | | static void ggml_compute_forward_swiglu( |
3183 | | const ggml_compute_params * params, |
3184 | 0 | ggml_tensor * dst) { |
3185 | |
|
3186 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3187 | |
|
3188 | 0 | switch (src0->type) { |
3189 | 0 | case GGML_TYPE_F32: |
3190 | 0 | { |
3191 | 0 | ggml_compute_forward_swiglu_f32(params, dst); |
3192 | 0 | } break; |
3193 | 0 | case GGML_TYPE_F16: |
3194 | 0 | { |
3195 | 0 | ggml_compute_forward_swiglu_f16(params, dst); |
3196 | 0 | } break; |
3197 | 0 | default: |
3198 | 0 | { |
3199 | 0 | GGML_ABORT("fatal error"); |
3200 | 0 | } |
3201 | 0 | } |
3202 | 0 | } |
3203 | | |
3204 | | // ggml_compute_forward_swiglu_oai |
3205 | | |
3206 | | static void ggml_compute_forward_swiglu_oai_f32( |
3207 | | const ggml_compute_params * params, |
3208 | 0 | ggml_tensor * dst) { |
3209 | |
|
3210 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3211 | 0 | const ggml_tensor * src1 = dst->src[1]; |
3212 | 0 | char * src0_d = (char *) src0->data; |
3213 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
3214 | 0 | const size_t src0_o = src0->nb[1]; |
3215 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
3216 | |
|
3217 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
3218 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
3219 | |
|
3220 | 0 | if (src1) { |
3221 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
3222 | 0 | GGML_ASSERT(src0->type == src1->type); |
3223 | 0 | } |
3224 | |
|
3225 | 0 | const int ith = params->ith; |
3226 | 0 | const int nth = params->nth; |
3227 | |
|
3228 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
3229 | 0 | const int nr = ggml_nrows(src0); |
3230 | |
|
3231 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
3232 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
3233 | |
|
3234 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
3235 | 0 | const float alpha = ggml_get_op_params_f32(dst, 2); |
3236 | 0 | const float limit = ggml_get_op_params_f32(dst, 3); |
3237 | | |
3238 | | // rows per thread |
3239 | 0 | const int dr = (nr + nth - 1)/nth; |
3240 | | |
3241 | | // row range for this thread |
3242 | 0 | const int ir0 = dr*ith; |
3243 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
3244 | |
|
3245 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
3246 | 0 | float * src0_p = (float *) (src0_d + i1*src0_o); |
3247 | 0 | float * src1_p = (float *) (src1_d + i1*src1_o); |
3248 | 0 | float * dst_p = (float *) ((char *) dst->data + i1*(dst->nb[1])); |
3249 | |
|
3250 | 0 | if (!src1) { |
3251 | 0 | src0_p += swapped ? nc : 0; |
3252 | 0 | src1_p += swapped ? 0 : nc; |
3253 | 0 | } |
3254 | |
|
3255 | 0 | for (int k = 0; k < nc; k++) { |
3256 | 0 | const float x = std::min(src0_p[k], limit); |
3257 | 0 | const float y = std::clamp(src1_p[k], -limit, limit); |
3258 | 0 | const float out_glu = x / (1.f + expf(alpha * (-x))); |
3259 | 0 | dst_p[k] = out_glu * (y + 1.f); |
3260 | 0 | } |
3261 | |
|
3262 | | #ifndef NDEBUG |
3263 | | for (int k = 0; k < nc; k++) { |
3264 | | const float x = dst_p[k]; |
3265 | | GGML_UNUSED(x); |
3266 | | assert(!isnan(x)); |
3267 | | assert(!isinf(x)); |
3268 | | } |
3269 | | #endif |
3270 | 0 | } |
3271 | 0 | } |
3272 | | |
3273 | | static void ggml_compute_forward_swiglu_oai( |
3274 | | const ggml_compute_params * params, |
3275 | 0 | ggml_tensor * dst) { |
3276 | |
|
3277 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3278 | |
|
3279 | 0 | switch (src0->type) { |
3280 | 0 | case GGML_TYPE_F32: |
3281 | 0 | { |
3282 | 0 | ggml_compute_forward_swiglu_oai_f32(params, dst); |
3283 | 0 | } break; |
3284 | 0 | default: |
3285 | 0 | { |
3286 | 0 | GGML_ABORT("fatal error"); |
3287 | 0 | } |
3288 | 0 | } |
3289 | 0 | } |
3290 | | |
3291 | | // ggml_compute_forward_geglu_erf |
3292 | | |
3293 | | static void ggml_compute_forward_geglu_erf_f32( |
3294 | | const ggml_compute_params * params, |
3295 | 0 | ggml_tensor * dst) { |
3296 | |
|
3297 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3298 | 0 | const ggml_tensor * src1 = dst->src[1]; |
3299 | 0 | char * src0_d = (char *) src0->data; |
3300 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
3301 | 0 | const size_t src0_o = src0->nb[1]; |
3302 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
3303 | |
|
3304 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
3305 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
3306 | |
|
3307 | 0 | if (src1) { |
3308 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
3309 | 0 | GGML_ASSERT(src0->type == src1->type); |
3310 | 0 | } |
3311 | |
|
3312 | 0 | const int ith = params->ith; |
3313 | 0 | const int nth = params->nth; |
3314 | |
|
3315 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
3316 | 0 | const int nr = ggml_nrows(src0); |
3317 | |
|
3318 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
3319 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
3320 | |
|
3321 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
3322 | | |
3323 | | // rows per thread |
3324 | 0 | const int dr = (nr + nth - 1)/nth; |
3325 | | |
3326 | | // row range for this thread |
3327 | 0 | const int ir0 = dr*ith; |
3328 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
3329 | |
|
3330 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
3331 | 0 | float * src0_p = (float *) (src0_d + i1*src0_o); |
3332 | 0 | float * src1_p = (float *) (src1_d + i1*src1_o); |
3333 | |
|
3334 | 0 | if (!src1) { |
3335 | 0 | src0_p += swapped ? nc : 0; |
3336 | 0 | src1_p += swapped ? 0 : nc; |
3337 | 0 | } |
3338 | |
|
3339 | 0 | ggml_vec_geglu_erf_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
3340 | |
|
3341 | | #ifndef NDEBUG |
3342 | | for (int k = 0; k < nc; k++) { |
3343 | | const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
3344 | | GGML_UNUSED(x); |
3345 | | assert(!isnan(x)); |
3346 | | assert(!isinf(x)); |
3347 | | } |
3348 | | #endif |
3349 | 0 | } |
3350 | 0 | } |
3351 | | |
3352 | | static void ggml_compute_forward_geglu_erf_f16( |
3353 | | const ggml_compute_params * params, |
3354 | 0 | ggml_tensor * dst) { |
3355 | |
|
3356 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3357 | 0 | const ggml_tensor * src1 = dst->src[1]; |
3358 | 0 | char * src0_d = (char *) src0->data; |
3359 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
3360 | 0 | const size_t src0_o = src0->nb[1]; |
3361 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
3362 | |
|
3363 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
3364 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
3365 | |
|
3366 | 0 | if (src1) { |
3367 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
3368 | 0 | GGML_ASSERT(src0->type == src1->type); |
3369 | 0 | } |
3370 | |
|
3371 | 0 | const int ith = params->ith; |
3372 | 0 | const int nth = params->nth; |
3373 | |
|
3374 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
3375 | 0 | const int nr = ggml_nrows(src0); |
3376 | |
|
3377 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
3378 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
3379 | |
|
3380 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
3381 | | |
3382 | | // rows per thread |
3383 | 0 | const int dr = (nr + nth - 1)/nth; |
3384 | | |
3385 | | // row range for this thread |
3386 | 0 | const int ir0 = dr*ith; |
3387 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
3388 | |
|
3389 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
3390 | 0 | ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o); |
3391 | 0 | ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o); |
3392 | |
|
3393 | 0 | if (!src1) { |
3394 | 0 | src0_p += swapped ? nc : 0; |
3395 | 0 | src1_p += swapped ? 0 : nc; |
3396 | 0 | } |
3397 | |
|
3398 | 0 | ggml_vec_geglu_erf_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
3399 | |
|
3400 | | #ifndef NDEBUG |
3401 | | for (int k = 0; k < nc; k++) { |
3402 | | const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
3403 | | const float v = GGML_FP16_TO_FP32(x); |
3404 | | GGML_UNUSED(v); |
3405 | | assert(!isnan(v)); |
3406 | | assert(!isinf(v)); |
3407 | | } |
3408 | | #endif |
3409 | 0 | } |
3410 | 0 | } |
3411 | | |
3412 | | static void ggml_compute_forward_geglu_erf( |
3413 | | const ggml_compute_params * params, |
3414 | 0 | ggml_tensor * dst) { |
3415 | |
|
3416 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3417 | |
|
3418 | 0 | switch (src0->type) { |
3419 | 0 | case GGML_TYPE_F32: |
3420 | 0 | { |
3421 | 0 | ggml_compute_forward_geglu_erf_f32(params, dst); |
3422 | 0 | } break; |
3423 | 0 | case GGML_TYPE_F16: |
3424 | 0 | { |
3425 | 0 | ggml_compute_forward_geglu_erf_f16(params, dst); |
3426 | 0 | } break; |
3427 | 0 | default: |
3428 | 0 | { |
3429 | 0 | GGML_ABORT("fatal error"); |
3430 | 0 | } |
3431 | 0 | } |
3432 | 0 | } |
3433 | | |
3434 | | // ggml_compute_forward_geglu_quick |
3435 | | |
3436 | | static void ggml_compute_forward_geglu_quick_f32( |
3437 | | const ggml_compute_params * params, |
3438 | 0 | ggml_tensor * dst) { |
3439 | |
|
3440 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3441 | 0 | const ggml_tensor * src1 = dst->src[1]; |
3442 | 0 | char * src0_d = (char *) src0->data; |
3443 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
3444 | 0 | const size_t src0_o = src0->nb[1]; |
3445 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
3446 | |
|
3447 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
3448 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
3449 | |
|
3450 | 0 | if (src1) { |
3451 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
3452 | 0 | GGML_ASSERT(src0->type == src1->type); |
3453 | 0 | } |
3454 | |
|
3455 | 0 | const int ith = params->ith; |
3456 | 0 | const int nth = params->nth; |
3457 | |
|
3458 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
3459 | 0 | const int nr = ggml_nrows(src0); |
3460 | |
|
3461 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
3462 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
3463 | |
|
3464 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
3465 | | |
3466 | | // rows per thread |
3467 | 0 | const int dr = (nr + nth - 1)/nth; |
3468 | | |
3469 | | // row range for this thread |
3470 | 0 | const int ir0 = dr*ith; |
3471 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
3472 | |
|
3473 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
3474 | 0 | float * src0_p = (float *) (src0_d + i1*src0_o); |
3475 | 0 | float * src1_p = (float *) (src1_d + i1*src1_o); |
3476 | |
|
3477 | 0 | if (!src1) { |
3478 | 0 | src0_p += swapped ? nc : 0; |
3479 | 0 | src1_p += swapped ? 0 : nc; |
3480 | 0 | } |
3481 | |
|
3482 | 0 | ggml_vec_geglu_quick_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
3483 | |
|
3484 | | #ifndef NDEBUG |
3485 | | for (int k = 0; k < nc; k++) { |
3486 | | const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
3487 | | GGML_UNUSED(x); |
3488 | | assert(!isnan(x)); |
3489 | | assert(!isinf(x)); |
3490 | | } |
3491 | | #endif |
3492 | 0 | } |
3493 | 0 | } |
3494 | | |
3495 | | static void ggml_compute_forward_geglu_quick_f16( |
3496 | | const ggml_compute_params * params, |
3497 | 0 | ggml_tensor * dst) { |
3498 | |
|
3499 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3500 | 0 | const ggml_tensor * src1 = dst->src[1]; |
3501 | 0 | char * src0_d = (char *) src0->data; |
3502 | 0 | char * src1_d = (char *) (src1 ? src1->data : src0->data); |
3503 | 0 | const size_t src0_o = src0->nb[1]; |
3504 | 0 | const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1]; |
3505 | |
|
3506 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src0)); |
3507 | 0 | GGML_ASSERT(ggml_is_contiguous_1(dst)); |
3508 | |
|
3509 | 0 | if (src1) { |
3510 | 0 | GGML_ASSERT(ggml_is_contiguous_1(src1)); |
3511 | 0 | GGML_ASSERT(src0->type == src1->type); |
3512 | 0 | } |
3513 | |
|
3514 | 0 | const int ith = params->ith; |
3515 | 0 | const int nth = params->nth; |
3516 | |
|
3517 | 0 | const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2; |
3518 | 0 | const int nr = ggml_nrows(src0); |
3519 | |
|
3520 | 0 | GGML_ASSERT(dst->ne[0] == nc); |
3521 | 0 | GGML_ASSERT(ggml_nrows(dst) == nr); |
3522 | |
|
3523 | 0 | const int32_t swapped = ggml_get_op_params_i32(dst, 1); |
3524 | | |
3525 | | // rows per thread |
3526 | 0 | const int dr = (nr + nth - 1)/nth; |
3527 | | |
3528 | | // row range for this thread |
3529 | 0 | const int ir0 = dr*ith; |
3530 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
3531 | |
|
3532 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
3533 | 0 | ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o); |
3534 | 0 | ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o); |
3535 | |
|
3536 | 0 | if (!src1) { |
3537 | 0 | src0_p += swapped ? nc : 0; |
3538 | 0 | src1_p += swapped ? 0 : nc; |
3539 | 0 | } |
3540 | |
|
3541 | 0 | ggml_vec_geglu_quick_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p); |
3542 | |
|
3543 | | #ifndef NDEBUG |
3544 | | for (int k = 0; k < nc; k++) { |
3545 | | const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k]; |
3546 | | const float v = GGML_FP16_TO_FP32(x); |
3547 | | GGML_UNUSED(v); |
3548 | | assert(!isnan(v)); |
3549 | | assert(!isinf(v)); |
3550 | | } |
3551 | | #endif |
3552 | 0 | } |
3553 | 0 | } |
3554 | | |
3555 | | static void ggml_compute_forward_geglu_quick( |
3556 | | const ggml_compute_params * params, |
3557 | 0 | ggml_tensor * dst) { |
3558 | |
|
3559 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3560 | |
|
3561 | 0 | switch (src0->type) { |
3562 | 0 | case GGML_TYPE_F32: |
3563 | 0 | { |
3564 | 0 | ggml_compute_forward_geglu_quick_f32(params, dst); |
3565 | 0 | } break; |
3566 | 0 | case GGML_TYPE_F16: |
3567 | 0 | { |
3568 | 0 | ggml_compute_forward_geglu_quick_f16(params, dst); |
3569 | 0 | } break; |
3570 | 0 | default: |
3571 | 0 | { |
3572 | 0 | GGML_ABORT("fatal error"); |
3573 | 0 | } |
3574 | 0 | } |
3575 | 0 | } |
3576 | | |
3577 | | // ggml_compute_forward_norm |
3578 | | |
3579 | | static void ggml_compute_forward_norm_f32( |
3580 | | const ggml_compute_params * params, |
3581 | 0 | ggml_tensor * dst) { |
3582 | |
|
3583 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3584 | |
|
3585 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
3586 | |
|
3587 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
3588 | |
|
3589 | 0 | const int ith = params->ith; |
3590 | 0 | const int nth = params->nth; |
3591 | |
|
3592 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
3593 | |
|
3594 | 0 | float eps; |
3595 | 0 | memcpy(&eps, dst->op_params, sizeof(float)); |
3596 | |
|
3597 | 0 | GGML_ASSERT(eps >= 0.0f); |
3598 | |
|
3599 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
3600 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
3601 | 0 | for (int64_t i01 = ith; i01 < ne01; i01 += nth) { |
3602 | 0 | const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); |
3603 | |
|
3604 | 0 | float sum = 0.0; |
3605 | 0 | ggml_vec_sum_f32(ne00, &sum, x); |
3606 | 0 | float mean = sum/ne00; |
3607 | |
|
3608 | 0 | float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); |
3609 | 0 | float variance = 0; |
3610 | |
|
3611 | | #ifdef GGML_USE_ACCELERATE |
3612 | | mean = -mean; |
3613 | | vDSP_vsadd(x, 1, &mean, y, 1, ne00); |
3614 | | vDSP_measqv(y, 1, &variance, ne00); |
3615 | | #else |
3616 | 0 | variance = ggml_vec_cvar_f32(ne00, y, x, mean); |
3617 | 0 | #endif //GGML_USE_ACCELERATE |
3618 | |
|
3619 | 0 | const float scale = 1.0f/sqrtf(variance + eps); |
3620 | 0 | ggml_vec_scale_f32(ne00, y, scale); |
3621 | 0 | } |
3622 | 0 | } |
3623 | 0 | } |
3624 | 0 | } |
3625 | | |
3626 | | void ggml_compute_forward_norm( |
3627 | | const ggml_compute_params * params, |
3628 | 0 | ggml_tensor * dst) { |
3629 | |
|
3630 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3631 | |
|
3632 | 0 | switch (src0->type) { |
3633 | 0 | case GGML_TYPE_F32: |
3634 | 0 | { |
3635 | 0 | ggml_compute_forward_norm_f32(params, dst); |
3636 | 0 | } break; |
3637 | 0 | default: |
3638 | 0 | { |
3639 | 0 | GGML_ABORT("fatal error"); |
3640 | 0 | } |
3641 | 0 | } |
3642 | 0 | } |
3643 | | |
3644 | | // ggml_compute_forward_group_rms_norm |
3645 | | |
3646 | | static void ggml_compute_forward_rms_norm_f32( |
3647 | | const ggml_compute_params * params, |
3648 | 0 | ggml_tensor * dst) { |
3649 | |
|
3650 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3651 | |
|
3652 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
3653 | |
|
3654 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
3655 | |
|
3656 | 0 | const int ith = params->ith; |
3657 | 0 | const int nth = params->nth; |
3658 | |
|
3659 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
3660 | |
|
3661 | 0 | float eps; |
3662 | 0 | memcpy(&eps, dst->op_params, sizeof(float)); |
3663 | |
|
3664 | 0 | GGML_ASSERT(eps >= 0.0f); |
3665 | | |
3666 | | // TODO: optimize |
3667 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
3668 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
3669 | 0 | for (int64_t i01 = ith; i01 < ne01; i01 += nth) { |
3670 | 0 | const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); |
3671 | |
|
3672 | 0 | ggml_float sum = 0.0; |
3673 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
3674 | 0 | sum += (ggml_float)(x[i00] * x[i00]); |
3675 | 0 | } |
3676 | |
|
3677 | 0 | const float mean = sum/ne00; |
3678 | |
|
3679 | 0 | float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); |
3680 | |
|
3681 | 0 | memcpy(y, x, ne00 * sizeof(float)); |
3682 | | // for (int i00 = 0; i00 < ne00; i00++) { |
3683 | | // y[i00] = x[i00]; |
3684 | | // } |
3685 | |
|
3686 | 0 | const float scale = 1.0f/sqrtf(mean + eps); |
3687 | | |
3688 | | // if you hit this, likely you got an inf somewhere earlier |
3689 | 0 | assert(scale > 0.0f); |
3690 | |
|
3691 | 0 | ggml_vec_scale_f32(ne00, y, scale); |
3692 | 0 | } |
3693 | 0 | } |
3694 | 0 | } |
3695 | 0 | } |
3696 | | |
3697 | | void ggml_compute_forward_rms_norm( |
3698 | | const ggml_compute_params * params, |
3699 | 0 | ggml_tensor * dst) { |
3700 | |
|
3701 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3702 | |
|
3703 | 0 | switch (src0->type) { |
3704 | 0 | case GGML_TYPE_F32: |
3705 | 0 | { |
3706 | 0 | ggml_compute_forward_rms_norm_f32(params, dst); |
3707 | 0 | } break; |
3708 | 0 | default: |
3709 | 0 | { |
3710 | 0 | GGML_ABORT("fatal error"); |
3711 | 0 | } |
3712 | 0 | } |
3713 | 0 | } |
3714 | | |
3715 | | static void ggml_compute_forward_rms_norm_back_f32( |
3716 | | const ggml_compute_params * params, |
3717 | 0 | ggml_tensor * dst) { |
3718 | |
|
3719 | 0 | const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output |
3720 | 0 | const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass |
3721 | |
|
3722 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1)); |
3723 | |
|
3724 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
3725 | 0 | GGML_ASSERT(src1->nb[0] == sizeof(float)); |
3726 | |
|
3727 | 0 | const int ith = params->ith; |
3728 | 0 | const int nth = params->nth; |
3729 | |
|
3730 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
3731 | |
|
3732 | 0 | float eps; |
3733 | 0 | memcpy(&eps, dst->op_params, sizeof(float)); |
3734 | | |
3735 | | // TODO: optimize |
3736 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
3737 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
3738 | 0 | for (int64_t i01 = ith; i01 < ne01; i01 += nth) { |
3739 | | // src1 is same shape as src0 => same indices |
3740 | 0 | const int64_t i11 = i01; |
3741 | 0 | const int64_t i12 = i02; |
3742 | 0 | const int64_t i13 = i03; |
3743 | |
|
3744 | 0 | const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); |
3745 | 0 | const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13); |
3746 | |
|
3747 | 0 | ggml_float sum_xx = 0.0; |
3748 | 0 | ggml_float sum_xdz = 0.0; |
3749 | |
|
3750 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
3751 | 0 | sum_xx += (ggml_float)(x[i00] * x[i00]); |
3752 | 0 | sum_xdz += (ggml_float)(x[i00] * dz[i00]); |
3753 | 0 | } |
3754 | | |
3755 | | //const float mean = (float)(sum_xx)/ne00; |
3756 | 0 | const float mean_eps = (float)(sum_xx)/ne00 + eps; |
3757 | 0 | const float sum_eps = (float)(sum_xx) + eps*ne00; |
3758 | | //const float mean_xdz = (float)(sum_xdz)/ne00; |
3759 | | // we could cache rms from forward pass to improve performance. |
3760 | | // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms. |
3761 | | //const float rms = sqrtf(mean_eps); |
3762 | 0 | const float rrms = 1.0f / sqrtf(mean_eps); |
3763 | | //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3) |
3764 | |
|
3765 | 0 | { |
3766 | | // z = rms_norm(x) |
3767 | | // |
3768 | | // rms_norm(src1) = |
3769 | | // scale( |
3770 | | // src1, |
3771 | | // div( |
3772 | | // 1, |
3773 | | // sqrt( |
3774 | | // add( |
3775 | | // scale( |
3776 | | // sum( |
3777 | | // sqr( |
3778 | | // src1)), |
3779 | | // (1.0/N)), |
3780 | | // eps)))); |
3781 | | |
3782 | | // postorder: |
3783 | | // ## op args grad |
3784 | | // 00 param src1 grad[#00] |
3785 | | // 01 const 1 |
3786 | | // 02 sqr (#00) grad[#02] |
3787 | | // 03 sum (#02) grad[#03] |
3788 | | // 04 const 1/N |
3789 | | // 05 scale (#03, #04) grad[#05] |
3790 | | // 06 const eps |
3791 | | // 07 add (#05, #06) grad[#07] |
3792 | | // 08 sqrt (#07) grad[#08] |
3793 | | // 09 div (#01,#08) grad[#09] |
3794 | | // 10 scale (#00,#09) grad[#10] |
3795 | | // |
3796 | | // backward pass, given grad[#10] |
3797 | | // #10: scale |
3798 | | // grad[#00] += scale(grad[#10],#09) |
3799 | | // grad[#09] += sum(mul(grad[#10],#00)) |
3800 | | // #09: div |
3801 | | // grad[#08] += neg(mul(grad[#09], div(#09,#08))) |
3802 | | // #08: sqrt |
3803 | | // grad[#07] += mul(grad[#08], div(0.5, #08)) |
3804 | | // #07: add |
3805 | | // grad[#05] += grad[#07] |
3806 | | // #05: scale |
3807 | | // grad[#03] += scale(grad[#05],#04) |
3808 | | // #03: sum |
3809 | | // grad[#02] += repeat(grad[#03], #02) |
3810 | | // #02: |
3811 | | // grad[#00] += scale(mul(#00, grad[#02]), 2.0) |
3812 | | // |
3813 | | // substitute and simplify: |
3814 | | // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0) |
3815 | | // grad[#02] = repeat(grad[#03], #02) |
3816 | | // grad[#02] = repeat(scale(grad[#05],#04), #02) |
3817 | | // grad[#02] = repeat(scale(grad[#07],#04), #02) |
3818 | | // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02) |
3819 | | // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02) |
3820 | | // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02) |
3821 | | // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02) |
3822 | | // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02) |
3823 | | // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02) |
3824 | | // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02) |
3825 | | // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0) |
3826 | | // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0) |
3827 | | // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0) |
3828 | | // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N))) |
3829 | | // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N)) |
3830 | | // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N)) |
3831 | | // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N)) |
3832 | | // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps)) |
3833 | | // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps))) |
3834 | | // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps)) |
3835 | | // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps)) |
3836 | | // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps)) |
3837 | | // a = b*c + d*e |
3838 | | // a = b*c*f/f + d*e*f/f |
3839 | | // a = (b*c*f + d*e*f)*(1/f) |
3840 | | // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c)) |
3841 | | // a = (b + d*e/c)*c |
3842 | | // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps) |
3843 | | // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms |
3844 | | // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms |
3845 | | // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms |
3846 | | // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms |
3847 | | // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms |
3848 | | // a = (dz + x*div(-mean_xdz,mean_eps))*rrms |
3849 | | // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms) |
3850 | | // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) |
3851 | | // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) |
3852 | 0 | } |
3853 | | // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) |
3854 | | // post-order: |
3855 | | // dx := x |
3856 | | // dx := scale(dx,-mean_xdz/mean_eps) |
3857 | | // dx := add(dx, dz) |
3858 | | // dx := scale(dx, rrms) |
3859 | 0 | float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); |
3860 | | |
3861 | | // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps) |
3862 | 0 | ggml_vec_cpy_f32 (ne00, dx, x); |
3863 | | // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps); |
3864 | 0 | ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps); |
3865 | 0 | ggml_vec_acc_f32 (ne00, dx, dz); |
3866 | 0 | ggml_vec_scale_f32(ne00, dx, rrms); |
3867 | 0 | } |
3868 | 0 | } |
3869 | 0 | } |
3870 | 0 | } |
3871 | | |
3872 | | void ggml_compute_forward_rms_norm_back( |
3873 | | const ggml_compute_params * params, |
3874 | 0 | ggml_tensor * dst) { |
3875 | |
|
3876 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3877 | |
|
3878 | 0 | switch (src0->type) { |
3879 | 0 | case GGML_TYPE_F32: |
3880 | 0 | { |
3881 | 0 | ggml_compute_forward_rms_norm_back_f32(params, dst); |
3882 | 0 | } break; |
3883 | 0 | default: |
3884 | 0 | { |
3885 | 0 | GGML_ABORT("fatal error"); |
3886 | 0 | } |
3887 | 0 | } |
3888 | 0 | } |
3889 | | |
3890 | | // ggml_compute_forward_group_norm |
3891 | | |
3892 | | static void ggml_compute_forward_group_norm_f32( |
3893 | | const ggml_compute_params * params, |
3894 | 0 | ggml_tensor * dst) { |
3895 | |
|
3896 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3897 | |
|
3898 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
3899 | |
|
3900 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
3901 | |
|
3902 | 0 | const int ith = params->ith; |
3903 | 0 | const int nth = params->nth; |
3904 | |
|
3905 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
3906 | | |
3907 | | // TODO: optimize |
3908 | |
|
3909 | 0 | float eps; |
3910 | 0 | memcpy(&eps, dst->op_params + 1, sizeof(float)); |
3911 | |
|
3912 | 0 | int n_channels = src0->ne[2]; |
3913 | 0 | int n_groups = dst->op_params[0]; |
3914 | 0 | int n_channels_per_group = (n_channels + n_groups - 1) / n_groups; |
3915 | 0 | for (int i = ith; i < n_groups; i += nth) { |
3916 | 0 | int start = i * n_channels_per_group; |
3917 | 0 | int end = start + n_channels_per_group; |
3918 | 0 | if (end > n_channels) { |
3919 | 0 | end = n_channels; |
3920 | 0 | } |
3921 | 0 | int step = end - start; |
3922 | |
|
3923 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
3924 | 0 | ggml_float sum = 0.0; |
3925 | 0 | for (int64_t i02 = start; i02 < end; i02++) { |
3926 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
3927 | 0 | const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); |
3928 | |
|
3929 | 0 | ggml_float sumr = 0.0; |
3930 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
3931 | 0 | sumr += (ggml_float)x[i00]; |
3932 | 0 | } |
3933 | 0 | sum += sumr; |
3934 | 0 | } |
3935 | 0 | } |
3936 | 0 | const float mean = sum / (ne00 * ne01 * step); |
3937 | |
|
3938 | 0 | ggml_float sum2 = 0.0; |
3939 | 0 | for (int64_t i02 = start; i02 < end; i02++) { |
3940 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
3941 | 0 | const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); |
3942 | |
|
3943 | 0 | float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3); |
3944 | |
|
3945 | 0 | ggml_float sumr = 0.0; |
3946 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
3947 | 0 | float v = x[i00] - mean; |
3948 | 0 | y[i00] = v; |
3949 | 0 | sumr += (ggml_float)(v * v); |
3950 | 0 | } |
3951 | 0 | sum2 += sumr; |
3952 | 0 | } |
3953 | 0 | } |
3954 | 0 | const float variance = sum2 / (ne00 * ne01 * step); |
3955 | 0 | const float scale = 1.0f / sqrtf(variance + eps); |
3956 | |
|
3957 | 0 | for (int64_t i02 = start; i02 < end; i02++) { |
3958 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
3959 | 0 | float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3); |
3960 | 0 | ggml_vec_scale_f32(ne00, y, scale); |
3961 | 0 | } |
3962 | 0 | } |
3963 | 0 | } |
3964 | 0 | } |
3965 | 0 | } |
3966 | | |
3967 | | void ggml_compute_forward_group_norm( |
3968 | | const ggml_compute_params * params, |
3969 | 0 | ggml_tensor * dst) { |
3970 | |
|
3971 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3972 | |
|
3973 | 0 | switch (src0->type) { |
3974 | 0 | case GGML_TYPE_F32: |
3975 | 0 | { |
3976 | 0 | ggml_compute_forward_group_norm_f32(params, dst); |
3977 | 0 | } break; |
3978 | 0 | default: |
3979 | 0 | { |
3980 | 0 | GGML_ABORT("fatal error"); |
3981 | 0 | } |
3982 | 0 | } |
3983 | 0 | } |
3984 | | |
3985 | | // ggml_compute_forward_l2_norm |
3986 | | |
3987 | | static void ggml_compute_forward_l2_norm_f32( |
3988 | | const ggml_compute_params * params, |
3989 | 0 | ggml_tensor * dst) { |
3990 | |
|
3991 | 0 | const ggml_tensor * src0 = dst->src[0]; |
3992 | |
|
3993 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
3994 | |
|
3995 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
3996 | |
|
3997 | 0 | const int ith = params->ith; |
3998 | 0 | const int nth = params->nth; |
3999 | |
|
4000 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
4001 | |
|
4002 | 0 | float eps; |
4003 | 0 | memcpy(&eps, dst->op_params, sizeof(float)); |
4004 | |
|
4005 | 0 | GGML_ASSERT(eps >= 0.0f); |
4006 | | |
4007 | | // TODO: optimize |
4008 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
4009 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
4010 | 0 | for (int64_t i01 = ith; i01 < ne01; i01 += nth) { |
4011 | 0 | const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); |
4012 | |
|
4013 | 0 | ggml_float sum = 0.0; |
4014 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
4015 | 0 | sum += (ggml_float)(x[i00] * x[i00]); |
4016 | 0 | } |
4017 | |
|
4018 | 0 | float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); |
4019 | |
|
4020 | 0 | memcpy(y, x, ne00 * sizeof(float)); |
4021 | |
|
4022 | 0 | const float scale = 1.0f/fmaxf(sqrtf(sum), eps); |
4023 | |
|
4024 | 0 | ggml_vec_scale_f32(ne00, y, scale); |
4025 | 0 | } |
4026 | 0 | } |
4027 | 0 | } |
4028 | 0 | } |
4029 | | |
4030 | | void ggml_compute_forward_l2_norm( |
4031 | | const ggml_compute_params * params, |
4032 | 0 | ggml_tensor * dst) { |
4033 | |
|
4034 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4035 | |
|
4036 | 0 | switch (src0->type) { |
4037 | 0 | case GGML_TYPE_F32: |
4038 | 0 | { |
4039 | 0 | ggml_compute_forward_l2_norm_f32(params, dst); |
4040 | 0 | } break; |
4041 | 0 | default: |
4042 | 0 | { |
4043 | 0 | GGML_ABORT("fatal error"); |
4044 | 0 | } |
4045 | 0 | } |
4046 | 0 | } |
4047 | | |
4048 | | // ggml_compute_forward_out_prod |
4049 | | |
4050 | | static void ggml_compute_forward_out_prod_f32( |
4051 | | const ggml_compute_params * params, |
4052 | 0 | ggml_tensor * dst) { |
4053 | |
|
4054 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4055 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4056 | |
|
4057 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
4058 | |
|
4059 | 0 | GGML_ASSERT(dst->type == GGML_TYPE_F32); |
4060 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F32); |
4061 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
4062 | |
|
4063 | 0 | const int ith = params->ith; |
4064 | 0 | const int nth = params->nth; |
4065 | |
|
4066 | 0 | GGML_ASSERT(ne0 == ne00); |
4067 | 0 | GGML_ASSERT(ne1 == ne10); |
4068 | 0 | GGML_ASSERT(ne2 == ne12); |
4069 | 0 | GGML_ASSERT(ne3 == ne13); |
4070 | |
|
4071 | 0 | GGML_ASSERT(ne2 % ne02 == 0); |
4072 | 0 | GGML_ASSERT(ne3 % ne03 == 0); |
4073 | | |
4074 | | // we don't support permuted src0 or src1 |
4075 | 0 | GGML_ASSERT(nb00 == sizeof(float)); |
4076 | | |
4077 | | // dst cannot be transposed or permuted |
4078 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
4079 | | // GGML_ASSERT(nb0 <= nb1); |
4080 | | // GGML_ASSERT(nb1 <= nb2); |
4081 | | // GGML_ASSERT(nb2 <= nb3); |
4082 | | |
4083 | | // nb01 >= nb00 - src0 is not transposed |
4084 | | // compute by src0 rows |
4085 | |
|
4086 | 0 | if (ith == 0) { |
4087 | 0 | ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0); |
4088 | 0 | } |
4089 | 0 | ggml_barrier(params->threadpool); |
4090 | | |
4091 | | // dst[:,:,:,:] = 0 |
4092 | | // for i2,i3: |
4093 | | // for i1: |
4094 | | // for i01: |
4095 | | // for i0: |
4096 | | // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] |
4097 | | |
4098 | | // parallelize by last three dimensions |
4099 | | |
4100 | | // total rows in dst |
4101 | 0 | const int64_t nr = ne1*ne2*ne3; |
4102 | | |
4103 | | // rows per thread |
4104 | 0 | const int64_t dr = (nr + nth - 1)/nth; |
4105 | | |
4106 | | // row range for this thread |
4107 | 0 | const int64_t ir0 = dr*ith; |
4108 | 0 | const int64_t ir1 = MIN(ir0 + dr, nr); |
4109 | | |
4110 | | // block-tiling attempt |
4111 | 0 | const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32); |
4112 | 0 | const int64_t blck_1 = 16; |
4113 | | |
4114 | | // dps == dst per src0, used for group query attention |
4115 | 0 | const int64_t dps2 = ne2 / ne02; |
4116 | 0 | const int64_t dps3 = ne3 / ne03; |
4117 | |
|
4118 | 0 | for (int64_t bir = ir0; bir < ir1; bir += blck_1) { |
4119 | 0 | const int64_t bir1 = MIN(bir + blck_1, ir1); |
4120 | 0 | for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) { |
4121 | 0 | const int64_t bne01 = MIN(bi01 + blck_0, ne01); |
4122 | 0 | for (int64_t ir = bir; ir < bir1; ++ir) { |
4123 | | // dst indices |
4124 | 0 | const int64_t i3 = ir/(ne2*ne1); |
4125 | 0 | const int64_t i2 = (ir - i3*ne2*ne1)/ne1; |
4126 | 0 | const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1); |
4127 | |
|
4128 | 0 | const int64_t i02 = i2 / dps2; |
4129 | 0 | const int64_t i03 = i3 / dps3; |
4130 | | |
4131 | | //const int64_t i10 = i1; |
4132 | 0 | const int64_t i12 = i2; |
4133 | 0 | const int64_t i13 = i3; |
4134 | |
|
4135 | 0 | #if GGML_VEC_MAD_UNROLL > 2 |
4136 | 0 | const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL); |
4137 | 0 | for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) { |
4138 | 0 | const int64_t i11 = i01; |
4139 | |
|
4140 | 0 | float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); |
4141 | 0 | float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); |
4142 | 0 | float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); |
4143 | |
|
4144 | 0 | ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1); |
4145 | 0 | } |
4146 | 0 | for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) { |
4147 | 0 | const int64_t i11 = i01; |
4148 | |
|
4149 | 0 | float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); |
4150 | 0 | float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); |
4151 | 0 | float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); |
4152 | |
|
4153 | 0 | ggml_vec_mad_f32(ne0, d, s0, *s1); |
4154 | 0 | } |
4155 | | #else |
4156 | | for (int64_t i01 = bi01; i01 < bne01; ++i01) { |
4157 | | const int64_t i11 = i01; |
4158 | | |
4159 | | float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); |
4160 | | float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); |
4161 | | float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); |
4162 | | |
4163 | | ggml_vec_mad_f32(ne0, d, s0, *s1); |
4164 | | } |
4165 | | #endif |
4166 | 0 | } |
4167 | 0 | } |
4168 | 0 | } |
4169 | 0 | } |
4170 | | |
4171 | | static void ggml_compute_forward_out_prod_q_f32( |
4172 | | const ggml_compute_params * params, |
4173 | 0 | ggml_tensor * dst) { |
4174 | |
|
4175 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4176 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4177 | |
|
4178 | 0 | GGML_TENSOR_BINARY_OP_LOCALS; |
4179 | |
|
4180 | 0 | const int ith = params->ith; |
4181 | 0 | const int nth = params->nth; |
4182 | |
|
4183 | 0 | const ggml_type type = src0->type; |
4184 | 0 | ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; |
4185 | |
|
4186 | 0 | GGML_ASSERT(ne02 == ne12); |
4187 | 0 | GGML_ASSERT(ne03 == ne13); |
4188 | 0 | GGML_ASSERT(ne2 == ne12); |
4189 | 0 | GGML_ASSERT(ne3 == ne13); |
4190 | | |
4191 | | // we don't support permuted src0 dim0 |
4192 | 0 | GGML_ASSERT(nb00 == ggml_type_size(type)); |
4193 | | |
4194 | | // dst dim0 cannot be transposed or permuted |
4195 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
4196 | | // GGML_ASSERT(nb0 <= nb1); |
4197 | | // GGML_ASSERT(nb1 <= nb2); |
4198 | | // GGML_ASSERT(nb2 <= nb3); |
4199 | |
|
4200 | 0 | GGML_ASSERT(ne0 == ne00); |
4201 | 0 | GGML_ASSERT(ne1 == ne10); |
4202 | 0 | GGML_ASSERT(ne2 == ne02); |
4203 | 0 | GGML_ASSERT(ne3 == ne03); |
4204 | | |
4205 | | // nb01 >= nb00 - src0 is not transposed |
4206 | | // compute by src0 rows |
4207 | |
|
4208 | 0 | if (ith == 0) { |
4209 | 0 | ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0); |
4210 | 0 | } |
4211 | 0 | ggml_barrier(params->threadpool); |
4212 | | |
4213 | | // parallelize by last three dimensions |
4214 | | |
4215 | | // total rows in dst |
4216 | 0 | const int64_t nr = ne1*ne2*ne3; |
4217 | | |
4218 | | // rows per thread |
4219 | 0 | const int64_t dr = (nr + nth - 1)/nth; |
4220 | | |
4221 | | // row range for this thread |
4222 | 0 | const int64_t ir0 = dr*ith; |
4223 | 0 | const int64_t ir1 = MIN(ir0 + dr, nr); |
4224 | | |
4225 | | // dst[:,:,:,:] = 0 |
4226 | | // for i2,i3: |
4227 | | // for i1: |
4228 | | // for i01: |
4229 | | // for i0: |
4230 | | // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] |
4231 | |
|
4232 | 0 | float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith; |
4233 | |
|
4234 | 0 | for (int64_t ir = ir0; ir < ir1; ++ir) { |
4235 | | // dst indices |
4236 | 0 | const int64_t i3 = ir/(ne2*ne1); |
4237 | 0 | const int64_t i2 = (ir - i3*ne2*ne1)/ne1; |
4238 | 0 | const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1); |
4239 | |
|
4240 | 0 | const int64_t i02 = i2; |
4241 | 0 | const int64_t i03 = i3; |
4242 | | |
4243 | | //const int64_t i10 = i1; |
4244 | 0 | const int64_t i12 = i2; |
4245 | 0 | const int64_t i13 = i3; |
4246 | |
|
4247 | 0 | for (int64_t i01 = 0; i01 < ne01; ++i01) { |
4248 | 0 | const int64_t i11 = i01; |
4249 | |
|
4250 | 0 | float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); |
4251 | 0 | float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); |
4252 | 0 | float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); |
4253 | |
|
4254 | 0 | dequantize_row_q(s0, wdata, ne0); |
4255 | 0 | ggml_vec_mad_f32(ne0, d, wdata, *s1); |
4256 | 0 | } |
4257 | 0 | } |
4258 | 0 | } |
4259 | | |
4260 | | void ggml_compute_forward_out_prod( |
4261 | | const ggml_compute_params * params, |
4262 | 0 | ggml_tensor * dst) { |
4263 | |
|
4264 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4265 | |
|
4266 | 0 | switch (src0->type) { |
4267 | 0 | case GGML_TYPE_Q4_0: |
4268 | 0 | case GGML_TYPE_Q4_1: |
4269 | 0 | case GGML_TYPE_Q5_0: |
4270 | 0 | case GGML_TYPE_Q5_1: |
4271 | 0 | case GGML_TYPE_Q8_0: |
4272 | 0 | case GGML_TYPE_MXFP4: |
4273 | 0 | case GGML_TYPE_Q2_K: |
4274 | 0 | case GGML_TYPE_Q3_K: |
4275 | 0 | case GGML_TYPE_Q4_K: |
4276 | 0 | case GGML_TYPE_Q5_K: |
4277 | 0 | case GGML_TYPE_Q6_K: |
4278 | 0 | case GGML_TYPE_TQ1_0: |
4279 | 0 | case GGML_TYPE_TQ2_0: |
4280 | 0 | case GGML_TYPE_IQ2_XXS: |
4281 | 0 | case GGML_TYPE_IQ2_XS: |
4282 | 0 | case GGML_TYPE_IQ3_XXS: |
4283 | 0 | case GGML_TYPE_IQ1_S: |
4284 | 0 | case GGML_TYPE_IQ1_M: |
4285 | 0 | case GGML_TYPE_IQ4_NL: |
4286 | 0 | case GGML_TYPE_IQ4_XS: |
4287 | 0 | case GGML_TYPE_IQ3_S: |
4288 | 0 | case GGML_TYPE_IQ2_S: |
4289 | 0 | { |
4290 | 0 | ggml_compute_forward_out_prod_q_f32(params, dst); |
4291 | 0 | } break; |
4292 | 0 | case GGML_TYPE_F16: |
4293 | 0 | { |
4294 | 0 | GGML_ABORT("fatal error"); // todo |
4295 | | // ggml_compute_forward_out_prod_f16_f32(params, dst); |
4296 | 0 | } |
4297 | 0 | case GGML_TYPE_F32: |
4298 | 0 | { |
4299 | 0 | ggml_compute_forward_out_prod_f32(params, dst); |
4300 | 0 | } break; |
4301 | 0 | default: |
4302 | 0 | { |
4303 | 0 | GGML_ABORT("fatal error"); |
4304 | 0 | } |
4305 | 0 | } |
4306 | 0 | } |
4307 | | |
4308 | | // ggml_compute_forward_scale |
4309 | | |
4310 | | static void ggml_compute_forward_scale_f32( |
4311 | | const ggml_compute_params * params, |
4312 | 0 | ggml_tensor * dst) { |
4313 | |
|
4314 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4315 | |
|
4316 | 0 | GGML_ASSERT(ggml_is_contiguous(src0)); |
4317 | 0 | GGML_ASSERT(ggml_is_contiguous(dst)); |
4318 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
4319 | |
|
4320 | 0 | float s; // scale factor |
4321 | 0 | float b; // bias |
4322 | |
|
4323 | 0 | memcpy(&s, (float *) dst->op_params + 0, sizeof(float)); |
4324 | 0 | memcpy(&b, (float *) dst->op_params + 1, sizeof(float)); |
4325 | |
|
4326 | 0 | const int ith = params->ith; |
4327 | 0 | const int nth = params->nth; |
4328 | |
|
4329 | 0 | const int nc = src0->ne[0]; |
4330 | 0 | const int nr = ggml_nrows(src0); |
4331 | | |
4332 | | // rows per thread |
4333 | 0 | const int dr = (nr + nth - 1)/nth; |
4334 | | |
4335 | | // row range for this thread |
4336 | 0 | const int ir0 = dr*ith; |
4337 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
4338 | |
|
4339 | 0 | const size_t nb01 = src0->nb[1]; |
4340 | |
|
4341 | 0 | const size_t nb1 = dst->nb[1]; |
4342 | |
|
4343 | 0 | if (b == 0.0f) { |
4344 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
4345 | 0 | if (dst->data != src0->data) { |
4346 | | // src0 is same shape as dst => same indices |
4347 | | // TODO: add x parameter to ggml_vec_scale_f32 and remove this memcpy |
4348 | 0 | memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float)); |
4349 | 0 | } |
4350 | 0 | ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), s); |
4351 | 0 | } |
4352 | 0 | } else { |
4353 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
4354 | 0 | ggml_vec_mad1_f32(nc, |
4355 | 0 | (float *) ((char *) dst->data + i1*nb1), |
4356 | 0 | (float *) ((char *) src0->data + i1*nb1), |
4357 | 0 | s, b); |
4358 | 0 | } |
4359 | 0 | } |
4360 | 0 | } |
4361 | | |
4362 | | void ggml_compute_forward_scale( |
4363 | | const ggml_compute_params * params, |
4364 | 0 | ggml_tensor * dst) { |
4365 | |
|
4366 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4367 | |
|
4368 | 0 | switch (src0->type) { |
4369 | 0 | case GGML_TYPE_F32: |
4370 | 0 | { |
4371 | 0 | ggml_compute_forward_scale_f32(params, dst); |
4372 | 0 | } break; |
4373 | 0 | default: |
4374 | 0 | { |
4375 | 0 | GGML_ABORT("fatal error"); |
4376 | 0 | } |
4377 | 0 | } |
4378 | 0 | } |
4379 | | |
4380 | | // ggml_compute_forward_set |
4381 | | |
4382 | | static void ggml_compute_forward_set_f32( |
4383 | | const ggml_compute_params * params, |
4384 | 0 | ggml_tensor * dst) { |
4385 | |
|
4386 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4387 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4388 | |
|
4389 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
4390 | 0 | GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); |
4391 | | |
4392 | | // view src0 and dst with these strides and data offset inbytes during set |
4393 | | // nb0 is implicitly element_size because src0 and dst are contiguous |
4394 | 0 | size_t nb1 = ((int32_t *) dst->op_params)[0]; |
4395 | 0 | size_t nb2 = ((int32_t *) dst->op_params)[1]; |
4396 | 0 | size_t nb3 = ((int32_t *) dst->op_params)[2]; |
4397 | 0 | size_t offset = ((int32_t *) dst->op_params)[3]; |
4398 | 0 | bool inplace = (bool) ((int32_t *) dst->op_params)[4]; |
4399 | |
|
4400 | 0 | if (!inplace) { |
4401 | 0 | if (params->ith == 0) { |
4402 | | // memcpy needs to be synchronized across threads to avoid race conditions. |
4403 | | // => do it in INIT phase |
4404 | 0 | memcpy( |
4405 | 0 | ((char *) dst->data), |
4406 | 0 | ((char *) src0->data), |
4407 | 0 | ggml_nbytes(dst)); |
4408 | 0 | } |
4409 | 0 | ggml_barrier(params->threadpool); |
4410 | 0 | } |
4411 | |
|
4412 | 0 | const int ith = params->ith; |
4413 | 0 | const int nth = params->nth; |
4414 | |
|
4415 | 0 | const int nr = ggml_nrows(src1); |
4416 | 0 | const int nc = src1->ne[0]; |
4417 | |
|
4418 | 0 | GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) |
4419 | 0 | GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) |
4420 | | |
4421 | | // src0 and dst as viewed during set |
4422 | 0 | const size_t nb0 = ggml_element_size(src0); |
4423 | |
|
4424 | 0 | const int im0 = (ne10 == 0 ? 0 : ne10-1); |
4425 | 0 | const int im1 = (ne11 == 0 ? 0 : ne11-1); |
4426 | 0 | const int im2 = (ne12 == 0 ? 0 : ne12-1); |
4427 | 0 | const int im3 = (ne13 == 0 ? 0 : ne13-1); |
4428 | |
|
4429 | 0 | GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst)); |
4430 | |
|
4431 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
4432 | | |
4433 | | // rows per thread |
4434 | 0 | const int dr = (nr + nth - 1)/nth; |
4435 | | |
4436 | | // row range for this thread |
4437 | 0 | const int ir0 = dr*ith; |
4438 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
4439 | |
|
4440 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
4441 | | // src0 and dst are viewed with shape of src1 and offset |
4442 | | // => same indices |
4443 | 0 | const int i3 = ir/(ne12*ne11); |
4444 | 0 | const int i2 = (ir - i3*ne12*ne11)/ne11; |
4445 | 0 | const int i1 = (ir - i3*ne12*ne11 - i2*ne11); |
4446 | |
|
4447 | 0 | ggml_vec_cpy_f32(nc, |
4448 | 0 | (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), |
4449 | 0 | (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); |
4450 | 0 | } |
4451 | 0 | } |
4452 | | |
4453 | | static void ggml_compute_forward_set_i32( |
4454 | | const ggml_compute_params * params, |
4455 | 0 | ggml_tensor * dst) { |
4456 | |
|
4457 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4458 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4459 | |
|
4460 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
4461 | 0 | GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); |
4462 | | |
4463 | | // view src0 and dst with these strides and data offset inbytes during set |
4464 | | // nb0 is implicitly element_size because src0 and dst are contiguous |
4465 | 0 | size_t nb1 = ((int32_t *) dst->op_params)[0]; |
4466 | 0 | size_t nb2 = ((int32_t *) dst->op_params)[1]; |
4467 | 0 | size_t nb3 = ((int32_t *) dst->op_params)[2]; |
4468 | 0 | size_t offset = ((int32_t *) dst->op_params)[3]; |
4469 | 0 | bool inplace = (bool) ((int32_t *) dst->op_params)[4]; |
4470 | |
|
4471 | 0 | if (!inplace) { |
4472 | 0 | if (params->ith == 0) { |
4473 | | // memcpy needs to be synchronized across threads to avoid race conditions. |
4474 | | // => do it in INIT phase |
4475 | 0 | memcpy( |
4476 | 0 | ((char *) dst->data), |
4477 | 0 | ((char *) src0->data), |
4478 | 0 | ggml_nbytes(dst)); |
4479 | 0 | } |
4480 | 0 | ggml_barrier(params->threadpool); |
4481 | 0 | } |
4482 | |
|
4483 | 0 | const int ith = params->ith; |
4484 | 0 | const int nth = params->nth; |
4485 | |
|
4486 | 0 | const int nr = ggml_nrows(src1); |
4487 | 0 | const int nc = src1->ne[0]; |
4488 | |
|
4489 | 0 | GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) |
4490 | 0 | GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) |
4491 | | |
4492 | | // src0 and dst as viewed during set |
4493 | 0 | const size_t nb0 = ggml_element_size(src0); |
4494 | |
|
4495 | 0 | const int im0 = (ne10 == 0 ? 0 : ne10-1); |
4496 | 0 | const int im1 = (ne11 == 0 ? 0 : ne11-1); |
4497 | 0 | const int im2 = (ne12 == 0 ? 0 : ne12-1); |
4498 | 0 | const int im3 = (ne13 == 0 ? 0 : ne13-1); |
4499 | |
|
4500 | 0 | GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst)); |
4501 | |
|
4502 | 0 | GGML_ASSERT(nb10 == sizeof(int32_t)); |
4503 | | |
4504 | | // rows per thread |
4505 | 0 | const int dr = (nr + nth - 1)/nth; |
4506 | | |
4507 | | // row range for this thread |
4508 | 0 | const int ir0 = dr*ith; |
4509 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
4510 | |
|
4511 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
4512 | | // src0 and dst are viewed with shape of src1 and offset |
4513 | | // => same indices |
4514 | 0 | const int i3 = ir/(ne12*ne11); |
4515 | 0 | const int i2 = (ir - i3*ne12*ne11)/ne11; |
4516 | 0 | const int i1 = (ir - i3*ne12*ne11 - i2*ne11); |
4517 | |
|
4518 | 0 | ggml_vec_cpy_i32(nc, |
4519 | 0 | (int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), |
4520 | 0 | (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); |
4521 | 0 | } |
4522 | 0 | } |
4523 | | |
4524 | | void ggml_compute_forward_set( |
4525 | | const ggml_compute_params * params, |
4526 | 0 | ggml_tensor * dst) { |
4527 | |
|
4528 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4529 | |
|
4530 | 0 | switch (src0->type) { |
4531 | 0 | case GGML_TYPE_F32: |
4532 | 0 | { |
4533 | 0 | ggml_compute_forward_set_f32(params, dst); |
4534 | 0 | } break; |
4535 | 0 | case GGML_TYPE_I32: |
4536 | 0 | { |
4537 | 0 | ggml_compute_forward_set_i32(params, dst); |
4538 | 0 | } break; |
4539 | 0 | case GGML_TYPE_F16: |
4540 | 0 | case GGML_TYPE_BF16: |
4541 | 0 | case GGML_TYPE_Q4_0: |
4542 | 0 | case GGML_TYPE_Q4_1: |
4543 | 0 | case GGML_TYPE_Q5_0: |
4544 | 0 | case GGML_TYPE_Q5_1: |
4545 | 0 | case GGML_TYPE_Q8_0: |
4546 | 0 | case GGML_TYPE_Q8_1: |
4547 | 0 | case GGML_TYPE_MXFP4: |
4548 | 0 | case GGML_TYPE_Q2_K: |
4549 | 0 | case GGML_TYPE_Q3_K: |
4550 | 0 | case GGML_TYPE_Q4_K: |
4551 | 0 | case GGML_TYPE_Q5_K: |
4552 | 0 | case GGML_TYPE_Q6_K: |
4553 | 0 | case GGML_TYPE_TQ1_0: |
4554 | 0 | case GGML_TYPE_TQ2_0: |
4555 | 0 | case GGML_TYPE_IQ2_XXS: |
4556 | 0 | case GGML_TYPE_IQ2_XS: |
4557 | 0 | case GGML_TYPE_IQ3_XXS: |
4558 | 0 | case GGML_TYPE_IQ1_S: |
4559 | 0 | case GGML_TYPE_IQ1_M: |
4560 | 0 | case GGML_TYPE_IQ4_NL: |
4561 | 0 | case GGML_TYPE_IQ4_XS: |
4562 | 0 | case GGML_TYPE_IQ3_S: |
4563 | 0 | case GGML_TYPE_IQ2_S: |
4564 | 0 | default: |
4565 | 0 | { |
4566 | 0 | GGML_ABORT("fatal error"); |
4567 | 0 | } |
4568 | 0 | } |
4569 | 0 | } |
4570 | | |
4571 | | // ggml_compute_forward_cpy |
4572 | | |
4573 | | void ggml_compute_forward_cpy( |
4574 | | const ggml_compute_params * params, |
4575 | 0 | ggml_tensor * dst) { |
4576 | 0 | ggml_compute_forward_dup(params, dst); |
4577 | 0 | } |
4578 | | |
4579 | | // ggml_compute_forward_cont |
4580 | | |
4581 | | void ggml_compute_forward_cont( |
4582 | | const ggml_compute_params * params, |
4583 | 0 | ggml_tensor * dst) { |
4584 | 0 | ggml_compute_forward_dup(params, dst); |
4585 | 0 | } |
4586 | | |
4587 | | // ggml_compute_forward_get_rows |
4588 | | |
4589 | | static void ggml_compute_forward_get_rows_q( |
4590 | | const ggml_compute_params * params, |
4591 | 0 | ggml_tensor * dst) { |
4592 | |
|
4593 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4594 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4595 | |
|
4596 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
4597 | |
|
4598 | 0 | const int64_t nc = ne00; |
4599 | 0 | const int64_t nr = ggml_nelements(src1); |
4600 | |
|
4601 | 0 | const ggml_type type = src0->type; |
4602 | 0 | ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float; |
4603 | |
|
4604 | 0 | assert(ne0 == nc); |
4605 | 0 | assert(ne02 == ne11); |
4606 | 0 | assert(nb00 == ggml_type_size(type)); |
4607 | 0 | assert(ggml_nrows(dst) == nr); |
4608 | |
|
4609 | 0 | const int ith = params->ith; |
4610 | 0 | const int nth = params->nth; |
4611 | | |
4612 | | // rows per thread |
4613 | 0 | const int dr = (nr + nth - 1)/nth; |
4614 | | |
4615 | | // row range for this thread |
4616 | 0 | const int ir0 = dr*ith; |
4617 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
4618 | |
|
4619 | 0 | for (int64_t i = ir0; i < ir1; ++i) { |
4620 | 0 | const int64_t i12 = i/(ne11*ne10); |
4621 | 0 | const int64_t i11 = (i - i12*ne11*ne10)/ne10; |
4622 | 0 | const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); |
4623 | 0 | const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); |
4624 | |
|
4625 | 0 | GGML_ASSERT(i01 >= 0 && i01 < ne01); |
4626 | |
|
4627 | 0 | dequantize_row_q( |
4628 | 0 | (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), |
4629 | 0 | (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); |
4630 | 0 | } |
4631 | 0 | } |
4632 | | |
4633 | | static void ggml_compute_forward_get_rows_f16( |
4634 | | const ggml_compute_params * params, |
4635 | 0 | ggml_tensor * dst) { |
4636 | |
|
4637 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4638 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4639 | |
|
4640 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
4641 | |
|
4642 | 0 | const int64_t nc = ne00; |
4643 | 0 | const int64_t nr = ggml_nelements(src1); |
4644 | |
|
4645 | 0 | assert(ne0 == nc); |
4646 | 0 | assert(ne02 == ne11); |
4647 | 0 | assert(nb00 == sizeof(ggml_fp16_t)); |
4648 | 0 | assert(ggml_nrows(dst) == nr); |
4649 | |
|
4650 | 0 | const int ith = params->ith; |
4651 | 0 | const int nth = params->nth; |
4652 | | |
4653 | | // rows per thread |
4654 | 0 | const int dr = (nr + nth - 1)/nth; |
4655 | | |
4656 | | // row range for this thread |
4657 | 0 | const int ir0 = dr*ith; |
4658 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
4659 | |
|
4660 | 0 | for (int64_t i = ir0; i < ir1; ++i) { |
4661 | 0 | const int64_t i12 = i/(ne11*ne10); |
4662 | 0 | const int64_t i11 = (i - i12*ne11*ne10)/ne10; |
4663 | 0 | const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); |
4664 | 0 | const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); |
4665 | |
|
4666 | 0 | GGML_ASSERT(i01 >= 0 && i01 < ne01); |
4667 | |
|
4668 | 0 | ggml_cpu_fp16_to_fp32( |
4669 | 0 | (const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), |
4670 | 0 | (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); |
4671 | 0 | } |
4672 | 0 | } |
4673 | | |
4674 | | static void ggml_compute_forward_get_rows_bf16( |
4675 | | const ggml_compute_params * params, |
4676 | 0 | ggml_tensor * dst) { |
4677 | |
|
4678 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4679 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4680 | |
|
4681 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
4682 | |
|
4683 | 0 | const int64_t nc = ne00; |
4684 | 0 | const int64_t nr = ggml_nelements(src1); |
4685 | |
|
4686 | 0 | assert(ne0 == nc); |
4687 | 0 | assert(ne02 == ne11); |
4688 | 0 | assert(nb00 == sizeof(ggml_bf16_t)); |
4689 | 0 | assert(ggml_nrows(dst) == nr); |
4690 | |
|
4691 | 0 | const int ith = params->ith; |
4692 | 0 | const int nth = params->nth; |
4693 | | |
4694 | | // rows per thread |
4695 | 0 | const int dr = (nr + nth - 1)/nth; |
4696 | | |
4697 | | // row range for this thread |
4698 | 0 | const int ir0 = dr*ith; |
4699 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
4700 | |
|
4701 | 0 | for (int64_t i = ir0; i < ir1; ++i) { |
4702 | 0 | const int64_t i12 = i/(ne11*ne10); |
4703 | 0 | const int64_t i11 = (i - i12*ne11*ne10)/ne10; |
4704 | 0 | const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); |
4705 | 0 | const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); |
4706 | |
|
4707 | 0 | GGML_ASSERT(i01 >= 0 && i01 < ne01); |
4708 | |
|
4709 | 0 | ggml_cpu_bf16_to_fp32( |
4710 | 0 | (const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), |
4711 | 0 | (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); |
4712 | 0 | } |
4713 | 0 | } |
4714 | | |
4715 | | static void ggml_compute_forward_get_rows_f32( |
4716 | | const ggml_compute_params * params, |
4717 | 0 | ggml_tensor * dst) { |
4718 | |
|
4719 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4720 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4721 | |
|
4722 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
4723 | |
|
4724 | 0 | const int64_t nc = ne00; |
4725 | 0 | const int64_t nr = ggml_nelements(src1); |
4726 | |
|
4727 | 0 | assert(ne0 == nc); |
4728 | 0 | assert(ne02 == ne11); |
4729 | 0 | assert(nb00 == sizeof(float)); |
4730 | 0 | assert(ggml_nrows(dst) == nr); |
4731 | |
|
4732 | 0 | const int ith = params->ith; |
4733 | 0 | const int nth = params->nth; |
4734 | | |
4735 | | // rows per thread |
4736 | 0 | const int dr = (nr + nth - 1)/nth; |
4737 | | |
4738 | | // row range for this thread |
4739 | 0 | const int ir0 = dr*ith; |
4740 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
4741 | |
|
4742 | 0 | for (int64_t i = ir0; i < ir1; ++i) { |
4743 | 0 | const int64_t i12 = i/(ne11*ne10); |
4744 | 0 | const int64_t i11 = (i - i12*ne11*ne10)/ne10; |
4745 | 0 | const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); |
4746 | 0 | const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); |
4747 | |
|
4748 | 0 | GGML_ASSERT(i01 >= 0 && i01 < ne01); |
4749 | |
|
4750 | 0 | ggml_vec_cpy_f32(nc, |
4751 | 0 | (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), |
4752 | 0 | (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03)); |
4753 | 0 | } |
4754 | 0 | } |
4755 | | |
4756 | | void ggml_compute_forward_get_rows( |
4757 | | const ggml_compute_params * params, |
4758 | 0 | ggml_tensor * dst) { |
4759 | |
|
4760 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4761 | |
|
4762 | 0 | switch (src0->type) { |
4763 | 0 | case GGML_TYPE_Q4_0: |
4764 | 0 | case GGML_TYPE_Q4_1: |
4765 | 0 | case GGML_TYPE_Q5_0: |
4766 | 0 | case GGML_TYPE_Q5_1: |
4767 | 0 | case GGML_TYPE_Q8_0: |
4768 | 0 | case GGML_TYPE_Q8_1: |
4769 | 0 | case GGML_TYPE_MXFP4: |
4770 | 0 | case GGML_TYPE_Q2_K: |
4771 | 0 | case GGML_TYPE_Q3_K: |
4772 | 0 | case GGML_TYPE_Q4_K: |
4773 | 0 | case GGML_TYPE_Q5_K: |
4774 | 0 | case GGML_TYPE_Q6_K: |
4775 | 0 | case GGML_TYPE_TQ1_0: |
4776 | 0 | case GGML_TYPE_TQ2_0: |
4777 | 0 | case GGML_TYPE_IQ2_XXS: |
4778 | 0 | case GGML_TYPE_IQ2_XS: |
4779 | 0 | case GGML_TYPE_IQ3_XXS: |
4780 | 0 | case GGML_TYPE_IQ1_S: |
4781 | 0 | case GGML_TYPE_IQ1_M: |
4782 | 0 | case GGML_TYPE_IQ4_NL: |
4783 | 0 | case GGML_TYPE_IQ4_XS: |
4784 | 0 | case GGML_TYPE_IQ3_S: |
4785 | 0 | case GGML_TYPE_IQ2_S: |
4786 | 0 | { |
4787 | 0 | ggml_compute_forward_get_rows_q(params, dst); |
4788 | 0 | } break; |
4789 | 0 | case GGML_TYPE_F16: |
4790 | 0 | { |
4791 | 0 | ggml_compute_forward_get_rows_f16(params, dst); |
4792 | 0 | } break; |
4793 | 0 | case GGML_TYPE_BF16: |
4794 | 0 | { |
4795 | 0 | ggml_compute_forward_get_rows_bf16(params, dst); |
4796 | 0 | } break; |
4797 | 0 | case GGML_TYPE_F32: |
4798 | 0 | case GGML_TYPE_I32: |
4799 | 0 | { |
4800 | 0 | ggml_compute_forward_get_rows_f32(params, dst); |
4801 | 0 | } break; |
4802 | 0 | default: |
4803 | 0 | { |
4804 | 0 | GGML_ABORT("fatal error"); |
4805 | 0 | } |
4806 | 0 | } |
4807 | | |
4808 | | //static bool first = true; |
4809 | | //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]); |
4810 | | //if (first) { |
4811 | | // first = false; |
4812 | | //} else { |
4813 | | // for (int k = 0; k < dst->ne[1]; ++k) { |
4814 | | // for (int j = 0; j < dst->ne[0]/16; ++j) { |
4815 | | // for (int i = 0; i < 16; ++i) { |
4816 | | // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]); |
4817 | | // } |
4818 | | // printf("\n"); |
4819 | | // } |
4820 | | // printf("\n"); |
4821 | | // } |
4822 | | // printf("\n"); |
4823 | | // exit(0); |
4824 | | //} |
4825 | 0 | } |
4826 | | |
4827 | | template<typename idx_t> |
4828 | | static void ggml_compute_forward_set_rows_f32( |
4829 | | const ggml_compute_params * params, |
4830 | 0 | ggml_tensor * dst) { |
4831 | |
|
4832 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4833 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4834 | |
|
4835 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
4836 | |
|
4837 | 0 | const int64_t nc = ne00; |
4838 | 0 | const int64_t nr = ne01; |
4839 | |
|
4840 | 0 | assert(ne0 == nc); |
4841 | 0 | assert(ne2 == ne02); |
4842 | 0 | assert(ne3 == ne03); |
4843 | 0 | assert(src0->type == GGML_TYPE_F32); |
4844 | 0 | assert(ne02 % ne11 == 0); |
4845 | 0 | assert(ne03 % ne12 == 0); |
4846 | |
|
4847 | 0 | const int ith = params->ith; |
4848 | 0 | const int nth = params->nth; |
4849 | | |
4850 | | // rows per thread |
4851 | 0 | const int64_t dr = (nr + nth - 1)/nth; |
4852 | | |
4853 | | // row range for this thread |
4854 | 0 | const int64_t ir0 = dr*ith; |
4855 | 0 | const int64_t ir1 = std::min(ir0 + dr, nr); |
4856 | |
|
4857 | 0 | ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float; |
4858 | |
|
4859 | 0 | for (int64_t i03 = 0; i03 < ne03; ++i03) { |
4860 | 0 | for (int64_t i02 = 0; i02 < ne02; ++i02) { |
4861 | 0 | for (int64_t i = ir0; i < ir1; ++i) { |
4862 | 0 | const int64_t i12 = i03%ne12; |
4863 | 0 | const int64_t i11 = i02%ne11; |
4864 | 0 | const int64_t i10 = i; |
4865 | |
|
4866 | 0 | const int64_t i1 = *(idx_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); |
4867 | |
|
4868 | 0 | GGML_ASSERT(i1 >= 0 && i1 < ne1); |
4869 | |
|
4870 | 0 | from_float( |
4871 | 0 | (const float *) ((char *) src0->data + i*nb01 + i02*nb02 + i03*nb03), |
4872 | 0 | ((char *) dst->data + i1*nb1 + i02*nb2 + i03*nb3), nc); |
4873 | 0 | } |
4874 | 0 | } |
4875 | 0 | } |
4876 | 0 | } Unexecuted instantiation: ops.cpp:void ggml_compute_forward_set_rows_f32<long>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_set_rows_f32<int>(ggml_compute_params const*, ggml_tensor*) |
4877 | | |
4878 | | void ggml_compute_forward_set_rows( |
4879 | | const ggml_compute_params * params, |
4880 | 0 | ggml_tensor * dst) { |
4881 | |
|
4882 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4883 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4884 | |
|
4885 | 0 | switch (src0->type) { |
4886 | 0 | case GGML_TYPE_F32: |
4887 | 0 | { |
4888 | 0 | if (src1->type == GGML_TYPE_I64) { |
4889 | 0 | ggml_compute_forward_set_rows_f32<int64_t>(params, dst); |
4890 | 0 | } else if (src1->type == GGML_TYPE_I32) { |
4891 | 0 | ggml_compute_forward_set_rows_f32<int32_t>(params, dst); |
4892 | 0 | } else { |
4893 | 0 | GGML_ABORT("src1->type = %d (%s) not supported", src1->type, ggml_type_name(src1->type)); |
4894 | 0 | } |
4895 | 0 | } break; |
4896 | 0 | default: |
4897 | 0 | { |
4898 | 0 | GGML_ABORT("src0->type = %d (%s) not supported", src0->type, ggml_type_name(src0->type)); |
4899 | 0 | } |
4900 | 0 | } |
4901 | 0 | } |
4902 | | |
4903 | | // ggml_compute_forward_get_rows_back |
4904 | | |
4905 | | static void ggml_compute_forward_get_rows_back_f32_f16( |
4906 | | const ggml_compute_params * params, |
4907 | 0 | ggml_tensor * dst) { |
4908 | |
|
4909 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4910 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4911 | |
|
4912 | 0 | if (params->ith != 0) { |
4913 | 0 | return; |
4914 | 0 | } |
4915 | | |
4916 | 0 | GGML_ASSERT(ggml_is_contiguous(dst)); |
4917 | | |
4918 | | // ggml_compute_forward_dup_same_cont(params, opt0, dst); |
4919 | |
|
4920 | 0 | memset(dst->data, 0, ggml_nbytes(dst)); |
4921 | |
|
4922 | 0 | const int nc = src0->ne[0]; |
4923 | 0 | const int nr = ggml_nelements(src1); |
4924 | |
|
4925 | 0 | GGML_ASSERT( dst->ne[0] == nc); |
4926 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t)); |
4927 | |
|
4928 | 0 | for (int i = 0; i < nr; ++i) { |
4929 | 0 | const int r = ((int32_t *) src1->data)[i]; |
4930 | |
|
4931 | 0 | for (int j = 0; j < nc; ++j) { |
4932 | 0 | ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j]; |
4933 | 0 | ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_CPU_FP16_TO_FP32(v); |
4934 | 0 | } |
4935 | 0 | } |
4936 | 0 | } |
4937 | | |
4938 | | static void ggml_compute_forward_get_rows_back_f32( |
4939 | | const ggml_compute_params * params, |
4940 | 0 | ggml_tensor * dst) { |
4941 | |
|
4942 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4943 | 0 | const ggml_tensor * src1 = dst->src[1]; |
4944 | |
|
4945 | 0 | if (params->ith != 0) { |
4946 | 0 | return; |
4947 | 0 | } |
4948 | | |
4949 | 0 | GGML_ASSERT(ggml_is_contiguous(dst)); |
4950 | | |
4951 | | // ggml_compute_forward_dup_same_cont(params, opt0, dst); |
4952 | |
|
4953 | 0 | memset(dst->data, 0, ggml_nbytes(dst)); |
4954 | |
|
4955 | 0 | const int nc = src0->ne[0]; |
4956 | 0 | const int nr = ggml_nelements(src1); |
4957 | |
|
4958 | 0 | GGML_ASSERT( dst->ne[0] == nc); |
4959 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
4960 | |
|
4961 | 0 | for (int i = 0; i < nr; ++i) { |
4962 | 0 | const int r = ((int32_t *) src1->data)[i]; |
4963 | |
|
4964 | 0 | ggml_vec_add_f32(nc, |
4965 | 0 | (float *) ((char *) dst->data + r*dst->nb[1]), |
4966 | 0 | (float *) ((char *) dst->data + r*dst->nb[1]), |
4967 | 0 | (float *) ((char *) src0->data + i*src0->nb[1])); |
4968 | 0 | } |
4969 | 0 | } |
4970 | | |
4971 | | void ggml_compute_forward_get_rows_back( |
4972 | | const ggml_compute_params * params, |
4973 | 0 | ggml_tensor * dst) { |
4974 | |
|
4975 | 0 | const ggml_tensor * src0 = dst->src[0]; |
4976 | |
|
4977 | 0 | switch (src0->type) { |
4978 | 0 | case GGML_TYPE_F16: |
4979 | 0 | { |
4980 | 0 | ggml_compute_forward_get_rows_back_f32_f16(params, dst); |
4981 | 0 | } break; |
4982 | 0 | case GGML_TYPE_F32: |
4983 | 0 | { |
4984 | 0 | ggml_compute_forward_get_rows_back_f32(params, dst); |
4985 | 0 | } break; |
4986 | 0 | default: |
4987 | 0 | { |
4988 | 0 | GGML_ABORT("fatal error"); |
4989 | 0 | } |
4990 | 0 | } |
4991 | | |
4992 | | //static bool first = true; |
4993 | | //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]); |
4994 | | //if (first) { |
4995 | | // first = false; |
4996 | | //} else { |
4997 | | // for (int k = 0; k < dst->ne[1]; ++k) { |
4998 | | // for (int j = 0; j < dst->ne[0]/16; ++j) { |
4999 | | // for (int i = 0; i < 16; ++i) { |
5000 | | // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]); |
5001 | | // } |
5002 | | // printf("\n"); |
5003 | | // } |
5004 | | // printf("\n"); |
5005 | | // } |
5006 | | // printf("\n"); |
5007 | | // exit(0); |
5008 | | //} |
5009 | 0 | } |
5010 | | |
5011 | | // ggml_compute_forward_diag |
5012 | | |
5013 | | static void ggml_compute_forward_diag_f32( |
5014 | | const ggml_compute_params * params, |
5015 | 0 | ggml_tensor * dst) { |
5016 | |
|
5017 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5018 | |
|
5019 | 0 | if (params->ith != 0) { |
5020 | 0 | return; |
5021 | 0 | } |
5022 | | |
5023 | | // TODO: handle transposed/permuted matrices |
5024 | | |
5025 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
5026 | |
|
5027 | 0 | GGML_ASSERT(ne00 == ne0); |
5028 | 0 | GGML_ASSERT(ne00 == ne1); |
5029 | 0 | GGML_ASSERT(ne01 == 1); |
5030 | 0 | GGML_ASSERT(ne02 == ne2); |
5031 | 0 | GGML_ASSERT(ne03 == ne3); |
5032 | |
|
5033 | 0 | GGML_ASSERT(nb00 == sizeof(float)); |
5034 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
5035 | |
|
5036 | 0 | for (int i3 = 0; i3 < ne3; i3++) { |
5037 | 0 | for (int i2 = 0; i2 < ne2; i2++) { |
5038 | 0 | for (int i1 = 0; i1 < ne1; i1++) { |
5039 | 0 | float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); |
5040 | 0 | float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02); |
5041 | 0 | for (int i0 = 0; i0 < i1; i0++) { |
5042 | 0 | d[i0] = 0; |
5043 | 0 | } |
5044 | 0 | d[i1] = s[i1]; |
5045 | 0 | for (int i0 = i1+1; i0 < ne0; i0++) { |
5046 | 0 | d[i0] = 0; |
5047 | 0 | } |
5048 | 0 | } |
5049 | 0 | } |
5050 | 0 | } |
5051 | 0 | } |
5052 | | |
5053 | | void ggml_compute_forward_diag( |
5054 | | const ggml_compute_params * params, |
5055 | 0 | ggml_tensor * dst) { |
5056 | |
|
5057 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5058 | |
|
5059 | 0 | switch (src0->type) { |
5060 | 0 | case GGML_TYPE_F32: |
5061 | 0 | { |
5062 | 0 | ggml_compute_forward_diag_f32(params, dst); |
5063 | 0 | } break; |
5064 | 0 | default: |
5065 | 0 | { |
5066 | 0 | GGML_ABORT("fatal error"); |
5067 | 0 | } |
5068 | 0 | } |
5069 | 0 | } |
5070 | | |
5071 | | // ggml_compute_forward_diag_mask_inf |
5072 | | |
5073 | | static void ggml_compute_forward_diag_mask_f32( |
5074 | | const ggml_compute_params * params, |
5075 | | ggml_tensor * dst, |
5076 | 0 | const float value) { |
5077 | |
|
5078 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5079 | |
|
5080 | 0 | const int ith = params->ith; |
5081 | 0 | const int nth = params->nth; |
5082 | |
|
5083 | 0 | const int n_past = ((int32_t *) dst->op_params)[0]; |
5084 | 0 | const bool inplace = src0->data == dst->data; |
5085 | |
|
5086 | 0 | GGML_ASSERT(n_past >= 0); |
5087 | |
|
5088 | 0 | if (!inplace) { |
5089 | 0 | if (ith == 0) { |
5090 | | // memcpy needs to be synchronized across threads to avoid race conditions. |
5091 | | // => do it in INIT phase |
5092 | 0 | GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); |
5093 | 0 | GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); |
5094 | 0 | memcpy( |
5095 | 0 | ((char *) dst->data), |
5096 | 0 | ((char *) src0->data), |
5097 | 0 | ggml_nbytes(dst)); |
5098 | 0 | } |
5099 | 0 | ggml_barrier(params->threadpool); |
5100 | 0 | } |
5101 | | |
5102 | | // TODO: handle transposed/permuted matrices |
5103 | |
|
5104 | 0 | const int n = ggml_nrows(src0); |
5105 | 0 | const int nc = src0->ne[0]; |
5106 | 0 | const int nr = src0->ne[1]; |
5107 | 0 | const int nz = n/nr; |
5108 | |
|
5109 | 0 | GGML_ASSERT( dst->nb[0] == sizeof(float)); |
5110 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
5111 | |
|
5112 | 0 | for (int k = 0; k < nz; k++) { |
5113 | 0 | for (int j = ith; j < nr; j += nth) { |
5114 | 0 | for (int i = n_past; i < nc; i++) { |
5115 | 0 | if (i > n_past + j) { |
5116 | 0 | *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value; |
5117 | 0 | } |
5118 | 0 | } |
5119 | 0 | } |
5120 | 0 | } |
5121 | 0 | } |
5122 | | |
5123 | | void ggml_compute_forward_diag_mask_inf( |
5124 | | const ggml_compute_params * params, |
5125 | 0 | ggml_tensor * dst) { |
5126 | |
|
5127 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5128 | |
|
5129 | 0 | switch (src0->type) { |
5130 | 0 | case GGML_TYPE_F32: |
5131 | 0 | { |
5132 | 0 | ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY); |
5133 | 0 | } break; |
5134 | 0 | default: |
5135 | 0 | { |
5136 | 0 | GGML_ABORT("fatal error"); |
5137 | 0 | } |
5138 | 0 | } |
5139 | 0 | } |
5140 | | |
5141 | | void ggml_compute_forward_diag_mask_zero( |
5142 | | const ggml_compute_params * params, |
5143 | 0 | ggml_tensor * dst) { |
5144 | |
|
5145 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5146 | |
|
5147 | 0 | switch (src0->type) { |
5148 | 0 | case GGML_TYPE_F32: |
5149 | 0 | { |
5150 | 0 | ggml_compute_forward_diag_mask_f32(params, dst, 0); |
5151 | 0 | } break; |
5152 | 0 | default: |
5153 | 0 | { |
5154 | 0 | GGML_ABORT("fatal error"); |
5155 | 0 | } |
5156 | 0 | } |
5157 | 0 | } |
5158 | | |
5159 | | // ggml_compute_forward_soft_max |
5160 | | |
5161 | | static void ggml_compute_forward_soft_max_f32( |
5162 | | const ggml_compute_params * params, |
5163 | 0 | ggml_tensor * dst) { |
5164 | |
|
5165 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5166 | 0 | const ggml_tensor * src1 = dst->src[1]; |
5167 | 0 | const ggml_tensor * src2 = dst->src[2]; |
5168 | |
|
5169 | 0 | assert(ggml_is_contiguous(dst)); |
5170 | 0 | assert(ggml_are_same_shape(src0, dst)); |
5171 | |
|
5172 | 0 | float scale = 1.0f; |
5173 | 0 | float max_bias = 0.0f; |
5174 | |
|
5175 | 0 | memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); |
5176 | 0 | memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); |
5177 | |
|
5178 | 0 | const int ith = params->ith; |
5179 | 0 | const int nth = params->nth; |
5180 | |
|
5181 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
5182 | |
|
5183 | 0 | const int64_t nb11 = src1 ? src1->nb[1] : 1; |
5184 | 0 | const int64_t nb12 = src1 ? src1->nb[2] : 1; |
5185 | 0 | const int64_t nb13 = src1 ? src1->nb[3] : 1; |
5186 | |
|
5187 | 0 | const int64_t ne12 = src1 ? src1->ne[2] : 1; |
5188 | 0 | const int64_t ne13 = src1 ? src1->ne[3] : 1; |
5189 | | |
5190 | | // TODO: is this supposed to be ceil instead of floor? |
5191 | | // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370 |
5192 | 0 | const uint32_t n_head = ne02; |
5193 | 0 | const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); |
5194 | |
|
5195 | 0 | const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); |
5196 | 0 | const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); |
5197 | |
|
5198 | 0 | float * wp = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; |
5199 | |
|
5200 | 0 | const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16); |
5201 | | |
5202 | | // sinks |
5203 | 0 | const float * sk = src2 ? (float *)((char *) src2->data) : nullptr; |
5204 | |
|
5205 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
5206 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
5207 | 0 | for (int64_t i01 = ith; i01 < ne01; i01 += nth) { |
5208 | 0 | const int64_t i11 = i01; |
5209 | 0 | const int64_t i12 = i02%ne12; |
5210 | 0 | const int64_t i13 = i03%ne13; |
5211 | | |
5212 | | // ALiBi |
5213 | 0 | const uint32_t h = i02; // head |
5214 | 0 | const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f; |
5215 | |
|
5216 | 0 | float * sp = (float *)((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); |
5217 | 0 | float * dp = (float *)((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); |
5218 | | |
5219 | | // broadcast the mask across rows |
5220 | 0 | ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL; |
5221 | 0 | float * mp_f32 = src1 ? (float *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL; |
5222 | |
|
5223 | 0 | ggml_vec_cpy_f32 (ne00, wp, sp); |
5224 | 0 | ggml_vec_scale_f32(ne00, wp, scale); |
5225 | 0 | if (mp_f32) { |
5226 | 0 | if (use_f16) { |
5227 | 0 | for (int i = 0; i < ne00; ++i) { |
5228 | 0 | wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]); |
5229 | 0 | } |
5230 | 0 | } else { |
5231 | 0 | for (int i = 0; i < ne00; ++i) { |
5232 | 0 | wp[i] += slope*mp_f32[i]; |
5233 | 0 | } |
5234 | 0 | } |
5235 | 0 | } |
5236 | |
|
5237 | | #ifndef NDEBUG |
5238 | | for (int i = 0; i < ne00; ++i) { |
5239 | | //printf("p[%d] = %f\n", i, p[i]); |
5240 | | assert(!isnan(wp[i])); |
5241 | | } |
5242 | | #endif |
5243 | |
|
5244 | 0 | float max = -INFINITY; |
5245 | 0 | ggml_vec_max_f32(ne00, &max, wp); |
5246 | | |
5247 | | // if we have sinks, make a correction as if they were included in the softmax |
5248 | 0 | if (sk) { |
5249 | 0 | max = MAX(max, sk[i02]); |
5250 | 0 | } |
5251 | |
|
5252 | 0 | ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max); |
5253 | 0 | assert(sum > 0.0); |
5254 | |
|
5255 | 0 | if (sk) { |
5256 | 0 | sum += (ggml_float) expf(sk[i02] - max); |
5257 | 0 | } |
5258 | |
|
5259 | 0 | sum = 1.0/sum; |
5260 | 0 | ggml_vec_scale_f32(ne00, dp, sum); |
5261 | |
|
5262 | | #ifndef NDEBUG |
5263 | | for (int i = 0; i < ne00; ++i) { |
5264 | | assert(!isnan(dp[i])); |
5265 | | assert(!isinf(dp[i])); |
5266 | | } |
5267 | | #endif |
5268 | 0 | } |
5269 | 0 | } |
5270 | 0 | } |
5271 | 0 | } |
5272 | | |
5273 | | void ggml_compute_forward_soft_max( |
5274 | | const ggml_compute_params * params, |
5275 | 0 | ggml_tensor * dst) { |
5276 | |
|
5277 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5278 | |
|
5279 | 0 | switch (src0->type) { |
5280 | 0 | case GGML_TYPE_F32: |
5281 | 0 | { |
5282 | 0 | ggml_compute_forward_soft_max_f32(params, dst); |
5283 | 0 | } break; |
5284 | 0 | default: |
5285 | 0 | { |
5286 | 0 | GGML_ABORT("fatal error"); |
5287 | 0 | } |
5288 | 0 | } |
5289 | 0 | } |
5290 | | |
5291 | | |
5292 | | // ggml_compute_forward_soft_max_ext_back |
5293 | | |
5294 | | static void ggml_compute_forward_soft_max_ext_back_f32( |
5295 | | const ggml_compute_params * params, |
5296 | 0 | ggml_tensor * dst) { |
5297 | |
|
5298 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5299 | 0 | const ggml_tensor * src1 = dst->src[1]; |
5300 | |
|
5301 | 0 | GGML_ASSERT(ggml_is_contiguous(src0)); |
5302 | 0 | GGML_ASSERT(ggml_is_contiguous(src1)); |
5303 | 0 | GGML_ASSERT(ggml_is_contiguous(dst)); |
5304 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, dst)); |
5305 | 0 | GGML_ASSERT(ggml_are_same_shape(src1, dst)); |
5306 | |
|
5307 | 0 | float scale = 1.0f; |
5308 | 0 | float max_bias = 0.0f; |
5309 | |
|
5310 | 0 | memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float)); |
5311 | 0 | memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float)); |
5312 | |
|
5313 | 0 | GGML_ASSERT(max_bias == 0.0f); |
5314 | | |
5315 | | // TODO: handle transposed/permuted matrices |
5316 | |
|
5317 | 0 | const int ith = params->ith; |
5318 | 0 | const int nth = params->nth; |
5319 | |
|
5320 | 0 | const int nc = src0->ne[0]; |
5321 | 0 | const int nr = ggml_nrows(src0); |
5322 | | |
5323 | | // rows per thread |
5324 | 0 | const int dr = (nr + nth - 1)/nth; |
5325 | | |
5326 | | // row range for this thread |
5327 | 0 | const int ir0 = dr*ith; |
5328 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
5329 | |
|
5330 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
5331 | 0 | float *dy = (float *)((char *) src0->data + i1*src0->nb[1]); |
5332 | 0 | float *y = (float *)((char *) src1->data + i1*src1->nb[1]); |
5333 | 0 | float *dx = (float *)((char *) dst->data + i1*dst->nb[1]); |
5334 | |
|
5335 | | #ifndef NDEBUG |
5336 | | for (int i = 0; i < nc; ++i) { |
5337 | | //printf("p[%d] = %f\n", i, p[i]); |
5338 | | assert(!isnan(dy[i])); |
5339 | | assert(!isnan(y[i])); |
5340 | | } |
5341 | | #endif |
5342 | | // Jii = yi - yi*yi |
5343 | | // Jij = -yi*yj |
5344 | | // J = diag(y)-y.T*y |
5345 | | // dx = J * dy |
5346 | | // dxk = sum_i(Jki * dyi) |
5347 | | // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk |
5348 | | // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk |
5349 | | // dxk = sum_i(-yk*yi * dyi) + yk*dyk |
5350 | | // dxk = -yk * sum_i(yi * dyi) + yk*dyk |
5351 | | // dxk = -yk * dot(y, dy) + yk*dyk |
5352 | | // dxk = yk * (- dot(y, dy) + dyk) |
5353 | | // dxk = yk * (dyk - dot(y, dy)) |
5354 | | // |
5355 | | // post-order: |
5356 | | // dot_y_dy := dot(y, dy) |
5357 | | // dx := dy |
5358 | | // dx := dx - dot_y_dy |
5359 | | // dx := dx * y |
5360 | | |
5361 | | // linear runtime, no additional memory |
5362 | 0 | float dot_y_dy = 0; |
5363 | 0 | ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1); |
5364 | 0 | ggml_vec_cpy_f32 (nc, dx, dy); |
5365 | 0 | ggml_vec_acc1_f32 (nc, dx, -dot_y_dy); |
5366 | 0 | ggml_vec_mul_f32 (nc, dx, dx, y); |
5367 | 0 | ggml_vec_scale_f32(nc, dx, scale); |
5368 | |
|
5369 | | #ifndef NDEBUG |
5370 | | for (int i = 0; i < nc; ++i) { |
5371 | | assert(!isnan(dx[i])); |
5372 | | assert(!isinf(dx[i])); |
5373 | | } |
5374 | | #endif |
5375 | 0 | } |
5376 | 0 | } |
5377 | | |
5378 | | void ggml_compute_forward_soft_max_ext_back( |
5379 | | const ggml_compute_params * params, |
5380 | 0 | ggml_tensor * dst) { |
5381 | |
|
5382 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5383 | |
|
5384 | 0 | switch (src0->type) { |
5385 | 0 | case GGML_TYPE_F32: |
5386 | 0 | { |
5387 | 0 | ggml_compute_forward_soft_max_ext_back_f32(params, dst); |
5388 | 0 | } break; |
5389 | 0 | default: |
5390 | 0 | { |
5391 | 0 | GGML_ABORT("fatal error"); |
5392 | 0 | } |
5393 | 0 | } |
5394 | 0 | } |
5395 | | |
5396 | | // ggml_compute_forward_clamp |
5397 | | |
5398 | | static void ggml_compute_forward_clamp_f32( |
5399 | | const ggml_compute_params * params, |
5400 | 0 | ggml_tensor * dst) { |
5401 | |
|
5402 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5403 | |
|
5404 | 0 | float min; |
5405 | 0 | float max; |
5406 | 0 | memcpy(&min, (float *) dst->op_params + 0, sizeof(float)); |
5407 | 0 | memcpy(&max, (float *) dst->op_params + 1, sizeof(float)); |
5408 | |
|
5409 | 0 | const int ith = params->ith; |
5410 | 0 | const int nth = params->nth; |
5411 | |
|
5412 | 0 | const int n = ggml_nrows(src0); |
5413 | 0 | const int nc = src0->ne[0]; |
5414 | |
|
5415 | 0 | const size_t nb00 = src0->nb[0]; |
5416 | 0 | const size_t nb01 = src0->nb[1]; |
5417 | |
|
5418 | 0 | const size_t nb0 = dst->nb[0]; |
5419 | 0 | const size_t nb1 = dst->nb[1]; |
5420 | |
|
5421 | 0 | GGML_ASSERT( nb0 == sizeof(float)); |
5422 | 0 | GGML_ASSERT(nb00 == sizeof(float)); |
5423 | |
|
5424 | 0 | for (int j = ith; j < n; j += nth) { |
5425 | 0 | float * dst_ptr = (float *) ((char *) dst->data + j*nb1); |
5426 | 0 | float * src0_ptr = (float *) ((char *) src0->data + j*nb01); |
5427 | |
|
5428 | 0 | for (int i = 0; i < nc; i++) { |
5429 | 0 | dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min); |
5430 | 0 | } |
5431 | 0 | } |
5432 | 0 | } |
5433 | | |
5434 | | static void ggml_compute_forward_clamp_f16( |
5435 | | const ggml_compute_params * params, |
5436 | 0 | ggml_tensor * dst) { |
5437 | |
|
5438 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5439 | |
|
5440 | 0 | float min; |
5441 | 0 | float max; |
5442 | 0 | memcpy(&min, (float *) dst->op_params + 0, sizeof(float)); |
5443 | 0 | memcpy(&max, (float *) dst->op_params + 1, sizeof(float)); |
5444 | |
|
5445 | 0 | const int ith = params->ith; |
5446 | 0 | const int nth = params->nth; |
5447 | |
|
5448 | 0 | const int n = ggml_nrows(src0); |
5449 | 0 | const int nc = src0->ne[0]; |
5450 | |
|
5451 | 0 | const size_t nb00 = src0->nb[0]; |
5452 | 0 | const size_t nb01 = src0->nb[1]; |
5453 | |
|
5454 | 0 | const size_t nb0 = dst->nb[0]; |
5455 | 0 | const size_t nb1 = dst->nb[1]; |
5456 | |
|
5457 | 0 | GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); |
5458 | 0 | GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); |
5459 | |
|
5460 | 0 | for (int j = ith; j < n; j += nth) { |
5461 | 0 | ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1); |
5462 | 0 | ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01); |
5463 | |
|
5464 | 0 | for (int i = 0; i < nc; i++) { |
5465 | 0 | float v = GGML_CPU_FP16_TO_FP32(src0_ptr[i]); |
5466 | 0 | dst_ptr[i] = GGML_CPU_FP32_TO_FP16(MAX(MIN(v, max), min)); |
5467 | 0 | } |
5468 | 0 | } |
5469 | 0 | } |
5470 | | |
5471 | | void ggml_compute_forward_clamp( |
5472 | | const ggml_compute_params * params, |
5473 | 0 | ggml_tensor * dst) { |
5474 | |
|
5475 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5476 | |
|
5477 | 0 | switch (src0->type) { |
5478 | 0 | case GGML_TYPE_F32: |
5479 | 0 | { |
5480 | 0 | ggml_compute_forward_clamp_f32(params, dst); |
5481 | 0 | } break; |
5482 | 0 | case GGML_TYPE_F16: |
5483 | 0 | { |
5484 | 0 | ggml_compute_forward_clamp_f16(params, dst); |
5485 | 0 | } break; |
5486 | 0 | case GGML_TYPE_BF16: |
5487 | 0 | case GGML_TYPE_Q4_0: |
5488 | 0 | case GGML_TYPE_Q4_1: |
5489 | 0 | case GGML_TYPE_Q5_0: |
5490 | 0 | case GGML_TYPE_Q5_1: |
5491 | 0 | case GGML_TYPE_Q8_0: |
5492 | 0 | case GGML_TYPE_Q8_1: |
5493 | 0 | case GGML_TYPE_MXFP4: |
5494 | 0 | case GGML_TYPE_Q2_K: |
5495 | 0 | case GGML_TYPE_Q3_K: |
5496 | 0 | case GGML_TYPE_Q4_K: |
5497 | 0 | case GGML_TYPE_Q5_K: |
5498 | 0 | case GGML_TYPE_Q6_K: |
5499 | 0 | case GGML_TYPE_TQ1_0: |
5500 | 0 | case GGML_TYPE_TQ2_0: |
5501 | 0 | case GGML_TYPE_IQ2_XXS: |
5502 | 0 | case GGML_TYPE_IQ2_XS: |
5503 | 0 | case GGML_TYPE_IQ3_XXS: |
5504 | 0 | case GGML_TYPE_IQ1_S: |
5505 | 0 | case GGML_TYPE_IQ1_M: |
5506 | 0 | case GGML_TYPE_IQ4_NL: |
5507 | 0 | case GGML_TYPE_IQ4_XS: |
5508 | 0 | case GGML_TYPE_IQ3_S: |
5509 | 0 | case GGML_TYPE_IQ2_S: |
5510 | 0 | case GGML_TYPE_Q8_K: |
5511 | 0 | case GGML_TYPE_I8: |
5512 | 0 | case GGML_TYPE_I16: |
5513 | 0 | case GGML_TYPE_I32: |
5514 | 0 | case GGML_TYPE_I64: |
5515 | 0 | case GGML_TYPE_F64: |
5516 | 0 | case GGML_TYPE_COUNT: |
5517 | 0 | { |
5518 | 0 | GGML_ABORT("fatal error"); |
5519 | 0 | } |
5520 | 0 | } |
5521 | 0 | } |
5522 | | |
5523 | | // ggml_compute_forward_rope |
5524 | | |
5525 | 0 | static float rope_yarn_ramp(const float low, const float high, const int i0) { |
5526 | 0 | const float y = (i0 / 2 - low) / MAX(0.001f, high - low); |
5527 | 0 | return 1 - MIN(1, MAX(0, y)); |
5528 | 0 | } |
5529 | | |
5530 | | // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn |
5531 | | // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. |
5532 | | static void rope_yarn( |
5533 | | float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale, |
5534 | 0 | float * cos_theta, float * sin_theta) { |
5535 | | // Get n-d rotational scaling corrected for extrapolation |
5536 | 0 | float theta_interp = freq_scale * theta_extrap; |
5537 | 0 | float theta = theta_interp; |
5538 | 0 | if (ext_factor != 0.0f) { |
5539 | 0 | float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor; |
5540 | 0 | theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; |
5541 | | |
5542 | | // Get n-d magnitude scaling corrected for interpolation |
5543 | 0 | mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale); |
5544 | 0 | } |
5545 | 0 | *cos_theta = cosf(theta) * mscale; |
5546 | 0 | *sin_theta = sinf(theta) * mscale; |
5547 | 0 | } |
5548 | | |
5549 | | static void ggml_rope_cache_init( |
5550 | | float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale, |
5551 | 0 | float * cache, float sin_sign, float theta_scale) { |
5552 | | // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py |
5553 | 0 | float theta = theta_base; |
5554 | 0 | for (int64_t i0 = 0; i0 < ne0; i0 += 2) { |
5555 | 0 | const float ff = freq_factors ? freq_factors[i0/2] : 1.0f; |
5556 | 0 | rope_yarn( |
5557 | 0 | theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1] |
5558 | 0 | ); |
5559 | 0 | cache[i0 + 1] *= sin_sign; |
5560 | |
|
5561 | 0 | theta *= theta_scale; |
5562 | 0 | } |
5563 | 0 | } |
5564 | | |
5565 | | static void ggml_mrope_cache_init( |
5566 | | float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool is_imrope, bool indep_sects, |
5567 | | float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale, |
5568 | 0 | float * cache, float sin_sign, float theta_scale) { |
5569 | | // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py |
5570 | 0 | float theta_t = theta_base_t; |
5571 | 0 | float theta_h = theta_base_h; |
5572 | 0 | float theta_w = theta_base_w; |
5573 | 0 | float theta_e = theta_base_e; // extra position id for vision encoder |
5574 | 0 | int sect_dims = sections[0] + sections[1] + sections[2] + sections[3]; |
5575 | 0 | int sec_w = sections[1] + sections[0]; |
5576 | 0 | int sec_e = sections[2] + sec_w; |
5577 | 0 | GGML_ASSERT(sect_dims <= ne0); |
5578 | |
|
5579 | 0 | for (int64_t i0 = 0; i0 < ne0; i0 += 2) { |
5580 | 0 | const float ff = freq_factors ? freq_factors[i0/2] : 1.0f; |
5581 | |
|
5582 | 0 | int sector = (i0 / 2) % sect_dims; |
5583 | 0 | if (indep_sects) { |
5584 | | // compute theta independently for each dim sections |
5585 | | // (i.e. reset corresponding theta when `i0` go from one section to another) |
5586 | 0 | if (sector == 0) { |
5587 | 0 | theta_t = theta_base_t; |
5588 | 0 | } |
5589 | 0 | else if (sector == sections[0]) { |
5590 | 0 | theta_h = theta_base_h;; |
5591 | 0 | } |
5592 | 0 | else if (sector == sec_w) { |
5593 | 0 | theta_w = theta_base_w; |
5594 | 0 | } |
5595 | 0 | else if (sector == sec_e) { |
5596 | 0 | theta_e = theta_base_e; |
5597 | 0 | } |
5598 | 0 | } |
5599 | |
|
5600 | 0 | float theta = theta_t; |
5601 | 0 | if (is_imrope) { // qwen3vl apply interleaved mrope |
5602 | 0 | if (sector % 3 == 1 && sector < 3 * sections[1]) { |
5603 | 0 | theta = theta_h; |
5604 | 0 | } else if (sector % 3 == 2 && sector < 3 * sections[2]) { |
5605 | 0 | theta = theta_w; |
5606 | 0 | } else if (sector % 3 == 0 && sector < 3 * sections[0]) { |
5607 | 0 | theta = theta_t; |
5608 | 0 | } else { |
5609 | 0 | theta = theta_e; |
5610 | 0 | } |
5611 | 0 | } else { |
5612 | 0 | if (sector >= sections[0] && sector < sec_w) { |
5613 | 0 | theta = theta_h; |
5614 | 0 | } |
5615 | 0 | else if (sector >= sec_w && sector < sec_w + sections[2]) { |
5616 | 0 | theta = theta_w; |
5617 | 0 | } |
5618 | 0 | else if (sector >= sec_w + sections[2]) { |
5619 | 0 | theta = theta_e; |
5620 | 0 | } |
5621 | 0 | } |
5622 | |
|
5623 | 0 | rope_yarn( |
5624 | 0 | theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1] |
5625 | 0 | ); |
5626 | 0 | cache[i0 + 1] *= sin_sign; |
5627 | |
|
5628 | 0 | theta_t *= theta_scale; |
5629 | 0 | theta_w *= theta_scale; |
5630 | 0 | theta_h *= theta_scale; |
5631 | 0 | theta_e *= theta_scale; |
5632 | 0 | } |
5633 | 0 | } |
5634 | | |
5635 | | |
5636 | | template<typename T> |
5637 | 0 | static void rotate_pairs(const int64_t n, const int64_t n_offset, const float * cache, const T * src_data, T * dst_data, const int scale = 2) { |
5638 | 0 | for (int64_t i0 = 0; i0 < n; i0 += 2) { |
5639 | 0 | const int64_t ic = i0/scale; // hack for GGML_ROPE_TYPE_NORMAL, where we need ic = i0; for all other cases, ic = i0/2 |
5640 | |
|
5641 | 0 | const float cos_theta = cache[i0 + 0]; |
5642 | 0 | const float sin_theta = cache[i0 + 1]; |
5643 | |
|
5644 | 0 | const T * const src = src_data + ic; |
5645 | 0 | T * dst = dst_data + ic; |
5646 | |
|
5647 | 0 | const float x0 = type_conversion_table<T>::to_f32(src[0]); |
5648 | 0 | const float x1 = type_conversion_table<T>::to_f32(src[n_offset]); |
5649 | |
|
5650 | 0 | dst[0] = type_conversion_table<T>::from_f32(x0*cos_theta - x1*sin_theta); |
5651 | 0 | dst[n_offset] = type_conversion_table<T>::from_f32(x0*sin_theta + x1*cos_theta); |
5652 | 0 | } |
5653 | 0 | } Unexecuted instantiation: ops.cpp:void rotate_pairs<unsigned short>(long, long, float const*, unsigned short const*, unsigned short*, int) Unexecuted instantiation: ops.cpp:void rotate_pairs<float>(long, long, float const*, float const*, float*, int) |
5654 | | |
5655 | | template<typename T> //float or ggml_fp16_t |
5656 | | static void ggml_compute_forward_rope_flt( |
5657 | | const ggml_compute_params * params, |
5658 | | ggml_tensor * dst, |
5659 | 0 | const bool forward) { |
5660 | |
|
5661 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5662 | 0 | const ggml_tensor * src1 = dst->src[1]; |
5663 | 0 | const ggml_tensor * src2 = dst->src[2]; |
5664 | |
|
5665 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); |
5666 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_I32); |
5667 | |
|
5668 | 0 | float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; |
5669 | 0 | int sections[4]; |
5670 | | |
5671 | | //const int n_past = ((int32_t *) dst->op_params)[0]; |
5672 | 0 | const int n_dims = ((int32_t *) dst->op_params)[1]; |
5673 | 0 | const int mode = ((int32_t *) dst->op_params)[2]; |
5674 | | //const int n_ctx = ((int32_t *) dst->op_params)[3]; |
5675 | 0 | const int n_ctx_orig = ((int32_t *) dst->op_params)[4]; |
5676 | |
|
5677 | 0 | memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); |
5678 | 0 | memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); |
5679 | 0 | memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); |
5680 | 0 | memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); |
5681 | 0 | memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); |
5682 | 0 | memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); |
5683 | 0 | memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4); |
5684 | |
|
5685 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
5686 | | |
5687 | | //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); |
5688 | | //printf("n_past = %d, ne2 = %d\n", n_past, ne2); |
5689 | |
|
5690 | 0 | GGML_ASSERT(nb0 == nb00); |
5691 | 0 | GGML_ASSERT(nb0 == sizeof(T)); |
5692 | |
|
5693 | 0 | const int ith = params->ith; |
5694 | 0 | const int nth = params->nth; |
5695 | |
|
5696 | 0 | const int nr = ggml_nrows(dst); |
5697 | |
|
5698 | 0 | GGML_ASSERT(n_dims <= ne0); |
5699 | 0 | GGML_ASSERT(n_dims % 2 == 0); |
5700 | | |
5701 | | // rows per thread |
5702 | 0 | const int dr = (nr + nth - 1)/nth; |
5703 | | |
5704 | | // row range for this thread |
5705 | 0 | const int ir0 = dr*ith; |
5706 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
5707 | | |
5708 | | // row index used to determine which thread to use |
5709 | 0 | int ir = 0; |
5710 | |
|
5711 | 0 | const float theta_scale = powf(freq_base, -2.0f/n_dims); |
5712 | |
|
5713 | 0 | float corr_dims[2]; |
5714 | 0 | ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims); |
5715 | |
|
5716 | 0 | const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope |
5717 | 0 | const bool mrope_used = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, note: also true for vision (24 & 8 == true) and for imrope |
5718 | 0 | const bool is_vision = mode == GGML_ROPE_TYPE_VISION; |
5719 | |
|
5720 | 0 | if (mrope_used) { |
5721 | 0 | GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0); |
5722 | 0 | } |
5723 | |
|
5724 | 0 | if (is_vision) { |
5725 | 0 | GGML_ASSERT(n_dims == ne0/2); |
5726 | 0 | } |
5727 | |
|
5728 | 0 | const float * freq_factors = NULL; |
5729 | 0 | if (src2 != NULL) { |
5730 | 0 | GGML_ASSERT(src2->type == GGML_TYPE_F32); |
5731 | 0 | GGML_ASSERT(src2->ne[0] >= n_dims / 2); |
5732 | 0 | freq_factors = (const float *) src2->data; |
5733 | 0 | } |
5734 | | |
5735 | | // backward process uses inverse rotation by cos and sin. |
5736 | | // cos and sin build a rotation matrix, where the inverse is the transpose. |
5737 | | // this essentially just switches the sign of sin. |
5738 | 0 | const float sin_sign = forward ? 1.0f : -1.0f; |
5739 | |
|
5740 | 0 | const int32_t * pos = (const int32_t *) src1->data; |
5741 | |
|
5742 | 0 | for (int64_t i3 = 0; i3 < ne3; i3++) { // batch |
5743 | 0 | for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len |
5744 | |
|
5745 | 0 | float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith; |
5746 | 0 | if (!mrope_used) { |
5747 | 0 | const int64_t p = pos[i2]; |
5748 | 0 | ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); |
5749 | 0 | } |
5750 | 0 | else { |
5751 | 0 | const int64_t p_t = pos[i2]; |
5752 | 0 | const int64_t p_h = pos[i2 + ne2]; |
5753 | 0 | const int64_t p_w = pos[i2 + ne2 * 2]; |
5754 | 0 | const int64_t p_e = pos[i2 + ne2 * 3]; |
5755 | 0 | ggml_mrope_cache_init( |
5756 | 0 | p_t, p_h, p_w, p_e, sections, is_imrope, is_vision, |
5757 | 0 | freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); |
5758 | 0 | } |
5759 | |
|
5760 | 0 | for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads |
5761 | 0 | if (ir++ < ir0) continue; |
5762 | 0 | if (ir > ir1) break; |
5763 | | |
5764 | 0 | T * src = (T *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); |
5765 | 0 | T * dst_data = (T *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); |
5766 | |
|
5767 | 0 | switch (mode) { |
5768 | 0 | case GGML_ROPE_TYPE_NORMAL: |
5769 | 0 | rotate_pairs<T>(n_dims, 1, cache, src, dst_data, 1); |
5770 | 0 | break; |
5771 | 0 | case GGML_ROPE_TYPE_NEOX: |
5772 | 0 | case GGML_ROPE_TYPE_MROPE: |
5773 | 0 | case GGML_ROPE_TYPE_IMROPE: |
5774 | 0 | rotate_pairs<T>(n_dims, n_dims/2, cache, src, dst_data); |
5775 | 0 | break; |
5776 | 0 | case GGML_ROPE_TYPE_VISION: |
5777 | 0 | rotate_pairs<T>(ne0, n_dims, cache, src, dst_data); |
5778 | 0 | break; |
5779 | 0 | default: |
5780 | 0 | GGML_ABORT("rope type not supported"); |
5781 | 0 | } |
5782 | | |
5783 | 0 | if (!is_vision) { |
5784 | | // fill the remain channels with data from src tensor |
5785 | 0 | for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) { |
5786 | 0 | const T * const src = (T *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); |
5787 | 0 | T * dst_data = (T *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); |
5788 | |
|
5789 | 0 | dst_data[0] = src[0]; |
5790 | 0 | dst_data[1] = src[1]; |
5791 | 0 | } |
5792 | 0 | } |
5793 | 0 | } //attn-heads |
5794 | 0 | } |
5795 | 0 | } |
5796 | 0 | } Unexecuted instantiation: ops.cpp:void ggml_compute_forward_rope_flt<unsigned short>(ggml_compute_params const*, ggml_tensor*, bool) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_rope_flt<float>(ggml_compute_params const*, ggml_tensor*, bool) |
5797 | | |
5798 | | void ggml_compute_forward_rope( |
5799 | | const ggml_compute_params * params, |
5800 | 0 | ggml_tensor * dst) { |
5801 | |
|
5802 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5803 | |
|
5804 | 0 | switch (src0->type) { |
5805 | 0 | case GGML_TYPE_F16: |
5806 | 0 | { |
5807 | 0 | ggml_compute_forward_rope_flt<ggml_fp16_t>(params, dst, true); |
5808 | 0 | } break; |
5809 | 0 | case GGML_TYPE_F32: |
5810 | 0 | { |
5811 | 0 | ggml_compute_forward_rope_flt<float>(params, dst, true); |
5812 | 0 | } break; |
5813 | 0 | default: |
5814 | 0 | { |
5815 | 0 | GGML_ABORT("fatal error"); |
5816 | 0 | } |
5817 | 0 | } |
5818 | 0 | } |
5819 | | |
5820 | | // ggml_compute_forward_rope_back |
5821 | | |
5822 | | void ggml_compute_forward_rope_back( |
5823 | | const ggml_compute_params * params, |
5824 | 0 | ggml_tensor * dst) { |
5825 | |
|
5826 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5827 | |
|
5828 | 0 | switch (src0->type) { |
5829 | 0 | case GGML_TYPE_F16: |
5830 | 0 | { |
5831 | 0 | ggml_compute_forward_rope_flt<ggml_fp16_t>(params, dst, false); |
5832 | 0 | } break; |
5833 | 0 | case GGML_TYPE_F32: |
5834 | 0 | { |
5835 | 0 | ggml_compute_forward_rope_flt<float>(params, dst, false); |
5836 | 0 | } break; |
5837 | 0 | default: |
5838 | 0 | { |
5839 | 0 | GGML_ABORT("fatal error"); |
5840 | 0 | } |
5841 | 0 | } |
5842 | 0 | } |
5843 | | |
5844 | | // ggml_compute_forward_conv_transpose_1d |
5845 | | |
5846 | | static void ggml_compute_forward_conv_transpose_1d_f16_f32( |
5847 | | const ggml_compute_params * params, |
5848 | 0 | ggml_tensor * dst) { |
5849 | |
|
5850 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5851 | 0 | const ggml_tensor * src1 = dst->src[1]; |
5852 | |
|
5853 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F16); |
5854 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
5855 | 0 | GGML_ASSERT( dst->type == GGML_TYPE_F32); |
5856 | |
|
5857 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
5858 | |
|
5859 | 0 | const int ith = params->ith; |
5860 | 0 | const int nth = params->nth; |
5861 | |
|
5862 | 0 | const int nk = ne00*ne01*ne02; |
5863 | |
|
5864 | 0 | GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); |
5865 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
5866 | |
|
5867 | 0 | if (ith == 0) { |
5868 | 0 | memset(params->wdata, 0, params->wsize); |
5869 | | |
5870 | | // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) |
5871 | 0 | { |
5872 | 0 | ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; |
5873 | |
|
5874 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
5875 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
5876 | 0 | const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); |
5877 | 0 | ggml_fp16_t * dst_data = wdata + i01*ne00*ne02; |
5878 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
5879 | 0 | dst_data[i00*ne02 + i02] = src[i00]; |
5880 | 0 | } |
5881 | 0 | } |
5882 | 0 | } |
5883 | 0 | } |
5884 | | |
5885 | | // permute source data (src1) from (L x Cin) to (Cin x L) |
5886 | 0 | { |
5887 | 0 | ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk; |
5888 | 0 | ggml_fp16_t * dst_data = wdata; |
5889 | |
|
5890 | 0 | for (int64_t i11 = 0; i11 < ne11; i11++) { |
5891 | 0 | const float * const src = (float *)((char *) src1->data + i11*nb11); |
5892 | 0 | for (int64_t i10 = 0; i10 < ne10; i10++) { |
5893 | 0 | dst_data[i10*ne11 + i11] = GGML_CPU_FP32_TO_FP16(src[i10]); |
5894 | 0 | } |
5895 | 0 | } |
5896 | 0 | } |
5897 | | |
5898 | | // need to zero dst since we are accumulating into it |
5899 | 0 | memset(dst->data, 0, ggml_nbytes(dst)); |
5900 | 0 | } |
5901 | 0 | ggml_barrier(params->threadpool); |
5902 | |
|
5903 | 0 | const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; |
5904 | | |
5905 | | // total rows in dst |
5906 | 0 | const int nr = ne1; |
5907 | | |
5908 | | // rows per thread |
5909 | 0 | const int dr = (nr + nth - 1)/nth; |
5910 | | |
5911 | | // row range for this thread |
5912 | 0 | const int ir0 = dr*ith; |
5913 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
5914 | |
|
5915 | 0 | ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; |
5916 | 0 | ggml_fp16_t * const wdata_src = wdata + nk; |
5917 | |
|
5918 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
5919 | 0 | float * dst_data = (float *)((char *) dst->data + i1*nb1); |
5920 | 0 | ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00; |
5921 | 0 | for (int i10 = 0; i10 < ne10; i10++) { |
5922 | 0 | const int i1n = i10*ne11; |
5923 | 0 | for (int i00 = 0; i00 < ne00; i00++) { |
5924 | 0 | float v = 0; |
5925 | 0 | ggml_vec_dot_f16(ne02, &v, 0, |
5926 | 0 | (ggml_fp16_t *) wdata_src + i1n, 0, |
5927 | 0 | (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1); |
5928 | 0 | dst_data[i10*s0 + i00] += v; |
5929 | 0 | } |
5930 | 0 | } |
5931 | 0 | } |
5932 | 0 | } |
5933 | | |
5934 | | static void ggml_compute_forward_conv_transpose_1d_f32( |
5935 | | const ggml_compute_params * params, |
5936 | 0 | ggml_tensor * dst) { |
5937 | |
|
5938 | 0 | const ggml_tensor * src0 = dst->src[0]; |
5939 | 0 | const ggml_tensor * src1 = dst->src[1]; |
5940 | |
|
5941 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F32); |
5942 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
5943 | 0 | GGML_ASSERT( dst->type == GGML_TYPE_F32); |
5944 | |
|
5945 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
5946 | |
|
5947 | 0 | const int ith = params->ith; |
5948 | 0 | const int nth = params->nth; |
5949 | |
|
5950 | 0 | const int nk = ne00*ne01*ne02; |
5951 | |
|
5952 | 0 | GGML_ASSERT(nb00 == sizeof(float)); |
5953 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
5954 | |
|
5955 | 0 | if (ith == 0) { |
5956 | 0 | memset(params->wdata, 0, params->wsize); |
5957 | | |
5958 | | // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) |
5959 | 0 | { |
5960 | 0 | float * const wdata = (float *) params->wdata + 0; |
5961 | |
|
5962 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
5963 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
5964 | 0 | const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); |
5965 | 0 | float * dst_data = wdata + i01*ne00*ne02; |
5966 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
5967 | 0 | dst_data[i00*ne02 + i02] = src[i00]; |
5968 | 0 | } |
5969 | 0 | } |
5970 | 0 | } |
5971 | 0 | } |
5972 | | |
5973 | | // prepare source data (src1) |
5974 | 0 | { |
5975 | 0 | float * const wdata = (float *) params->wdata + nk; |
5976 | 0 | float * dst_data = wdata; |
5977 | |
|
5978 | 0 | for (int64_t i11 = 0; i11 < ne11; i11++) { |
5979 | 0 | const float * const src = (float *)((char *) src1->data + i11*nb11); |
5980 | 0 | for (int64_t i10 = 0; i10 < ne10; i10++) { |
5981 | 0 | dst_data[i10*ne11 + i11] = src[i10]; |
5982 | 0 | } |
5983 | 0 | } |
5984 | 0 | } |
5985 | | |
5986 | | // need to zero dst since we are accumulating into it |
5987 | 0 | memset(dst->data, 0, ggml_nbytes(dst)); |
5988 | 0 | } |
5989 | 0 | ggml_barrier(params->threadpool); |
5990 | |
|
5991 | 0 | const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; |
5992 | | |
5993 | | // total rows in dst |
5994 | 0 | const int nr = ne1; |
5995 | | |
5996 | | // rows per thread |
5997 | 0 | const int dr = (nr + nth - 1)/nth; |
5998 | | |
5999 | | // row range for this thread |
6000 | 0 | const int ir0 = dr*ith; |
6001 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
6002 | |
|
6003 | 0 | float * const wdata = (float *) params->wdata + 0; |
6004 | 0 | float * const wdata_src = wdata + nk; |
6005 | |
|
6006 | 0 | for (int i1 = ir0; i1 < ir1; i1++) { |
6007 | 0 | float * dst_data = (float *)((char *) dst->data + i1*nb1); |
6008 | 0 | float * wdata_kernel = wdata + i1*ne02*ne00; |
6009 | 0 | for (int i10 = 0; i10 < ne10; i10++) { |
6010 | 0 | const int i1n = i10*ne11; |
6011 | 0 | for (int i00 = 0; i00 < ne00; i00++) { |
6012 | 0 | float v = 0; |
6013 | 0 | ggml_vec_dot_f32(ne02, &v, 0, |
6014 | 0 | wdata_src + i1n, 0, |
6015 | 0 | wdata_kernel + i00*ne02, 0, 1); |
6016 | 0 | dst_data[i10*s0 + i00] += v; |
6017 | 0 | } |
6018 | 0 | } |
6019 | 0 | } |
6020 | 0 | } |
6021 | | |
6022 | | void ggml_compute_forward_conv_transpose_1d( |
6023 | | const ggml_compute_params * params, |
6024 | 0 | ggml_tensor * dst) { |
6025 | |
|
6026 | 0 | const ggml_tensor * src0 = dst->src[0]; |
6027 | |
|
6028 | 0 | switch (src0->type) { |
6029 | 0 | case GGML_TYPE_F16: |
6030 | 0 | { |
6031 | 0 | ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst); |
6032 | 0 | } break; |
6033 | 0 | case GGML_TYPE_F32: |
6034 | 0 | { |
6035 | 0 | ggml_compute_forward_conv_transpose_1d_f32(params, dst); |
6036 | 0 | } break; |
6037 | 0 | default: |
6038 | 0 | { |
6039 | 0 | GGML_ABORT("fatal error"); |
6040 | 0 | } |
6041 | 0 | } |
6042 | 0 | } |
6043 | | |
6044 | | // ggml_compute_forward_im2col_f32 |
6045 | | // src0: kernel [OC, IC, KH, KW] |
6046 | | // src1: image [N, IC, IH, IW] |
6047 | | // dst: result [N, OH, OW, IC*KH*KW] |
6048 | | static void ggml_compute_forward_im2col_f32( |
6049 | | const ggml_compute_params * params, |
6050 | 0 | ggml_tensor * dst) { |
6051 | |
|
6052 | 0 | const ggml_tensor * src0 = dst->src[0]; |
6053 | 0 | const ggml_tensor * src1 = dst->src[1]; |
6054 | |
|
6055 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
6056 | 0 | GGML_ASSERT( dst->type == GGML_TYPE_F32); |
6057 | |
|
6058 | 0 | GGML_TENSOR_BINARY_OP_LOCALS; |
6059 | |
|
6060 | 0 | const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; |
6061 | 0 | const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; |
6062 | 0 | const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; |
6063 | 0 | const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; |
6064 | 0 | const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; |
6065 | 0 | const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; |
6066 | 0 | const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; |
6067 | |
|
6068 | 0 | const int ith = params->ith; |
6069 | 0 | const int nth = params->nth; |
6070 | |
|
6071 | 0 | const int64_t N = is_2D ? ne13 : ne12; |
6072 | 0 | const int64_t IC = is_2D ? ne12 : ne11; |
6073 | 0 | const int64_t IH = is_2D ? ne11 : 1; |
6074 | 0 | const int64_t IW = ne10; |
6075 | |
|
6076 | 0 | const int64_t KH = is_2D ? ne01 : 1; |
6077 | 0 | const int64_t KW = ne00; |
6078 | |
|
6079 | 0 | const int64_t OH = is_2D ? ne2 : 1; |
6080 | 0 | const int64_t OW = ne1; |
6081 | |
|
6082 | 0 | int ofs0 = is_2D ? nb13 : nb12; |
6083 | 0 | int ofs1 = is_2D ? nb12 : nb11; |
6084 | |
|
6085 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
6086 | | |
6087 | | // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] |
6088 | 0 | { |
6089 | 0 | float * const wdata = (float *) dst->data; |
6090 | |
|
6091 | 0 | for (int64_t in = 0; in < N; in++) { |
6092 | 0 | for (int64_t ioh = 0; ioh < OH; ioh++) { // 1 |
6093 | 0 | for (int64_t iow = 0; iow < OW; iow++) { |
6094 | 0 | for (int64_t iic = ith; iic < IC; iic += nth) { |
6095 | | |
6096 | | // micro kernel |
6097 | 0 | float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] |
6098 | 0 | const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW] |
6099 | |
|
6100 | 0 | for (int64_t ikh = 0; ikh < KH; ikh++) { // 1 |
6101 | 0 | for (int64_t ikw = 0; ikw < KW; ikw++) { |
6102 | 0 | const int64_t iiw = iow*s0 + ikw*d0 - p0; |
6103 | 0 | const int64_t iih = ioh*s1 + ikh*d1 - p1; |
6104 | |
|
6105 | 0 | if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { |
6106 | 0 | dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0; |
6107 | 0 | } else { |
6108 | 0 | dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]); |
6109 | 0 | } |
6110 | 0 | } |
6111 | 0 | } |
6112 | 0 | } |
6113 | 0 | } |
6114 | 0 | } |
6115 | 0 | } |
6116 | 0 | } |
6117 | 0 | } |
6118 | | |
6119 | | |
6120 | | // ggml_compute_forward_im2col_f16 |
6121 | | // src0: kernel [OC, IC, KH, KW] |
6122 | | // src1: image [N, IC, IH, IW] |
6123 | | // dst: result [N, OH, OW, IC*KH*KW] |
6124 | | static void ggml_compute_forward_im2col_f16( |
6125 | | const ggml_compute_params * params, |
6126 | 0 | ggml_tensor * dst) { |
6127 | |
|
6128 | 0 | const ggml_tensor * src0 = dst->src[0]; |
6129 | 0 | const ggml_tensor * src1 = dst->src[1]; |
6130 | |
|
6131 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F16); |
6132 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
6133 | 0 | GGML_ASSERT( dst->type == GGML_TYPE_F16); |
6134 | |
|
6135 | 0 | GGML_TENSOR_BINARY_OP_LOCALS; |
6136 | |
|
6137 | 0 | const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; |
6138 | 0 | const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; |
6139 | 0 | const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; |
6140 | 0 | const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; |
6141 | 0 | const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; |
6142 | 0 | const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; |
6143 | 0 | const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; |
6144 | |
|
6145 | 0 | const int ith = params->ith; |
6146 | 0 | const int nth = params->nth; |
6147 | |
|
6148 | 0 | const int64_t N = is_2D ? ne13 : ne12; |
6149 | 0 | const int64_t IC = is_2D ? ne12 : ne11; |
6150 | 0 | const int64_t IH = is_2D ? ne11 : 1; |
6151 | 0 | const int64_t IW = ne10; |
6152 | |
|
6153 | 0 | const int64_t KH = is_2D ? ne01 : 1; |
6154 | 0 | const int64_t KW = ne00; |
6155 | |
|
6156 | 0 | const int64_t OH = is_2D ? ne2 : 1; |
6157 | 0 | const int64_t OW = ne1; |
6158 | |
|
6159 | 0 | int ofs0 = is_2D ? nb13 : nb12; |
6160 | 0 | int ofs1 = is_2D ? nb12 : nb11; |
6161 | |
|
6162 | 0 | GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); |
6163 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
6164 | | |
6165 | | // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] |
6166 | 0 | { |
6167 | 0 | ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data; |
6168 | |
|
6169 | 0 | for (int64_t in = 0; in < N; in++) { |
6170 | 0 | for (int64_t ioh = 0; ioh < OH; ioh++) { // 1 |
6171 | 0 | for (int64_t iow = 0; iow < OW; iow++) { |
6172 | 0 | for (int64_t iic = ith; iic < IC; iic += nth) { |
6173 | | |
6174 | | // micro kernel |
6175 | 0 | ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] |
6176 | 0 | const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW] |
6177 | |
|
6178 | 0 | for (int64_t ikh = 0; ikh < KH; ikh++) { // 1 |
6179 | 0 | for (int64_t ikw = 0; ikw < KW; ikw++) { |
6180 | 0 | const int64_t iiw = iow*s0 + ikw*d0 - p0; |
6181 | 0 | const int64_t iih = ioh*s1 + ikh*d1 - p1; |
6182 | |
|
6183 | 0 | if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { |
6184 | 0 | dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0; |
6185 | 0 | } else { |
6186 | 0 | dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(src_data[iih*IW + iiw]); |
6187 | 0 | } |
6188 | 0 | } |
6189 | 0 | } |
6190 | 0 | } |
6191 | 0 | } |
6192 | 0 | } |
6193 | 0 | } |
6194 | 0 | } |
6195 | 0 | } |
6196 | | |
6197 | | void ggml_compute_forward_im2col( |
6198 | | const ggml_compute_params * params, |
6199 | 0 | ggml_tensor * dst) { |
6200 | 0 | switch (dst->type) { |
6201 | 0 | case GGML_TYPE_F16: |
6202 | 0 | { |
6203 | 0 | ggml_compute_forward_im2col_f16(params, dst); |
6204 | 0 | } break; |
6205 | 0 | case GGML_TYPE_F32: |
6206 | 0 | { |
6207 | 0 | ggml_compute_forward_im2col_f32(params, dst); |
6208 | 0 | } break; |
6209 | 0 | default: |
6210 | 0 | { |
6211 | 0 | GGML_ABORT("fatal error"); |
6212 | 0 | } |
6213 | 0 | } |
6214 | 0 | } |
6215 | | |
6216 | | // ggml_compute_forward_im2col_back_f32 |
6217 | | |
6218 | | void ggml_compute_forward_im2col_back_f32( |
6219 | | const ggml_compute_params * params, |
6220 | 0 | ggml_tensor * dst) { |
6221 | |
|
6222 | 0 | const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output |
6223 | 0 | const ggml_tensor * src1 = dst->src[1]; // convolution kernel |
6224 | |
|
6225 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F32); |
6226 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
6227 | 0 | GGML_ASSERT( dst->type == GGML_TYPE_F32); |
6228 | |
|
6229 | 0 | GGML_TENSOR_BINARY_OP_LOCALS; |
6230 | |
|
6231 | 0 | const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; |
6232 | 0 | const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; |
6233 | 0 | const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; |
6234 | 0 | const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; |
6235 | 0 | const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; |
6236 | 0 | const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; |
6237 | 0 | const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; |
6238 | |
|
6239 | 0 | const int ith = params->ith; |
6240 | 0 | const int nth = params->nth; |
6241 | |
|
6242 | 0 | const int64_t N = is_2D ? ne3 : ne2; |
6243 | 0 | const int64_t IC = is_2D ? ne2 : ne1; |
6244 | 0 | const int64_t IH = is_2D ? ne1 : 1; |
6245 | 0 | const int64_t IW = ne0; |
6246 | |
|
6247 | 0 | const int64_t KH = is_2D ? ne11 : 1; |
6248 | 0 | const int64_t KW = ne10; |
6249 | |
|
6250 | 0 | const int64_t OH = is_2D ? ne02 : 1; |
6251 | 0 | const int64_t OW = ne01; |
6252 | |
|
6253 | 0 | int ofs0 = is_2D ? nb3 : nb2; |
6254 | 0 | int ofs1 = is_2D ? nb2 : nb1; |
6255 | |
|
6256 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
6257 | | |
6258 | | // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] |
6259 | 0 | { |
6260 | 0 | float * const wdata = (float *) dst->data; |
6261 | |
|
6262 | 0 | for (int64_t in = 0; in < N; in++) { |
6263 | 0 | for (int64_t iic = ith; iic < IC; iic += nth) { |
6264 | 0 | for (int64_t iih = 0; iih < IH; iih++) { |
6265 | 0 | for (int64_t iiw = 0; iiw < IW; iiw++) { |
6266 | | |
6267 | | // micro kernel |
6268 | 0 | float grad = 0.0f; |
6269 | 0 | for (int64_t ikh = 0; ikh < KH; ikh++) { |
6270 | 0 | for (int64_t ikw = 0; ikw < KW; ikw++) { |
6271 | | // For s0 > 1 some values were skipped over in the forward pass. |
6272 | | // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well. |
6273 | 0 | const int64_t tmpw = (iiw + p0 - ikw*d0); |
6274 | 0 | if (tmpw % s0 != 0) { |
6275 | 0 | continue; |
6276 | 0 | } |
6277 | 0 | const int64_t iow = tmpw / s0; |
6278 | | |
6279 | | // Equivalent logic as above except for s1. |
6280 | 0 | int64_t ioh; |
6281 | 0 | if (is_2D) { |
6282 | 0 | const int64_t tmph = iih + p1 - ikh*d1; |
6283 | |
|
6284 | 0 | if (tmph % s1 != 0) { |
6285 | 0 | continue; |
6286 | 0 | } |
6287 | | |
6288 | 0 | ioh = tmph / s1; |
6289 | 0 | } else { |
6290 | 0 | ioh = 0; |
6291 | 0 | } |
6292 | | |
6293 | 0 | if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) { |
6294 | 0 | continue; |
6295 | 0 | } |
6296 | | |
6297 | 0 | const float * const grad_in = (const float *) src0->data |
6298 | 0 | + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] |
6299 | 0 | grad += grad_in[iic*(KH*KW) + ikh*KW + ikw]; |
6300 | 0 | } |
6301 | 0 | } |
6302 | 0 | float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW] |
6303 | 0 | dst_data[iih*IW + iiw] = grad; |
6304 | 0 | } |
6305 | 0 | } |
6306 | 0 | } |
6307 | 0 | } |
6308 | 0 | } |
6309 | 0 | } |
6310 | | |
6311 | | |
6312 | | // ggml_compute_forward_im2col_3d_f16 |
6313 | | // src0: kernel [OC*IC, KD, KH, KW] |
6314 | | // src1: image [N*IC, ID, IH, IW] |
6315 | | // dst: result [N*OD, OH, OW, IC * KD * KH * KW] |
6316 | | static void ggml_compute_forward_im2col_3d_f16( |
6317 | | const ggml_compute_params * params, |
6318 | 0 | ggml_tensor * dst) { |
6319 | |
|
6320 | 0 | const ggml_tensor * src0 = dst->src[0]; |
6321 | 0 | const ggml_tensor * src1 = dst->src[1]; |
6322 | |
|
6323 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F16); |
6324 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
6325 | 0 | GGML_ASSERT( dst->type == GGML_TYPE_F16); |
6326 | |
|
6327 | 0 | GGML_TENSOR_BINARY_OP_LOCALS; |
6328 | |
|
6329 | 0 | const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; |
6330 | 0 | const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; |
6331 | 0 | const int32_t s2 = ((const int32_t *)(dst->op_params))[2]; |
6332 | 0 | const int32_t p0 = ((const int32_t *)(dst->op_params))[3]; |
6333 | 0 | const int32_t p1 = ((const int32_t *)(dst->op_params))[4]; |
6334 | 0 | const int32_t p2 = ((const int32_t *)(dst->op_params))[5]; |
6335 | 0 | const int32_t d0 = ((const int32_t *)(dst->op_params))[6]; |
6336 | 0 | const int32_t d1 = ((const int32_t *)(dst->op_params))[7]; |
6337 | 0 | const int32_t d2 = ((const int32_t *)(dst->op_params))[8]; |
6338 | 0 | const int32_t IC = ((const int32_t *)(dst->op_params))[9]; |
6339 | | |
6340 | |
|
6341 | 0 | const int ith = params->ith; |
6342 | 0 | const int nth = params->nth; |
6343 | |
|
6344 | 0 | const int64_t N = ne13 / IC; |
6345 | 0 | const int64_t ID = ne12; |
6346 | 0 | const int64_t IH = ne11; |
6347 | 0 | const int64_t IW = ne10; |
6348 | |
|
6349 | 0 | const int64_t OC = ne03 / IC; |
6350 | 0 | GGML_UNUSED(OC); |
6351 | 0 | const int64_t KD = ne02; |
6352 | 0 | const int64_t KH = ne01; |
6353 | 0 | const int64_t KW = ne00; |
6354 | |
|
6355 | 0 | const int64_t OD = ne3 / N; |
6356 | 0 | const int64_t OH = ne2; |
6357 | 0 | const int64_t OW = ne1; |
6358 | 0 | const int64_t OH_OW = OH*OW; |
6359 | 0 | const int64_t KD_KH_KW = KD*KH*KW; |
6360 | 0 | const int64_t KH_KW = KH*KW; |
6361 | 0 | const int64_t IC_KD_KH_KW = IC*KD*KH*KW; |
6362 | |
|
6363 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
6364 | | |
6365 | | // im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW] |
6366 | 0 | { |
6367 | 0 | ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data; |
6368 | |
|
6369 | 0 | for (int64_t in = 0; in < N; in++) { |
6370 | 0 | for (int64_t iod = 0; iod < OD; iod++) { |
6371 | 0 | for (int64_t ioh = 0; ioh < OH; ioh++) { |
6372 | 0 | for (int64_t iow = 0; iow < OW; iow++) { |
6373 | 0 | for (int64_t iic = ith; iic < IC; iic += nth) { |
6374 | | |
6375 | | // micro kernel |
6376 | 0 | ggml_fp16_t * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW] |
6377 | 0 | const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW] |
6378 | |
|
6379 | 0 | for (int64_t ikd = 0; ikd < KD; ikd++) { |
6380 | 0 | for (int64_t ikh = 0; ikh < KH; ikh++) { |
6381 | 0 | for (int64_t ikw = 0; ikw < KW; ikw++) { |
6382 | 0 | const int64_t iiw = iow*s0 + ikw*d0 - p0; |
6383 | 0 | const int64_t iih = ioh*s1 + ikh*d1 - p1; |
6384 | 0 | const int64_t iid = iod*s2 + ikd*d2 - p2; |
6385 | |
|
6386 | 0 | if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { |
6387 | 0 | dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0; |
6388 | 0 | } else { |
6389 | 0 | const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW] |
6390 | 0 | dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(*s); |
6391 | 0 | } |
6392 | 0 | } |
6393 | 0 | } |
6394 | 0 | } |
6395 | 0 | } |
6396 | 0 | } |
6397 | 0 | } |
6398 | 0 | } |
6399 | 0 | } |
6400 | 0 | } |
6401 | 0 | } |
6402 | | |
6403 | | // ggml_compute_forward_im2col_3d_f32 |
6404 | | // src0: kernel [OC*IC, KD, KH, KW] |
6405 | | // src1: image [N*IC, ID, IH, IW] |
6406 | | // dst: result [N*OD, OH, OW, IC * KD * KH * KW] |
6407 | | static void ggml_compute_forward_im2col_3d_f32( |
6408 | | const ggml_compute_params * params, |
6409 | 0 | ggml_tensor * dst) { |
6410 | |
|
6411 | 0 | const ggml_tensor * src0 = dst->src[0]; |
6412 | 0 | const ggml_tensor * src1 = dst->src[1]; |
6413 | |
|
6414 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
6415 | 0 | GGML_ASSERT( dst->type == GGML_TYPE_F32); |
6416 | |
|
6417 | 0 | GGML_TENSOR_BINARY_OP_LOCALS; |
6418 | |
|
6419 | 0 | const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; |
6420 | 0 | const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; |
6421 | 0 | const int32_t s2 = ((const int32_t *)(dst->op_params))[2]; |
6422 | 0 | const int32_t p0 = ((const int32_t *)(dst->op_params))[3]; |
6423 | 0 | const int32_t p1 = ((const int32_t *)(dst->op_params))[4]; |
6424 | 0 | const int32_t p2 = ((const int32_t *)(dst->op_params))[5]; |
6425 | 0 | const int32_t d0 = ((const int32_t *)(dst->op_params))[6]; |
6426 | 0 | const int32_t d1 = ((const int32_t *)(dst->op_params))[7]; |
6427 | 0 | const int32_t d2 = ((const int32_t *)(dst->op_params))[8]; |
6428 | 0 | const int32_t IC = ((const int32_t *)(dst->op_params))[9]; |
6429 | | |
6430 | |
|
6431 | 0 | const int ith = params->ith; |
6432 | 0 | const int nth = params->nth; |
6433 | |
|
6434 | 0 | const int64_t N = ne13 / IC; |
6435 | 0 | const int64_t ID = ne12; |
6436 | 0 | const int64_t IH = ne11; |
6437 | 0 | const int64_t IW = ne10; |
6438 | |
|
6439 | 0 | const int64_t OC = ne03 / IC; |
6440 | 0 | GGML_UNUSED(OC); |
6441 | 0 | const int64_t KD = ne02; |
6442 | 0 | const int64_t KH = ne01; |
6443 | 0 | const int64_t KW = ne00; |
6444 | |
|
6445 | 0 | const int64_t OD = ne3 / N; |
6446 | 0 | const int64_t OH = ne2; |
6447 | 0 | const int64_t OW = ne1; |
6448 | |
|
6449 | 0 | const int64_t OH_OW = OH*OW; |
6450 | 0 | const int64_t KD_KH_KW = KD*KH*KW; |
6451 | 0 | const int64_t KH_KW = KH*KW; |
6452 | 0 | const int64_t IC_KD_KH_KW = IC*KD*KH*KW; |
6453 | |
|
6454 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
6455 | | |
6456 | | // im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW] |
6457 | 0 | { |
6458 | 0 | float * const wdata = (float *) dst->data; |
6459 | |
|
6460 | 0 | for (int64_t in = 0; in < N; in++) { |
6461 | 0 | for (int64_t iod = 0; iod < OD; iod++) { |
6462 | 0 | for (int64_t ioh = 0; ioh < OH; ioh++) { |
6463 | 0 | for (int64_t iow = 0; iow < OW; iow++) { |
6464 | 0 | for (int64_t iic = ith; iic < IC; iic += nth) { |
6465 | | |
6466 | | // micro kernel |
6467 | 0 | float * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW] |
6468 | 0 | const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW] |
6469 | |
|
6470 | 0 | for (int64_t ikd = 0; ikd < KD; ikd++) { |
6471 | 0 | for (int64_t ikh = 0; ikh < KH; ikh++) { |
6472 | 0 | for (int64_t ikw = 0; ikw < KW; ikw++) { |
6473 | 0 | const int64_t iiw = iow*s0 + ikw*d0 - p0; |
6474 | 0 | const int64_t iih = ioh*s1 + ikh*d1 - p1; |
6475 | 0 | const int64_t iid = iod*s2 + ikd*d2 - p2; |
6476 | |
|
6477 | 0 | if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) { |
6478 | 0 | dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0; |
6479 | 0 | } else { |
6480 | 0 | const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW] |
6481 | 0 | dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = *s; |
6482 | 0 | } |
6483 | 0 | } |
6484 | 0 | } |
6485 | 0 | } |
6486 | 0 | } |
6487 | 0 | } |
6488 | 0 | } |
6489 | 0 | } |
6490 | 0 | } |
6491 | 0 | } |
6492 | 0 | } |
6493 | | |
6494 | | |
6495 | | void ggml_compute_forward_im2col_3d( |
6496 | | const ggml_compute_params * params, |
6497 | 0 | ggml_tensor * dst) { |
6498 | 0 | switch (dst->type) { |
6499 | 0 | case GGML_TYPE_F16: |
6500 | 0 | { |
6501 | 0 | ggml_compute_forward_im2col_3d_f16(params, dst); |
6502 | 0 | } break; |
6503 | 0 | case GGML_TYPE_F32: |
6504 | 0 | { |
6505 | 0 | ggml_compute_forward_im2col_3d_f32(params, dst); |
6506 | 0 | } break; |
6507 | 0 | default: |
6508 | 0 | { |
6509 | 0 | GGML_ABORT("fatal error"); |
6510 | 0 | } |
6511 | 0 | } |
6512 | 0 | } |
6513 | | |
6514 | | static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k, |
6515 | 0 | void * a, void * b, float * c) { |
6516 | 0 | const ggml_type_traits * traits = ggml_get_type_traits(type); |
6517 | 0 | struct ggml_tensor src1 = {}; |
6518 | 0 | src1.type = type; |
6519 | 0 | src1.ne[0] = k; |
6520 | 0 | src1.ne[1] = m; |
6521 | 0 | src1.ne[2] = 1; |
6522 | 0 | src1.ne[3] = 1; |
6523 | 0 | src1.nb[0] = traits->type_size; |
6524 | 0 | src1.nb[1] = k * traits->type_size; |
6525 | 0 | src1.nb[2] = src1.nb[1]; |
6526 | 0 | src1.nb[3] = src1.nb[2]; |
6527 | 0 | src1.data = a; |
6528 | |
|
6529 | 0 | struct ggml_tensor src0 = {}; |
6530 | 0 | src0.type = type; |
6531 | 0 | src0.ne[0] = k; |
6532 | 0 | src0.ne[1] = n; |
6533 | 0 | src0.ne[2] = 1; |
6534 | 0 | src0.ne[3] = 1; |
6535 | 0 | src0.nb[0] = traits->type_size; |
6536 | 0 | src0.nb[1] = k * traits->type_size; |
6537 | 0 | src0.nb[2] = src0.nb[1]; |
6538 | 0 | src0.nb[3] = src0.nb[2]; |
6539 | 0 | src0.data = b; |
6540 | |
|
6541 | 0 | struct ggml_tensor dst = {}; |
6542 | 0 | dst.ne[0] = n; |
6543 | 0 | dst.ne[1] = m; |
6544 | 0 | dst.ne[2] = 1; |
6545 | 0 | dst.ne[3] = 1; |
6546 | 0 | dst.nb[0] = sizeof(float); |
6547 | 0 | dst.nb[1] = n * sizeof(float); |
6548 | 0 | dst.nb[2] = dst.nb[1]; |
6549 | 0 | dst.nb[3] = dst.nb[2]; |
6550 | 0 | dst.data = c; |
6551 | 0 | dst.src[0] = &src0; |
6552 | 0 | dst.src[1] = &src1; |
6553 | |
|
6554 | 0 | ggml_compute_forward_mul_mat(params, &dst); |
6555 | 0 | } |
6556 | | |
6557 | 0 | static inline int64_t ggml_wrap_around(int64_t coord, int64_t size) { |
6558 | 0 | return (coord + size) % size; // adding size avoids negative number weirdness |
6559 | 0 | } |
6560 | | |
6561 | | // ggml_compute_forward_conv_2d |
6562 | | |
6563 | | |
6564 | | static void ggml_compute_forward_conv_2d_impl(const ggml_compute_params * params, |
6565 | | const ggml_tensor * kernel, // [KW, KH, IC, OC] |
6566 | | const ggml_tensor * src, // [W, H, C, N] |
6567 | | ggml_tensor * dst, // [OW, OH, OC, N] |
6568 | 0 | ggml_type kernel_type) { |
6569 | |
|
6570 | 0 | GGML_ASSERT(ggml_is_contiguous(kernel)); |
6571 | 0 | GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32); |
6572 | 0 | GGML_ASSERT(kernel->type == kernel_type); |
6573 | |
|
6574 | 0 | const ggml_type_traits * traits = ggml_get_type_traits(kernel_type); |
6575 | |
|
6576 | 0 | const int32_t stride_x = dst->op_params[0]; |
6577 | 0 | const int32_t stride_y = dst->op_params[1]; |
6578 | 0 | const int32_t pad_x = dst->op_params[2]; |
6579 | 0 | const int32_t pad_y = dst->op_params[3]; |
6580 | 0 | const int32_t dilation_x = dst->op_params[4]; |
6581 | 0 | const int32_t dilation_y = dst->op_params[5]; |
6582 | |
|
6583 | 0 | const int64_t c_in = src->ne[2]; |
6584 | 0 | const int64_t c_out = kernel->ne[3]; |
6585 | 0 | GGML_ASSERT(c_in == kernel->ne[2]); |
6586 | |
|
6587 | 0 | const int64_t src_w = src->ne[0]; |
6588 | 0 | const int64_t src_h = src->ne[1]; |
6589 | 0 | const int64_t knl_w = kernel->ne[0]; |
6590 | 0 | const int64_t knl_h = kernel->ne[1]; |
6591 | 0 | const int64_t dst_w = dst->ne[0]; |
6592 | 0 | const int64_t dst_h = dst->ne[1]; |
6593 | |
|
6594 | 0 | const float * src_data = (float *) src->data; |
6595 | 0 | void * knl_data = kernel->data; |
6596 | 0 | float * dst_data = (float *) dst->data; |
6597 | |
|
6598 | 0 | const int64_t knl_n = knl_w * knl_h * c_in; |
6599 | 0 | const int64_t patch_total = dst->ne[3] * dst_w * dst_h; |
6600 | |
|
6601 | 0 | const int64_t space_per_patch = knl_n * traits->type_size + c_out * sizeof(float); |
6602 | 0 | const int64_t batch_size = params->wsize / space_per_patch; |
6603 | 0 | const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size; |
6604 | 0 | const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch; |
6605 | |
|
6606 | 0 | GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1); |
6607 | |
|
6608 | 0 | void * tmp = params->wdata; |
6609 | |
|
6610 | 0 | for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) { |
6611 | |
|
6612 | 0 | const int64_t patch_start_batch = batch_i * patches_per_batch; |
6613 | 0 | const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch, |
6614 | 0 | patch_total); |
6615 | 0 | const int64_t patch_n = patch_end_batch - patch_start_batch; |
6616 | |
|
6617 | 0 | const int64_t patch_per_thread = (patch_n + params->nth - 1) / params->nth; |
6618 | 0 | const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread; |
6619 | 0 | const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch); |
6620 | | |
6621 | | //im2col for a patch |
6622 | 0 | for (int64_t p = patch_start; p < patch_end; ++p) { |
6623 | 0 | const int64_t batch_n = p / (dst_w * dst_h); |
6624 | 0 | const int64_t src_x = (p / dst_w) % dst_h; |
6625 | 0 | const int64_t src_y = p % dst_w; |
6626 | |
|
6627 | 0 | const float * src_base = (const float *)((const char *)src_data + batch_n * src->nb[3]); |
6628 | 0 | char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n * traits->type_size; |
6629 | |
|
6630 | 0 | for (int64_t ic = 0; ic < c_in; ++ic) { |
6631 | 0 | for (int64_t ky = 0; ky < knl_h; ++ky) { |
6632 | 0 | for (int64_t kx = 0; kx < knl_w; ++kx) { |
6633 | 0 | const int64_t sy = src_x * stride_y + ky * dilation_y - pad_y; |
6634 | 0 | const int64_t sx = src_y * stride_x + kx * dilation_x - pad_x; |
6635 | |
|
6636 | 0 | int64_t dst_idx = ic * (knl_h * knl_w) + ky * knl_w + kx; |
6637 | |
|
6638 | 0 | float src_val; |
6639 | 0 | if (sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) { |
6640 | 0 | src_val = 0.0f; |
6641 | 0 | } else { |
6642 | 0 | const float * src_ptr = (const float *)((const char *)src_base + sx * src->nb[0] + sy * src->nb[1] + ic * src->nb[2]); |
6643 | 0 | src_val = *src_ptr; |
6644 | 0 | } |
6645 | |
|
6646 | 0 | char * element_ptr = dst_row + dst_idx * traits->type_size; |
6647 | 0 | if (kernel_type == GGML_TYPE_F32) { |
6648 | 0 | *(float *) element_ptr = src_val; |
6649 | 0 | } else if (kernel_type == GGML_TYPE_F16) { |
6650 | 0 | *(ggml_fp16_t *) element_ptr = GGML_CPU_FP32_TO_FP16(src_val); |
6651 | 0 | } |
6652 | 0 | } |
6653 | 0 | } |
6654 | 0 | } |
6655 | 0 | } // patches handled by this thread |
6656 | |
|
6657 | 0 | ggml_barrier(params->threadpool); |
6658 | |
|
6659 | 0 | float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n * traits->type_size); |
6660 | |
|
6661 | 0 | GGML_ASSERT(gemm_output + patch_n * c_out <= (float*)tmp + params->wsize); |
6662 | | |
6663 | | // GEMM: patches[patch_n, knl_n] × kernel[knl_n, c_out] = output[patch_n, c_out] |
6664 | 0 | ggml_call_mul_mat(kernel_type, params, patch_n, c_out, knl_n, tmp, knl_data, gemm_output); |
6665 | |
|
6666 | 0 | ggml_barrier(params->threadpool); |
6667 | | |
6668 | | |
6669 | | //permute back [OC, N, OH, OW] to [N, OC, OH, OW] |
6670 | 0 | const int64_t permute_per_thread = (patch_n + params->nth - 1) / params->nth; |
6671 | 0 | const int64_t permute_start = params->ith * permute_per_thread; |
6672 | 0 | const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n); |
6673 | |
|
6674 | 0 | for (int64_t i = permute_start; i < permute_end; ++i) { |
6675 | 0 | const int64_t p = patch_start_batch + i; |
6676 | 0 | const int64_t batch_n = p / (dst_w * dst_h); |
6677 | 0 | const int64_t dst_y = (p / dst_w) % dst_h; |
6678 | 0 | const int64_t dst_x = p % dst_w; |
6679 | |
|
6680 | 0 | for (int64_t oc = 0; oc < c_out; ++oc) { |
6681 | 0 | const float value = gemm_output[i * c_out + oc]; |
6682 | 0 | float * dst_ptr = (float *)((char *)dst_data + dst_x * dst->nb[0] + dst_y * dst->nb[1] + oc * dst->nb[2] + batch_n * dst->nb[3]); |
6683 | 0 | *dst_ptr = value; |
6684 | 0 | } |
6685 | 0 | } |
6686 | 0 | } |
6687 | 0 | } |
6688 | | |
6689 | | void ggml_compute_forward_conv_2d( |
6690 | | const ggml_compute_params * params, |
6691 | 0 | ggml_tensor * dst) { |
6692 | |
|
6693 | 0 | const ggml_tensor * src0 = dst->src[0]; |
6694 | 0 | const ggml_tensor * src1 = dst->src[1]; |
6695 | |
|
6696 | 0 | ggml_compute_forward_conv_2d_impl(params, src0, src1, dst, src0->type); |
6697 | 0 | } |
6698 | | |
6699 | | // ggml_compute_forward_conv_3d |
6700 | | |
6701 | | static void ggml_compute_forward_conv_3d_impl(const ggml_compute_params * params, |
6702 | | const ggml_tensor * kernel, |
6703 | | const ggml_tensor * src, |
6704 | | ggml_tensor * dst, |
6705 | 0 | ggml_type kernel_type) { |
6706 | |
|
6707 | 0 | GGML_ASSERT(ggml_is_contiguous(kernel)); |
6708 | 0 | GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32); |
6709 | 0 | GGML_ASSERT(kernel->type == kernel_type); |
6710 | |
|
6711 | 0 | const ggml_type_traits * traits = ggml_get_type_traits(kernel_type); |
6712 | |
|
6713 | 0 | const int32_t s0 = dst->op_params[0]; |
6714 | 0 | const int32_t s1 = dst->op_params[1]; |
6715 | 0 | const int32_t s2 = dst->op_params[2]; |
6716 | 0 | const int32_t p0 = dst->op_params[3]; |
6717 | 0 | const int32_t p1 = dst->op_params[4]; |
6718 | 0 | const int32_t p2 = dst->op_params[5]; |
6719 | 0 | const int32_t d0 = dst->op_params[6]; |
6720 | 0 | const int32_t d1 = dst->op_params[7]; |
6721 | 0 | const int32_t d2 = dst->op_params[8]; |
6722 | 0 | const int32_t c = dst->op_params[9]; |
6723 | 0 | const int32_t n = dst->op_params[10]; |
6724 | 0 | const int32_t oc = dst->op_params[11]; |
6725 | |
|
6726 | 0 | const int64_t src_w = src->ne[0]; |
6727 | 0 | const int64_t src_h = src->ne[1]; |
6728 | 0 | const int64_t src_d = src->ne[2]; |
6729 | 0 | const int64_t knl_w = kernel->ne[0]; |
6730 | 0 | const int64_t knl_h = kernel->ne[1]; |
6731 | 0 | const int64_t knl_d = kernel->ne[2]; |
6732 | 0 | const int64_t dst_w = dst->ne[0]; |
6733 | 0 | const int64_t dst_h = dst->ne[1]; |
6734 | 0 | const int64_t dst_d = dst->ne[2]; |
6735 | |
|
6736 | 0 | const float * src_data = (float *) src->data; |
6737 | 0 | void * knl_data = kernel->data; |
6738 | 0 | float * dst_data = (float *) dst->data; |
6739 | |
|
6740 | 0 | const int64_t knl_n_per_channel = knl_w * knl_h * knl_d; |
6741 | 0 | const int64_t knl_n_total = knl_n_per_channel * c; |
6742 | 0 | const int64_t patch_total = n * dst_w * dst_h * dst_d; |
6743 | |
|
6744 | 0 | const int64_t space_per_patch = knl_n_total * traits->type_size + oc * sizeof(float); |
6745 | 0 | const int64_t batch_size = params->wsize / space_per_patch; |
6746 | 0 | const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size; |
6747 | 0 | const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch; |
6748 | |
|
6749 | 0 | GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1); |
6750 | |
|
6751 | 0 | void * tmp = params->wdata; |
6752 | |
|
6753 | 0 | for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) { |
6754 | 0 | const int64_t patch_start_batch = batch_i * patches_per_batch; |
6755 | 0 | const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch, patch_total); |
6756 | 0 | const int64_t patch_n_in_batch = patch_end_batch - patch_start_batch; |
6757 | |
|
6758 | 0 | const int64_t patch_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth; |
6759 | 0 | const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread; |
6760 | 0 | const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch); |
6761 | |
|
6762 | 0 | for (int64_t p = patch_start; p < patch_end; ++p) { |
6763 | 0 | const int64_t p_in_batch = p % (dst_w * dst_h * dst_d); |
6764 | 0 | const int64_t p_in_depth = p_in_batch % (dst_w * dst_h); |
6765 | 0 | const int64_t batch_idx = p / (dst_w * dst_h * dst_d); |
6766 | 0 | const int64_t dst_z = p_in_batch / (dst_w * dst_h); |
6767 | 0 | const int64_t dst_y = p_in_depth / dst_w; |
6768 | 0 | const int64_t dst_x = p_in_depth % dst_w; |
6769 | |
|
6770 | 0 | char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n_total * traits->type_size; |
6771 | |
|
6772 | 0 | for (int64_t ic = 0; ic < c; ++ic) { |
6773 | 0 | for (int64_t kz = 0; kz < knl_d; ++kz) { |
6774 | 0 | for (int64_t ky = 0; ky < knl_h; ++ky) { |
6775 | 0 | for (int64_t kx = 0; kx < knl_w; ++kx) { |
6776 | 0 | const int64_t sz = dst_z * s2 + kz * d2 - p2; |
6777 | 0 | const int64_t sy = dst_y * s1 + ky * d1 - p1; |
6778 | 0 | const int64_t sx = dst_x * s0 + kx * d0 - p0; |
6779 | |
|
6780 | 0 | int64_t dst_idx = ic * knl_n_per_channel + kz * (knl_h * knl_w) + ky * knl_w + kx; |
6781 | |
|
6782 | 0 | float src_val; |
6783 | 0 | if (sz < 0 || sz >= src_d || sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) { |
6784 | 0 | src_val = 0.0f; |
6785 | 0 | } else { |
6786 | 0 | const int64_t cn_idx = batch_idx * c + ic; |
6787 | 0 | const float * src_ptr = (const float *)((const char *)src_data + sx*src->nb[0] + sy*src->nb[1] + sz*src->nb[2] + cn_idx*src->nb[3]); |
6788 | 0 | src_val = *src_ptr; |
6789 | 0 | } |
6790 | |
|
6791 | 0 | char * element_ptr = dst_row + dst_idx * traits->type_size; |
6792 | 0 | if (kernel_type == GGML_TYPE_F32) { |
6793 | 0 | *(float *)element_ptr = src_val; |
6794 | 0 | } else if (kernel_type == GGML_TYPE_F16) { |
6795 | 0 | *(ggml_fp16_t *)element_ptr = GGML_CPU_FP32_TO_FP16(src_val); |
6796 | 0 | } |
6797 | 0 | } |
6798 | 0 | } |
6799 | 0 | } |
6800 | 0 | } |
6801 | 0 | } |
6802 | |
|
6803 | 0 | ggml_barrier(params->threadpool); |
6804 | |
|
6805 | 0 | float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n_total * traits->type_size); |
6806 | 0 | ggml_call_mul_mat(kernel_type, params, patch_n_in_batch, oc, knl_n_total, tmp, knl_data, gemm_output); |
6807 | |
|
6808 | 0 | ggml_barrier(params->threadpool); |
6809 | |
|
6810 | 0 | const int64_t permute_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth; |
6811 | 0 | const int64_t permute_start = params->ith * permute_per_thread; |
6812 | 0 | const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n_in_batch); |
6813 | |
|
6814 | 0 | for (int64_t i = permute_start; i < permute_end; ++i) { |
6815 | 0 | const int64_t p = patch_start_batch + i; |
6816 | 0 | const int64_t p_in_batch = p % (dst_w * dst_h * dst_d); |
6817 | 0 | const int64_t p_in_depth = p_in_batch % (dst_w * dst_h); |
6818 | 0 | const int64_t batch_idx = p / (dst_w * dst_h * dst_d); |
6819 | 0 | const int64_t dst_z = p_in_batch / (dst_w * dst_h); |
6820 | 0 | const int64_t dst_y = p_in_depth / dst_w; |
6821 | 0 | const int64_t dst_x = p_in_depth % dst_w; |
6822 | |
|
6823 | 0 | for (int64_t ioc = 0; ioc < oc; ++ioc) { |
6824 | 0 | const float value = gemm_output[i * oc + ioc]; |
6825 | 0 | const int64_t ocn_idx = batch_idx * oc + ioc; |
6826 | 0 | float * dst_ptr = (float *)((char *)dst_data + dst_x*dst->nb[0] + dst_y*dst->nb[1] + dst_z*dst->nb[2] + ocn_idx*dst->nb[3]); |
6827 | 0 | *dst_ptr = value; |
6828 | 0 | } |
6829 | 0 | } |
6830 | 0 | } |
6831 | 0 | } |
6832 | | |
6833 | | void ggml_compute_forward_conv_3d( |
6834 | | const ggml_compute_params * params, |
6835 | 0 | ggml_tensor * dst) { |
6836 | 0 | const ggml_tensor * src0 = dst->src[0]; |
6837 | 0 | const ggml_tensor * src1 = dst->src[1]; |
6838 | 0 | ggml_compute_forward_conv_3d_impl(params, src0, src1, dst, src0->type); |
6839 | 0 | } |
6840 | | |
6841 | | // ggml_compute_forward_conv_transpose_2d |
6842 | | |
6843 | | void ggml_compute_forward_conv_transpose_2d( |
6844 | | const ggml_compute_params * params, |
6845 | 0 | ggml_tensor * dst) { |
6846 | |
|
6847 | 0 | const ggml_tensor * src0 = dst->src[0]; |
6848 | 0 | const ggml_tensor * src1 = dst->src[1]; |
6849 | |
|
6850 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F16); |
6851 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
6852 | 0 | GGML_ASSERT( dst->type == GGML_TYPE_F32); |
6853 | |
|
6854 | 0 | GGML_TENSOR_BINARY_OP_LOCALS |
6855 | |
|
6856 | 0 | const int ith = params->ith; |
6857 | 0 | const int nth = params->nth; |
6858 | |
|
6859 | 0 | const int nk = ne00*ne01*ne02*ne03; |
6860 | |
|
6861 | 0 | GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); |
6862 | 0 | GGML_ASSERT(nb10 == sizeof(float)); |
6863 | |
|
6864 | 0 | if (ith == 0) { |
6865 | 0 | memset(params->wdata, 0, params->wsize); |
6866 | | |
6867 | | // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout) |
6868 | 0 | { |
6869 | 0 | ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; |
6870 | |
|
6871 | 0 | for (int64_t i03 = 0; i03 < ne03; i03++) { |
6872 | 0 | for (int64_t i02 = 0; i02 < ne02; i02++) { |
6873 | 0 | const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02); |
6874 | 0 | ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03; |
6875 | 0 | for (int64_t i01 = 0; i01 < ne01; i01++) { |
6876 | 0 | for (int64_t i00 = 0; i00 < ne00; i00++) { |
6877 | 0 | dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00]; |
6878 | 0 | } |
6879 | 0 | } |
6880 | 0 | } |
6881 | 0 | } |
6882 | 0 | } |
6883 | | |
6884 | | // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh) |
6885 | 0 | { |
6886 | 0 | ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk; |
6887 | 0 | for (int i12 = 0; i12 < ne12; i12++) { |
6888 | 0 | for (int i11 = 0; i11 < ne11; i11++) { |
6889 | 0 | const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11); |
6890 | 0 | ggml_fp16_t * dst_data = wdata + i11*ne10*ne12; |
6891 | 0 | for (int i10 = 0; i10 < ne10; i10++) { |
6892 | 0 | dst_data[i10*ne12 + i12] = GGML_CPU_FP32_TO_FP16(src[i10]); |
6893 | 0 | } |
6894 | 0 | } |
6895 | 0 | } |
6896 | 0 | } |
6897 | |
|
6898 | 0 | memset(dst->data, 0, ggml_nbytes(dst)); |
6899 | 0 | } |
6900 | 0 | ggml_barrier(params->threadpool); |
6901 | |
|
6902 | 0 | const int32_t stride = ggml_get_op_params_i32(dst, 0); |
6903 | | |
6904 | | // total patches in dst |
6905 | 0 | const int np = ne2; |
6906 | | |
6907 | | // patches per thread |
6908 | 0 | const int dp = (np + nth - 1)/nth; |
6909 | | |
6910 | | // patch range for this thread |
6911 | 0 | const int ip0 = dp*ith; |
6912 | 0 | const int ip1 = MIN(ip0 + dp, np); |
6913 | |
|
6914 | 0 | ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; |
6915 | 0 | ggml_fp16_t * const wdata_src = wdata + nk; |
6916 | |
|
6917 | 0 | for (int i2 = ip0; i2 < ip1; i2++) { // Cout |
6918 | 0 | float * dst_data = (float *)((char *) dst->data + i2*nb2); |
6919 | 0 | ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03; |
6920 | 0 | for (int i11 = 0; i11 < ne11; i11++) { |
6921 | 0 | for (int i10 = 0; i10 < ne10; i10++) { |
6922 | 0 | const int i1n = i11*ne10*ne12 + i10*ne12; |
6923 | 0 | for (int i01 = 0; i01 < ne01; i01++) { |
6924 | 0 | for (int i00 = 0; i00 < ne00; i00++) { |
6925 | 0 | float v = 0; |
6926 | 0 | ggml_vec_dot_f16(ne03, &v, 0, |
6927 | 0 | wdata_src + i1n, 0, |
6928 | 0 | wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1); |
6929 | 0 | dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v; |
6930 | 0 | } |
6931 | 0 | } |
6932 | 0 | } |
6933 | 0 | } |
6934 | 0 | } |
6935 | 0 | } |
6936 | | |
6937 | | // ggml_compute_forward_conv_2d_dw |
6938 | | |
6939 | | struct ggml_conv_2d_dw_params { |
6940 | | int64_t channels; |
6941 | | int64_t batch; |
6942 | | int64_t src_w; |
6943 | | int64_t src_h; |
6944 | | int64_t dst_w; |
6945 | | int64_t dst_h; |
6946 | | int64_t knl_w; |
6947 | | int64_t knl_h; |
6948 | | int stride_x; |
6949 | | int stride_y; |
6950 | | int pad_x; |
6951 | | int pad_y; |
6952 | | int dilation_x; |
6953 | | int dilation_y; |
6954 | | }; |
6955 | | |
6956 | | static void ggml_compute_forward_conv_2d_dw_cwhn( |
6957 | | const ggml_compute_params * params, |
6958 | | const ggml_tensor * src, |
6959 | | const ggml_tensor * kernel, |
6960 | | ggml_tensor * dst, |
6961 | 0 | const ggml_conv_2d_dw_params & p) { |
6962 | |
|
6963 | 0 | const int64_t c = p.channels; |
6964 | 0 | const float * knl_data = (const float *)kernel->data; |
6965 | |
|
6966 | 0 | const int64_t rows_total = p.dst_h * p.batch; |
6967 | 0 | const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth; |
6968 | 0 | const int64_t row_start = params->ith * rows_per_thread; |
6969 | 0 | const int64_t row_end = MIN(row_start + rows_per_thread, rows_total); |
6970 | |
|
6971 | 0 | #ifdef GGML_SIMD |
6972 | | #if defined(__ARM_FEATURE_SVE) |
6973 | | const int64_t pkg_size = svcntw(); |
6974 | | #else |
6975 | 0 | const int64_t pkg_size = GGML_F32_EPR; |
6976 | 0 | #endif |
6977 | 0 | const int64_t pkg_count = c / pkg_size; |
6978 | 0 | const int64_t c_pkg_end = pkg_count * pkg_size; |
6979 | | #else |
6980 | | const int64_t c_pkg_end = 0; |
6981 | | #endif |
6982 | |
|
6983 | 0 | for (int64_t row = row_start; row < row_end; ++row) { |
6984 | 0 | const int64_t dst_y = row % p.dst_h; |
6985 | 0 | const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c; |
6986 | 0 | for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) { |
6987 | 0 | float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c; |
6988 | 0 | const int64_t src_y_base = dst_y * p.stride_y - p.pad_y; |
6989 | 0 | const int64_t src_x_base = dst_x * p.stride_x - p.pad_x; |
6990 | |
|
6991 | 0 | #ifdef GGML_SIMD |
6992 | | // Vectorized loop |
6993 | 0 | for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) { |
6994 | 0 | GGML_F32_VEC sum = GGML_F32_VEC_ZERO; |
6995 | 0 | for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) { |
6996 | 0 | const int64_t src_y = src_y_base + knl_y * p.dilation_y; |
6997 | 0 | if (src_y < 0 || src_y >= p.src_h) { |
6998 | 0 | continue; |
6999 | 0 | } |
7000 | 0 | for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) { |
7001 | 0 | const int64_t src_x = src_x_base + knl_x * p.dilation_x; |
7002 | 0 | if (src_x < 0 || src_x >= p.src_w) { |
7003 | 0 | continue; |
7004 | 0 | } |
7005 | 0 | GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i); |
7006 | 0 | GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i); |
7007 | 0 | sum = GGML_F32_VEC_FMA(sum, k, s); |
7008 | 0 | } |
7009 | 0 | } |
7010 | 0 | GGML_F32_VEC_STORE(dst_data + c_i, sum); |
7011 | 0 | } |
7012 | 0 | #endif |
7013 | | // Scalar loop |
7014 | 0 | for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) { |
7015 | 0 | float sum = 0.0f; |
7016 | 0 | for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) { |
7017 | 0 | const int64_t src_y = src_y_base + knl_y * p.dilation_y; |
7018 | 0 | if (src_y < 0 || src_y >= p.src_h) { |
7019 | 0 | continue; |
7020 | 0 | } |
7021 | 0 | for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) { |
7022 | 0 | const int64_t src_x = src_x_base + knl_x * p.dilation_x; |
7023 | 0 | if (src_x < 0 || src_x >= p.src_w) { |
7024 | 0 | continue; |
7025 | 0 | } |
7026 | 0 | sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i] |
7027 | 0 | * src_data[(src_y * p.src_w + src_x) * c + c_i]; |
7028 | 0 | } |
7029 | 0 | } |
7030 | 0 | dst_data[c_i] = sum; |
7031 | 0 | } |
7032 | 0 | } |
7033 | 0 | } |
7034 | 0 | } |
7035 | | |
7036 | | static void ggml_compute_forward_conv_2d_dw_whcn( |
7037 | | const ggml_compute_params * params, |
7038 | | const ggml_tensor * src, |
7039 | | const ggml_tensor * kernel, |
7040 | | ggml_tensor * dst, |
7041 | 0 | const ggml_conv_2d_dw_params & p) { |
7042 | |
|
7043 | 0 | const int64_t n = p.channels * p.batch; |
7044 | 0 | const int64_t per_thread = (n + params->nth - 1) / params->nth; |
7045 | 0 | const int64_t start = params->ith * per_thread; |
7046 | 0 | const int64_t end = MIN(start + per_thread, n); |
7047 | |
|
7048 | 0 | for (int64_t i = start; i < end; ++i) { |
7049 | 0 | const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h; |
7050 | 0 | const float * src_data = (const float *)src->data + i * p.src_w * p.src_h; |
7051 | 0 | float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h; |
7052 | |
|
7053 | 0 | for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) { |
7054 | 0 | for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) { |
7055 | |
|
7056 | 0 | float sum = 0.0f; |
7057 | 0 | for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) { |
7058 | 0 | const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y; |
7059 | 0 | if (src_y < 0 || src_y >= p.src_h) { |
7060 | 0 | continue; |
7061 | 0 | } |
7062 | 0 | for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) { |
7063 | 0 | const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x; |
7064 | 0 | if (src_x < 0 || src_x >= p.src_w) { |
7065 | 0 | continue; |
7066 | 0 | } |
7067 | 0 | sum += knl_data[knl_y * p.knl_w + knl_x] |
7068 | 0 | * src_data[src_y * p.src_w + src_x]; |
7069 | 0 | } |
7070 | 0 | } |
7071 | 0 | dst_data[dst_y * p.dst_w + dst_x] = sum; |
7072 | 0 | } |
7073 | 0 | } |
7074 | 0 | } |
7075 | 0 | } |
7076 | | |
7077 | | void ggml_compute_forward_conv_2d_dw( |
7078 | | const ggml_compute_params * params, |
7079 | 0 | ggml_tensor * dst) { |
7080 | |
|
7081 | 0 | const ggml_tensor * kernel = dst->src[0]; |
7082 | 0 | const ggml_tensor * src = dst->src[1]; |
7083 | 0 | ggml_conv_2d_dw_params p; |
7084 | 0 | p.channels = src->ne[2]; |
7085 | 0 | p.batch = src->ne[3]; |
7086 | 0 | p.src_w = src->ne[0]; |
7087 | 0 | p.src_h = src->ne[1]; |
7088 | 0 | p.dst_w = dst->ne[0]; |
7089 | 0 | p.dst_h = dst->ne[1]; |
7090 | 0 | p.knl_w = kernel->ne[0]; |
7091 | 0 | p.knl_h = kernel->ne[1]; |
7092 | 0 | p.stride_x = dst->op_params[0]; |
7093 | 0 | p.stride_y = dst->op_params[1]; |
7094 | 0 | p.pad_x = dst->op_params[2]; |
7095 | 0 | p.pad_y = dst->op_params[3]; |
7096 | 0 | p.dilation_x = dst->op_params[4]; |
7097 | 0 | p.dilation_y = dst->op_params[5]; |
7098 | |
|
7099 | 0 | GGML_ASSERT(kernel->ne[3] == p.channels); |
7100 | 0 | GGML_ASSERT(dst->ne[3] == p.batch); |
7101 | |
|
7102 | 0 | if (ggml_is_contiguous(src)) { |
7103 | 0 | ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p); |
7104 | 0 | } else if (ggml_is_contiguous_channels(src)) { |
7105 | | // kernel should also have channels most contiguous in memory |
7106 | 0 | GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]); |
7107 | 0 | ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p); |
7108 | 0 | } else { |
7109 | 0 | GGML_ABORT("non-contiguous memory layout not supported"); |
7110 | 0 | } |
7111 | 0 | } |
7112 | | |
7113 | | // ggml_compute_forward_pool_1d_sk_p0 |
7114 | | |
7115 | | static void ggml_compute_forward_pool_1d_sk_p0( |
7116 | | const ggml_compute_params * params, |
7117 | | const ggml_op_pool op, |
7118 | | const int k, |
7119 | 0 | ggml_tensor * dst) { |
7120 | |
|
7121 | 0 | const ggml_tensor * src = dst->src[0]; |
7122 | |
|
7123 | 0 | assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16); |
7124 | |
|
7125 | 0 | if (params->ith != 0) { |
7126 | 0 | return; |
7127 | 0 | } |
7128 | | |
7129 | 0 | const char * cdata = (const char *)src->data; |
7130 | 0 | const char * const data_end = cdata + ggml_nbytes(src); |
7131 | 0 | float * drow = (float *)dst->data; |
7132 | |
|
7133 | 0 | const int64_t rs = dst->ne[0]; |
7134 | |
|
7135 | 0 | while (cdata < data_end) { |
7136 | 0 | const void * srow = (const void *)cdata; |
7137 | 0 | int j = 0; |
7138 | 0 | for (int64_t i = 0; i < rs; ++i) { |
7139 | 0 | switch (op) { |
7140 | 0 | case GGML_OP_POOL_AVG: drow[i] = 0; break; |
7141 | 0 | case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break; |
7142 | 0 | case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); |
7143 | 0 | } |
7144 | 0 | for (int ki = 0; ki < k; ++ki) { |
7145 | 0 | const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]); |
7146 | 0 | switch (op) { |
7147 | 0 | case GGML_OP_POOL_AVG: drow[i] += srow_j; break; |
7148 | 0 | case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break; |
7149 | 0 | case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); |
7150 | 0 | } |
7151 | 0 | ++j; |
7152 | 0 | } |
7153 | 0 | switch (op) { |
7154 | 0 | case GGML_OP_POOL_AVG: drow[i] /= k; break; |
7155 | 0 | case GGML_OP_POOL_MAX: break; |
7156 | 0 | case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); |
7157 | 0 | } |
7158 | 0 | } |
7159 | | |
7160 | 0 | cdata += src->nb[1]; |
7161 | 0 | drow += rs; |
7162 | 0 | } |
7163 | 0 | } |
7164 | | |
7165 | | // ggml_compute_forward_pool_1d |
7166 | | |
7167 | | void ggml_compute_forward_pool_1d( |
7168 | | const ggml_compute_params * params, |
7169 | 0 | ggml_tensor * dst) { |
7170 | |
|
7171 | 0 | const int32_t * opts = (const int32_t *)dst->op_params; |
7172 | 0 | ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]); |
7173 | 0 | const int k0 = opts[1]; |
7174 | 0 | const int s0 = opts[2]; |
7175 | 0 | const int p0 = opts[3]; |
7176 | 0 | GGML_ASSERT(p0 == 0); // padding not supported |
7177 | 0 | GGML_ASSERT(k0 == s0); // only s = k supported |
7178 | |
|
7179 | 0 | ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst); |
7180 | 0 | } |
7181 | | |
7182 | | // ggml_compute_forward_pool_2d |
7183 | | |
7184 | | void ggml_compute_forward_pool_2d( |
7185 | | const ggml_compute_params * params, |
7186 | 0 | ggml_tensor * dst) { |
7187 | |
|
7188 | 0 | const ggml_tensor * src = dst->src[0]; |
7189 | |
|
7190 | 0 | assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16); |
7191 | |
|
7192 | 0 | if (params->ith != 0) { |
7193 | 0 | return; |
7194 | 0 | } |
7195 | | |
7196 | 0 | const int32_t * opts = (const int32_t *)dst->op_params; |
7197 | 0 | ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]); |
7198 | 0 | const int k0 = opts[1]; |
7199 | 0 | const int k1 = opts[2]; |
7200 | 0 | const int s0 = opts[3]; |
7201 | 0 | const int s1 = opts[4]; |
7202 | 0 | const int p0 = opts[5]; |
7203 | 0 | const int p1 = opts[6]; |
7204 | 0 | const char * cdata = (const char*)src->data; |
7205 | 0 | const char * const data_end = cdata + ggml_nbytes(src); |
7206 | |
|
7207 | 0 | const int64_t px = dst->ne[0]; |
7208 | 0 | const int64_t py = dst->ne[1]; |
7209 | 0 | const int64_t pa = px * py; |
7210 | |
|
7211 | 0 | float * dplane = (float *)dst->data; |
7212 | |
|
7213 | 0 | const int ka = k0 * k1; |
7214 | 0 | const int offset0 = -p0; |
7215 | 0 | const int offset1 = -p1; |
7216 | |
|
7217 | 0 | while (cdata < data_end) { |
7218 | 0 | for (int oy = 0; oy < py; ++oy) { |
7219 | 0 | float * const drow = dplane + oy * px; |
7220 | 0 | for (int ox = 0; ox < px; ++ox) { |
7221 | 0 | float * const out = drow + ox; |
7222 | 0 | switch (op) { |
7223 | 0 | case GGML_OP_POOL_AVG: *out = 0; break; |
7224 | 0 | case GGML_OP_POOL_MAX: *out = -FLT_MAX; break; |
7225 | 0 | case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); |
7226 | 0 | } |
7227 | | |
7228 | 0 | const int ix = offset0 + ox * s0; |
7229 | 0 | const int iy = offset1 + oy * s1; |
7230 | |
|
7231 | 0 | for (int ky = 0; ky < k1; ++ky) { |
7232 | 0 | if (iy + ky < 0 || iy + ky >= src->ne[1]) continue; |
7233 | 0 | const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky)); |
7234 | 0 | for (int kx = 0; kx < k0; ++kx) { |
7235 | 0 | int j = ix + kx; |
7236 | 0 | if (j < 0 || j >= src->ne[0]) continue; |
7237 | 0 | const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]); |
7238 | 0 | switch (op) { |
7239 | 0 | case GGML_OP_POOL_AVG: *out += srow_j; break; |
7240 | 0 | case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break; |
7241 | 0 | case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); |
7242 | 0 | } |
7243 | 0 | } |
7244 | 0 | } |
7245 | 0 | switch (op) { |
7246 | 0 | case GGML_OP_POOL_AVG: *out /= ka; break; |
7247 | 0 | case GGML_OP_POOL_MAX: break; |
7248 | 0 | case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error"); |
7249 | 0 | } |
7250 | 0 | } |
7251 | 0 | } |
7252 | | |
7253 | 0 | cdata += src->nb[2]; |
7254 | 0 | dplane += pa; |
7255 | 0 | } |
7256 | 0 | } |
7257 | | |
7258 | | // ggml_compute_forward_pool_2d_back |
7259 | | |
7260 | | void ggml_compute_forward_pool_2d_back( |
7261 | | const ggml_compute_params * params, |
7262 | 0 | ggml_tensor * dst) { |
7263 | |
|
7264 | 0 | const ggml_tensor * src = dst->src[0]; |
7265 | 0 | const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst |
7266 | |
|
7267 | 0 | assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16); |
7268 | |
|
7269 | 0 | if (params->ith != 0) { |
7270 | 0 | return; |
7271 | 0 | } |
7272 | | |
7273 | 0 | const int32_t * opts = (const int32_t *)dst->op_params; |
7274 | 0 | ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]); |
7275 | 0 | const int k0 = opts[1]; |
7276 | 0 | const int k1 = opts[2]; |
7277 | 0 | const int s0 = opts[3]; |
7278 | 0 | const int s1 = opts[4]; |
7279 | 0 | const int p0 = opts[5]; |
7280 | 0 | const int p1 = opts[6]; |
7281 | |
|
7282 | 0 | char * cdata = (char *) dst->data; |
7283 | 0 | const char * cdataf = (const char *) dstf->data; |
7284 | 0 | const char * const data_end = cdata + ggml_nbytes(dst); |
7285 | |
|
7286 | 0 | GGML_ASSERT(params->ith == 0); |
7287 | 0 | memset(cdata, 0, ggml_nbytes(dst)); |
7288 | |
|
7289 | 0 | const int64_t px = src->ne[0]; |
7290 | 0 | const int64_t py = src->ne[1]; |
7291 | 0 | const int64_t pa = px * py; |
7292 | |
|
7293 | 0 | const float * splane = (const float *) src->data; |
7294 | |
|
7295 | 0 | const int ka = k0 * k1; |
7296 | 0 | const int offset0 = -p0; |
7297 | 0 | const int offset1 = -p1; |
7298 | |
|
7299 | 0 | while (cdata < data_end) { |
7300 | 0 | for (int oy = 0; oy < py; ++oy) { |
7301 | 0 | const float * const srow = splane + oy * px; |
7302 | 0 | for (int ox = 0; ox < px; ++ox) { |
7303 | 0 | const float grad0 = srow[ox]; |
7304 | |
|
7305 | 0 | const int ix = offset0 + ox * s0; |
7306 | 0 | const int iy = offset1 + oy * s1; |
7307 | |
|
7308 | 0 | if (op == GGML_OP_POOL_MAX) { |
7309 | 0 | float maxval = -FLT_MAX; |
7310 | 0 | int kxmax = -1; |
7311 | 0 | int kymax = -1; |
7312 | |
|
7313 | 0 | for (int ky = 0; ky < k1; ++ky) { |
7314 | 0 | if (iy + ky < 0 || iy + ky >= dst->ne[1]) { |
7315 | 0 | continue; |
7316 | 0 | } |
7317 | 0 | const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky)); |
7318 | 0 | for (int kx = 0; kx < k0; ++kx) { |
7319 | 0 | int j = ix + kx; |
7320 | 0 | if (j < 0 || j >= dst->ne[0]) { |
7321 | 0 | continue; |
7322 | 0 | } |
7323 | | |
7324 | 0 | const float val = dst->type == GGML_TYPE_F32 ? |
7325 | 0 | ((const float *) drowf)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]); |
7326 | 0 | if (val <= maxval) { |
7327 | 0 | continue; |
7328 | 0 | } |
7329 | | |
7330 | 0 | maxval = val; |
7331 | 0 | kxmax = kx; |
7332 | 0 | kymax = ky; |
7333 | 0 | } |
7334 | 0 | } |
7335 | |
|
7336 | 0 | if (kxmax == -1 || kymax == -1) { |
7337 | 0 | continue; |
7338 | 0 | } |
7339 | | |
7340 | 0 | void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax)); |
7341 | 0 | const int j = ix + kxmax; |
7342 | 0 | if (dst->type == GGML_TYPE_F32) { |
7343 | 0 | ((float *) drow)[j] += grad0; |
7344 | 0 | } else { |
7345 | 0 | ((ggml_fp16_t *) drow)[j] = GGML_CPU_FP32_TO_FP16(grad0 + GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j])); |
7346 | 0 | } |
7347 | 0 | } else if (op == GGML_OP_POOL_AVG) { |
7348 | 0 | const float grad = grad0 / ka; |
7349 | |
|
7350 | 0 | for (int ky = 0; ky < k1; ++ky) { |
7351 | 0 | if (iy + ky < 0 || iy + ky >= dst->ne[1]) { |
7352 | 0 | continue; |
7353 | 0 | } |
7354 | 0 | void * drow = (void *)(cdata + dst->nb[1] * (iy + ky)); |
7355 | 0 | for (int kx = 0; kx < k0; ++kx) { |
7356 | 0 | int j = ix + kx; |
7357 | 0 | if (j < 0 || j >= dst->ne[0]) { |
7358 | 0 | continue; |
7359 | 0 | } |
7360 | | |
7361 | 0 | if (dst->type == GGML_TYPE_F32) { |
7362 | 0 | ((float *) drow)[j] += grad; |
7363 | 0 | } else { |
7364 | 0 | ((ggml_fp16_t *) drow)[j] += GGML_CPU_FP32_TO_FP16(grad); |
7365 | 0 | } |
7366 | 0 | } |
7367 | 0 | } |
7368 | 0 | } else { |
7369 | 0 | GGML_ASSERT(false); |
7370 | 0 | } |
7371 | 0 | } |
7372 | 0 | } |
7373 | |
|
7374 | 0 | cdata += dst->nb[2]; |
7375 | 0 | cdataf += dst->nb[2]; |
7376 | 0 | splane += pa; |
7377 | 0 | } |
7378 | 0 | } |
7379 | | |
7380 | | // ggml_compute_forward_upscale |
7381 | | |
7382 | | static void ggml_compute_forward_upscale_f32( |
7383 | | const ggml_compute_params * params, |
7384 | 0 | ggml_tensor * dst) { |
7385 | |
|
7386 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7387 | |
|
7388 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F32); |
7389 | |
|
7390 | 0 | const int ith = params->ith; |
7391 | 0 | const int nth = params->nth; |
7392 | |
|
7393 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
7394 | |
|
7395 | 0 | float sf0 = (float)ne0/src0->ne[0]; |
7396 | 0 | float sf1 = (float)ne1/src0->ne[1]; |
7397 | 0 | float sf2 = (float)ne2/src0->ne[2]; |
7398 | 0 | float sf3 = (float)ne3/src0->ne[3]; |
7399 | 0 | float pixel_offset = 0.5f; |
7400 | |
|
7401 | 0 | const int32_t mode_flags = ggml_get_op_params_i32(dst, 0); |
7402 | 0 | const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF); |
7403 | |
|
7404 | 0 | if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) { |
7405 | 0 | pixel_offset = 0.0f; |
7406 | 0 | sf0 = ne0 > 1 && ne00 > 1 ? (float)(ne0 - 1) / (ne00 - 1) : sf0; |
7407 | 0 | sf1 = ne1 > 1 && ne01 > 1 ? (float)(ne1 - 1) / (ne01 - 1) : sf1; |
7408 | 0 | } |
7409 | |
|
7410 | 0 | if (mode == GGML_SCALE_MODE_NEAREST) { |
7411 | 0 | for (int64_t i3 = 0; i3 < ne3; i3++) { |
7412 | 0 | const int64_t i03 = i3 / sf3; |
7413 | 0 | for (int64_t i2 = ith; i2 < ne2; i2 += nth) { |
7414 | 0 | const int64_t i02 = i2 / sf2; |
7415 | 0 | for (int64_t i1 = 0; i1 < ne1; i1++) { |
7416 | 0 | const int64_t i01 = i1 / sf1; |
7417 | 0 | for (int64_t i0 = 0; i0 < ne0; i0++) { |
7418 | 0 | const int64_t i00 = i0 / sf0; |
7419 | |
|
7420 | 0 | const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); |
7421 | 0 | float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); |
7422 | |
|
7423 | 0 | *y = *x; |
7424 | 0 | } |
7425 | 0 | } |
7426 | 0 | } |
7427 | 0 | } |
7428 | 0 | } else if (mode == GGML_SCALE_MODE_BILINEAR && (mode_flags & GGML_SCALE_FLAG_ANTIALIAS)) { |
7429 | | // Similar to F.interpolate(..., mode="bilinear", align_corners=False, antialias=True) |
7430 | | // https://github.com/pytorch/pytorch/blob/8871ff29b743948d1225389d5b7068f37b22750b/aten/src/ATen/native/cpu/UpSampleKernel.cpp |
7431 | 0 | auto triangle_filter = [](float x) -> float { |
7432 | 0 | return std::max(1.0f - fabsf(x), 0.0f); |
7433 | 0 | }; |
7434 | | |
7435 | | // support and invscale, minimum 1 pixel for bilinear |
7436 | 0 | const float support1 = std::max(1.0f, 1.0f / sf1); |
7437 | 0 | const float invscale1 = 1.0f / support1; |
7438 | 0 | const float support0 = std::max(1.0f, 1.0f / sf0); |
7439 | 0 | const float invscale0 = 1.0f / support0; |
7440 | |
|
7441 | 0 | for (int64_t i3 = 0; i3 < ne3; i3++) { |
7442 | 0 | const int64_t i03 = i3 / sf3; |
7443 | 0 | for (int64_t i2 = ith; i2 < ne2; i2 += nth) { |
7444 | 0 | const int64_t i02 = i2 / sf2; |
7445 | 0 | for (int64_t i1 = 0; i1 < ne1; i1++) { |
7446 | 0 | const float y = ((float) i1 + pixel_offset) / sf1; |
7447 | 0 | for (int64_t i0 = 0; i0 < ne0; i0++) { |
7448 | 0 | const float x = ((float) i0 + pixel_offset) / sf0; |
7449 | | |
7450 | | // the range of source pixels that contribute |
7451 | 0 | const int64_t x_min = std::max<int64_t>(x - support0 + pixel_offset, 0); |
7452 | 0 | const int64_t x_max = std::min<int64_t>(x + support0 + pixel_offset, ne00); |
7453 | 0 | const int64_t y_min = std::max<int64_t>(y - support1 + pixel_offset, 0); |
7454 | 0 | const int64_t y_max = std::min<int64_t>(y + support1 + pixel_offset, ne01); |
7455 | | |
7456 | | // bilinear filter with antialiasing |
7457 | 0 | float val = 0.0f; |
7458 | 0 | float total_weight = 0.0f; |
7459 | |
|
7460 | 0 | for (int64_t sy = y_min; sy < y_max; sy++) { |
7461 | 0 | const float weight_y = triangle_filter((sy - y + pixel_offset) * invscale1); |
7462 | |
|
7463 | 0 | for (int64_t sx = x_min; sx < x_max; sx++) { |
7464 | 0 | const float weight_x = triangle_filter((sx - x + pixel_offset) * invscale0); |
7465 | 0 | const float weight = weight_x * weight_y; |
7466 | |
|
7467 | 0 | if (weight <= 0.0f) { |
7468 | 0 | continue; |
7469 | 0 | } |
7470 | | |
7471 | 0 | const float pixel = *(const float *)((const char *)src0->data + sx*nb00 + sy*nb01 + i02*nb02 + i03*nb03); |
7472 | 0 | val += pixel * weight; |
7473 | 0 | total_weight += weight; |
7474 | 0 | } |
7475 | 0 | } |
7476 | |
|
7477 | 0 | if (total_weight > 0.0f) { |
7478 | 0 | val /= total_weight; |
7479 | 0 | } |
7480 | |
|
7481 | 0 | float * dst_ptr = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); |
7482 | 0 | *dst_ptr = val; |
7483 | 0 | } |
7484 | 0 | } |
7485 | 0 | } |
7486 | 0 | } |
7487 | 0 | } else if (mode == GGML_SCALE_MODE_BILINEAR) { |
7488 | 0 | for (int64_t i3 = 0; i3 < ne3; i3++) { |
7489 | 0 | const int64_t i03 = i3 / sf3; |
7490 | 0 | for (int64_t i2 = ith; i2 < ne2; i2 += nth) { |
7491 | 0 | const int64_t i02 = i2 / sf2; |
7492 | 0 | for (int64_t i1 = 0; i1 < ne1; i1++) { |
7493 | 0 | const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset; |
7494 | 0 | int64_t y0 = (int64_t)floorf(y); |
7495 | 0 | int64_t y1 = y0 + 1; |
7496 | |
|
7497 | 0 | y0 = std::max(int64_t(0), std::min(y0, ne01 - 1)); |
7498 | 0 | y1 = std::max(int64_t(0), std::min(y1, ne01 - 1)); |
7499 | |
|
7500 | 0 | float dy = y - (float)y0; |
7501 | 0 | dy = std::max(0.0f, std::min(dy, 1.0f)); |
7502 | |
|
7503 | 0 | for (int64_t i0 = 0; i0 < ne0; i0++) { |
7504 | 0 | const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset; |
7505 | 0 | int64_t x0 = (int64_t)floorf(x); |
7506 | 0 | int64_t x1 = x0 + 1; |
7507 | |
|
7508 | 0 | x0 = std::max(int64_t(0), std::min(x0, ne00 - 1)); |
7509 | 0 | x1 = std::max(int64_t(0), std::min(x1, ne00 - 1)); |
7510 | |
|
7511 | 0 | float dx = x - (float)x0; |
7512 | 0 | dx = std::max(0.0f, std::min(dx, 1.0f)); |
7513 | | |
7514 | | // fetch the four surrounding pixel values and interpolate |
7515 | 0 | const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03); |
7516 | 0 | const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03); |
7517 | 0 | const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03); |
7518 | 0 | const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03); |
7519 | |
|
7520 | 0 | const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy; |
7521 | |
|
7522 | 0 | float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); |
7523 | 0 | *y_dst = val; |
7524 | 0 | } |
7525 | 0 | } |
7526 | 0 | } |
7527 | 0 | } |
7528 | 0 | } else if (mode == GGML_SCALE_MODE_BICUBIC) { |
7529 | | // https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm |
7530 | 0 | const float a = -0.75f; // use alpha = -0.75 (same as PyTorch) |
7531 | 0 | auto weight1 = [a](float x) { return ((a + 2) * x - (a + 3)) * x * x + 1; }; |
7532 | 0 | auto weight2 = [a](float x) { return ((a * x - 5 * a) * x + 8 * a) * x - 4 * a; }; |
7533 | 0 | auto bicubic = [=](float p0, float p1, float p2, float p3, float x) { |
7534 | 0 | const float w0 = weight2(x + 1); |
7535 | 0 | const float w1 = weight1(x + 0); |
7536 | 0 | const float w2 = weight1(1 - x); |
7537 | 0 | const float w3 = weight2(2 - x); |
7538 | 0 | return p0*w0 + p1*w1 + p2*w2 + p3*w3; |
7539 | 0 | }; |
7540 | |
|
7541 | 0 | for (int64_t i3 = 0; i3 < ne3; i3++) { |
7542 | 0 | const int64_t i03 = i3 / sf3; |
7543 | 0 | for (int64_t i2 = ith; i2 < ne2; i2 += nth) { |
7544 | 0 | const int64_t i02 = i2 / sf2; |
7545 | 0 | for (int64_t i1 = 0; i1 < ne1; i1++) { |
7546 | 0 | const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset; |
7547 | 0 | const int64_t y0 = (int64_t)floorf(y); |
7548 | 0 | const float dy = y - (float)y0; |
7549 | |
|
7550 | 0 | for (int64_t i0 = 0; i0 < ne0; i0++) { |
7551 | 0 | const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset; |
7552 | 0 | const int64_t x0 = (int64_t)floorf(x); |
7553 | 0 | const float dx = x - (float)x0; |
7554 | |
|
7555 | 0 | auto p = [=](int64_t x_off, int64_t y_off) -> float { |
7556 | 0 | int64_t i00 = std::max(int64_t(0), std::min(x0 + x_off, ne00 - 1)); |
7557 | 0 | int64_t i01 = std::max(int64_t(0), std::min(y0 + y_off, ne01 - 1)); |
7558 | 0 | return *(const float *)((const char *)src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); |
7559 | 0 | }; |
7560 | |
|
7561 | 0 | const float val = bicubic( |
7562 | 0 | bicubic(p(-1,-1), p(0,-1), p(1,-1), p(2,-1), dx), |
7563 | 0 | bicubic(p(-1, 0), p(0, 0), p(1, 0), p(2, 0), dx), |
7564 | 0 | bicubic(p(-1, 1), p(0, 1), p(1, 1), p(2, 1), dx), |
7565 | 0 | bicubic(p(-1, 2), p(0, 2), p(1, 2), p(2, 2), dx), dy); |
7566 | |
|
7567 | 0 | float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); |
7568 | 0 | *y_dst = val; |
7569 | 0 | } |
7570 | 0 | } |
7571 | 0 | } |
7572 | 0 | } |
7573 | 0 | } else { |
7574 | 0 | GGML_ABORT("unsupported upscale mode"); |
7575 | 0 | } |
7576 | 0 | } |
7577 | | |
7578 | | void ggml_compute_forward_upscale( |
7579 | | const ggml_compute_params * params, |
7580 | 0 | ggml_tensor * dst) { |
7581 | |
|
7582 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7583 | |
|
7584 | 0 | switch (src0->type) { |
7585 | 0 | case GGML_TYPE_F32: |
7586 | 0 | { |
7587 | 0 | ggml_compute_forward_upscale_f32(params, dst); |
7588 | 0 | } break; |
7589 | 0 | default: |
7590 | 0 | { |
7591 | 0 | GGML_ABORT("fatal error"); |
7592 | 0 | } |
7593 | 0 | } |
7594 | 0 | } |
7595 | | |
7596 | | |
7597 | | // ggml_compute_forward_pad |
7598 | | |
7599 | | template<bool circular_t> |
7600 | | static void ggml_compute_forward_pad_f32( |
7601 | | const ggml_compute_params * params, |
7602 | 0 | ggml_tensor * dst) { |
7603 | |
|
7604 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7605 | |
|
7606 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
7607 | 0 | GGML_ASSERT( dst->nb[0] == sizeof(float)); |
7608 | |
|
7609 | 0 | const int ith = params->ith; |
7610 | 0 | const int nth = params->nth; |
7611 | |
|
7612 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
7613 | |
|
7614 | 0 | float * dst_ptr = (float *) dst->data; |
7615 | 0 | const int32_t lp0 = ggml_get_op_params_i32(dst, 0); |
7616 | 0 | const int32_t rp0 = ggml_get_op_params_i32(dst, 1); |
7617 | 0 | const int32_t lp1 = ggml_get_op_params_i32(dst, 2); |
7618 | 0 | const int32_t rp1 = ggml_get_op_params_i32(dst, 3); |
7619 | 0 | const int32_t lp2 = ggml_get_op_params_i32(dst, 4); |
7620 | 0 | const int32_t rp2 = ggml_get_op_params_i32(dst, 5); |
7621 | 0 | const int32_t lp3 = ggml_get_op_params_i32(dst, 6); |
7622 | 0 | const int32_t rp3 = ggml_get_op_params_i32(dst, 7); |
7623 | | |
7624 | | // TODO: optimize |
7625 | |
|
7626 | 0 | for (int64_t i2 = 0; i2 < ne2; ++i2) { |
7627 | 0 | for (int64_t i1 = ith; i1 < ne1; i1 += nth) { |
7628 | 0 | for (int64_t i0 = 0; i0 < ne0; ++i0) { |
7629 | 0 | for (int64_t i3 = 0; i3 < ne3; ++i3) { |
7630 | | // circular means wrap around on a torus, so x and y loop around |
7631 | 0 | if constexpr (circular_t) { |
7632 | 0 | const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0; |
7633 | 0 | const int64_t src_i0 = ggml_wrap_around(i0 - lp0, ne00); |
7634 | 0 | const int64_t src_i1 = ggml_wrap_around(i1 - lp1, ne01); |
7635 | 0 | const int64_t src_i2 = ggml_wrap_around(i2 - lp2, ne02); |
7636 | 0 | const int64_t src_i3 = ggml_wrap_around(i3 - lp3, ne03); |
7637 | |
|
7638 | 0 | const int64_t src_idx = |
7639 | 0 | src_i3*nb03 + |
7640 | 0 | src_i2*nb02 + |
7641 | 0 | src_i1*nb01 + |
7642 | 0 | src_i0*nb00; |
7643 | |
|
7644 | 0 | const float * src_ptr = (const float *)((char *) src0->data + src_idx); |
7645 | 0 | dst_ptr[dst_idx] = *src_ptr; |
7646 | 0 | } else { |
7647 | 0 | const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0; |
7648 | 0 | if ((i0 >= lp0 && i0 < ne0 - rp0) \ |
7649 | 0 | && (i1 >= lp1 && i1 < ne1 - rp1) \ |
7650 | 0 | && (i2 >= lp2 && i2 < ne2 - rp2) \ |
7651 | 0 | && (i3 >= lp3 && i3 < ne3 - rp3)) { |
7652 | 0 | const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00; |
7653 | 0 | const float * src_ptr = (const float *)((char *) src0->data + src_idx); |
7654 | 0 | dst_ptr[dst_idx] = *src_ptr; |
7655 | 0 | } else { |
7656 | 0 | dst_ptr[dst_idx] = 0; |
7657 | 0 | } |
7658 | 0 | } |
7659 | 0 | } |
7660 | 0 | } |
7661 | 0 | } |
7662 | 0 | } |
7663 | 0 | } Unexecuted instantiation: ops.cpp:void ggml_compute_forward_pad_f32<true>(ggml_compute_params const*, ggml_tensor*) Unexecuted instantiation: ops.cpp:void ggml_compute_forward_pad_f32<false>(ggml_compute_params const*, ggml_tensor*) |
7664 | | |
7665 | | |
7666 | | void ggml_compute_forward_pad( |
7667 | | const ggml_compute_params * params, |
7668 | 0 | ggml_tensor * dst) { |
7669 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7670 | 0 | const bool circular = (bool) ggml_get_op_params_i32(dst, 8); |
7671 | 0 | switch (src0->type) { |
7672 | 0 | case GGML_TYPE_F32: |
7673 | 0 | { |
7674 | 0 | if (circular) { |
7675 | 0 | ggml_compute_forward_pad_f32<true>(params, dst); |
7676 | 0 | } else { |
7677 | 0 | ggml_compute_forward_pad_f32<false>(params, dst); |
7678 | 0 | } |
7679 | 0 | } break; |
7680 | 0 | default: |
7681 | 0 | { |
7682 | 0 | GGML_ABORT("fatal error"); |
7683 | 0 | } |
7684 | 0 | } |
7685 | 0 | } |
7686 | | |
7687 | | // ggml_compute_forward_pad_reflect_1d |
7688 | | |
7689 | | void ggml_compute_forward_pad_reflect_1d( |
7690 | | const ggml_compute_params * params, |
7691 | 0 | ggml_tensor * dst) { |
7692 | |
|
7693 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7694 | |
|
7695 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F32); |
7696 | 0 | GGML_ASSERT( dst->type == GGML_TYPE_F32); |
7697 | |
|
7698 | 0 | const int ith = params->ith; |
7699 | 0 | const int nth = params->nth; |
7700 | |
|
7701 | 0 | const int32_t * opts = (const int32_t *) dst->op_params; |
7702 | 0 | const int p0 = opts[0]; |
7703 | 0 | const int p1 = opts[1]; |
7704 | |
|
7705 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
7706 | |
|
7707 | 0 | for (int64_t i3 = 0; i3 < ne3; i3++) { |
7708 | 0 | for (int64_t i2 = 0; i2 < ne2; i2++) { |
7709 | 0 | for (int64_t i1 = ith; i1 < ne1; i1 += nth) { |
7710 | 0 | float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0); |
7711 | 0 | float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0); |
7712 | |
|
7713 | 0 | ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01)); |
7714 | |
|
7715 | 0 | for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; } |
7716 | 0 | for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; } |
7717 | 0 | } |
7718 | 0 | } |
7719 | 0 | } |
7720 | 0 | } |
7721 | | |
7722 | | // ggml_compute_forward_roll |
7723 | | |
7724 | 0 | static int64_t ggml_wrap_index(int64_t i, int64_t ne) { |
7725 | 0 | if (i < 0) { |
7726 | 0 | return i + ne; |
7727 | 0 | } else if (i >= ne) { |
7728 | 0 | return i - ne; |
7729 | 0 | } |
7730 | 0 | return i; |
7731 | 0 | } |
7732 | | |
7733 | | static void ggml_compute_forward_roll_f32( |
7734 | | const ggml_compute_params * params, |
7735 | 0 | ggml_tensor * dst) { |
7736 | |
|
7737 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7738 | 0 | const float * src_data = (const float *) src0->data; |
7739 | 0 | float * dst_data = (float *) dst->data; |
7740 | |
|
7741 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
7742 | |
|
7743 | 0 | const int s0 = ggml_get_op_params_i32(dst, 0); |
7744 | 0 | const int s1 = ggml_get_op_params_i32(dst, 1); |
7745 | 0 | const int s2 = ggml_get_op_params_i32(dst, 2); |
7746 | 0 | const int s3 = ggml_get_op_params_i32(dst, 3); |
7747 | |
|
7748 | 0 | const int64_t total = ne1 * ne2 * ne3; |
7749 | 0 | const int64_t per_thread = (total + params->nth) / params->nth; |
7750 | 0 | const int64_t start = params->ith * per_thread; |
7751 | 0 | const int64_t end = std::min(start + per_thread, total); |
7752 | |
|
7753 | 0 | for (int64_t i = start; i < end; ++i) { |
7754 | 0 | const int64_t i1 = i % ne1; |
7755 | 0 | const int64_t i2 = (i / ne1) % ne2; |
7756 | 0 | const int64_t i3 = i / (ne2 * ne1); |
7757 | 0 | float * dst_row = dst_data + (i3*nb3 + i2*nb2 + i1*nb1) / sizeof(float); |
7758 | |
|
7759 | 0 | const int64_t i01 = ggml_wrap_index(i1 - s1, ne01); |
7760 | 0 | const int64_t i02 = ggml_wrap_index(i2 - s2, ne02); |
7761 | 0 | const int64_t i03 = ggml_wrap_index(i3 - s3, ne03); |
7762 | 0 | const float * src_row = src_data + (i03*nb03 + i02*nb02 + i01*nb01) / sizeof(float); |
7763 | |
|
7764 | 0 | const int64_t s = ggml_wrap_index(-s0, ne00); |
7765 | 0 | const int64_t n = ne00 - s; |
7766 | 0 | ggml_vec_cpy_f32(n, dst_row, src_row + s); |
7767 | 0 | ggml_vec_cpy_f32(s, dst_row + n, src_row); |
7768 | 0 | } |
7769 | 0 | } |
7770 | | |
7771 | | void ggml_compute_forward_roll( |
7772 | | const ggml_compute_params * params, |
7773 | 0 | ggml_tensor * dst) { |
7774 | |
|
7775 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7776 | |
|
7777 | 0 | switch (src0->type) { |
7778 | 0 | case GGML_TYPE_F32: |
7779 | 0 | { |
7780 | 0 | ggml_compute_forward_roll_f32(params, dst); |
7781 | 0 | } break; |
7782 | 0 | default: |
7783 | 0 | { |
7784 | 0 | GGML_ABORT("fatal error"); |
7785 | 0 | } |
7786 | 0 | } |
7787 | 0 | } |
7788 | | |
7789 | | // ggml_compute_forward_arange |
7790 | | |
7791 | | static void ggml_compute_forward_arange_f32( |
7792 | | const ggml_compute_params * params, |
7793 | 0 | ggml_tensor * dst) { |
7794 | |
|
7795 | 0 | GGML_ASSERT(dst->nb[0] == sizeof(float)); |
7796 | |
|
7797 | 0 | const int ith = params->ith; |
7798 | 0 | const int nth = params->nth; |
7799 | |
|
7800 | 0 | const float start = ggml_get_op_params_f32(dst, 0); |
7801 | 0 | const float stop = ggml_get_op_params_f32(dst, 1); |
7802 | 0 | const float step = ggml_get_op_params_f32(dst, 2); |
7803 | |
|
7804 | 0 | const int64_t steps = (int64_t) ceilf((stop - start) / step); |
7805 | |
|
7806 | 0 | GGML_ASSERT(ggml_nelements(dst) == steps); |
7807 | |
|
7808 | 0 | for (int64_t i = ith; i < steps; i+= nth) { |
7809 | 0 | float value = start + step * i; |
7810 | 0 | ((float *)dst->data)[i] = value; |
7811 | 0 | } |
7812 | 0 | } |
7813 | | |
7814 | | void ggml_compute_forward_arange( |
7815 | | const ggml_compute_params * params, |
7816 | 0 | ggml_tensor * dst) { |
7817 | 0 | switch (dst->type) { |
7818 | 0 | case GGML_TYPE_F32: |
7819 | 0 | { |
7820 | 0 | ggml_compute_forward_arange_f32(params, dst); |
7821 | 0 | } break; |
7822 | 0 | default: |
7823 | 0 | { |
7824 | 0 | GGML_ABORT("fatal error"); |
7825 | 0 | } |
7826 | 0 | } |
7827 | 0 | } |
7828 | | |
7829 | | static void ggml_compute_forward_timestep_embedding_f32( |
7830 | | const ggml_compute_params * params, |
7831 | 0 | ggml_tensor * dst) { |
7832 | |
|
7833 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7834 | |
|
7835 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
7836 | |
|
7837 | 0 | const int ith = params->ith; |
7838 | 0 | const int nth = params->nth; |
7839 | |
|
7840 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
7841 | |
|
7842 | 0 | const int dim = ggml_get_op_params_i32(dst, 0); |
7843 | 0 | const int max_period = ggml_get_op_params_i32(dst, 1); |
7844 | |
|
7845 | 0 | int half = dim / 2; |
7846 | |
|
7847 | 0 | for (int64_t i = 0; i < ne00; i++) { |
7848 | 0 | float * embed_data = (float *)((char *) dst->data + i*nb1); |
7849 | 0 | for (int64_t j = ith; j < half; j += nth) { |
7850 | 0 | float timestep = ((float *)src0->data)[i]; |
7851 | 0 | float freq = (float)expf(-logf(max_period) * j / half); |
7852 | 0 | float arg = timestep * freq; |
7853 | 0 | embed_data[j] = cosf(arg); |
7854 | 0 | embed_data[j + half] = sinf(arg); |
7855 | 0 | } |
7856 | 0 | if (dim % 2 != 0 && ith == 0) { |
7857 | 0 | embed_data[2 * half] = 0.f; |
7858 | 0 | } |
7859 | 0 | } |
7860 | 0 | } |
7861 | | |
7862 | | void ggml_compute_forward_timestep_embedding( |
7863 | | const ggml_compute_params * params, |
7864 | 0 | ggml_tensor * dst) { |
7865 | |
|
7866 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7867 | |
|
7868 | 0 | switch (src0->type) { |
7869 | 0 | case GGML_TYPE_F32: |
7870 | 0 | { |
7871 | 0 | ggml_compute_forward_timestep_embedding_f32(params, dst); |
7872 | 0 | } break; |
7873 | 0 | default: |
7874 | 0 | { |
7875 | 0 | GGML_ABORT("fatal error"); |
7876 | 0 | } |
7877 | 0 | } |
7878 | 0 | } |
7879 | | |
7880 | | // ggml_compute_forward_argsort |
7881 | | |
7882 | | template<enum ggml_sort_order order> |
7883 | | struct cmp_argsort { |
7884 | | const float * data; |
7885 | 0 | bool operator()(int32_t a, int32_t b) const { |
7886 | 0 | if constexpr (order == GGML_SORT_ORDER_ASC) { |
7887 | 0 | return data[a] < data[b]; |
7888 | 0 | } else { |
7889 | 0 | return data[a] > data[b]; |
7890 | 0 | } |
7891 | 0 | } Unexecuted instantiation: cmp_argsort<(ggml_sort_order)0>::operator()(int, int) const Unexecuted instantiation: cmp_argsort<(ggml_sort_order)1>::operator()(int, int) const |
7892 | | }; |
7893 | | |
7894 | | static void ggml_compute_forward_argsort_f32( |
7895 | | const ggml_compute_params * params, |
7896 | 0 | ggml_tensor * dst) { |
7897 | |
|
7898 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7899 | |
|
7900 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
7901 | |
|
7902 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
7903 | |
|
7904 | 0 | const int ith = params->ith; |
7905 | 0 | const int nth = params->nth; |
7906 | |
|
7907 | 0 | const int64_t nr = ggml_nrows(src0); |
7908 | |
|
7909 | 0 | ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0); |
7910 | |
|
7911 | 0 | for (int64_t i = ith; i < nr; i += nth) { |
7912 | 0 | const float * src_data = (float *)((char *) src0->data + i*nb01); |
7913 | |
|
7914 | 0 | int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1); |
7915 | |
|
7916 | 0 | for (int64_t j = 0; j < ne0; j++) { |
7917 | 0 | dst_data[j] = j; |
7918 | 0 | } |
7919 | |
|
7920 | 0 | switch (order) { |
7921 | 0 | case GGML_SORT_ORDER_ASC: |
7922 | 0 | std::sort(dst_data, dst_data + ne0, cmp_argsort<GGML_SORT_ORDER_ASC>{src_data}); |
7923 | 0 | break; |
7924 | | |
7925 | 0 | case GGML_SORT_ORDER_DESC: |
7926 | 0 | std::sort(dst_data, dst_data + ne0, cmp_argsort<GGML_SORT_ORDER_DESC>{src_data}); |
7927 | 0 | break; |
7928 | | |
7929 | 0 | default: |
7930 | 0 | GGML_ABORT("invalid sort order"); |
7931 | 0 | } |
7932 | 0 | } |
7933 | 0 | } |
7934 | | |
7935 | | void ggml_compute_forward_argsort( |
7936 | | const ggml_compute_params * params, |
7937 | 0 | ggml_tensor * dst) { |
7938 | |
|
7939 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7940 | |
|
7941 | 0 | switch (src0->type) { |
7942 | 0 | case GGML_TYPE_F32: |
7943 | 0 | { |
7944 | 0 | ggml_compute_forward_argsort_f32(params, dst); |
7945 | 0 | } break; |
7946 | 0 | default: |
7947 | 0 | { |
7948 | 0 | GGML_ABORT("fatal error"); |
7949 | 0 | } |
7950 | 0 | } |
7951 | 0 | } |
7952 | | |
7953 | | // ggml_compute_forward_top_k |
7954 | | |
7955 | | struct cmp_top_k { |
7956 | | const float * data; |
7957 | 0 | bool operator()(int32_t a, int32_t b) const { |
7958 | 0 | return data[a] > data[b]; |
7959 | 0 | } |
7960 | | }; |
7961 | | |
7962 | | static void ggml_compute_forward_top_k_f32( |
7963 | | const ggml_compute_params * params, |
7964 | 0 | ggml_tensor * dst) { |
7965 | |
|
7966 | 0 | const ggml_tensor * src0 = dst->src[0]; |
7967 | |
|
7968 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
7969 | |
|
7970 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
7971 | |
|
7972 | 0 | const int ith = params->ith; |
7973 | 0 | const int nth = params->nth; |
7974 | |
|
7975 | 0 | const int64_t nr = ggml_nrows(src0); |
7976 | |
|
7977 | 0 | const int top_k = ne0; |
7978 | |
|
7979 | 0 | int32_t * tmp = (int32_t *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; |
7980 | |
|
7981 | 0 | for (int64_t i = ith; i < nr; i += nth) { |
7982 | 0 | const float * src_data = (float *)((char *) src0->data + i*nb01); |
7983 | |
|
7984 | 0 | for (int64_t j = 0; j < ne00; j++) { |
7985 | 0 | tmp[j] = j; |
7986 | 0 | } |
7987 | |
|
7988 | 0 | std::partial_sort(tmp, tmp + top_k, tmp + ne00, cmp_top_k{src_data}); |
7989 | |
|
7990 | 0 | int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1); |
7991 | |
|
7992 | 0 | std::copy(tmp, tmp + top_k, dst_data); |
7993 | | |
7994 | | // emphasize that the order is not important |
7995 | 0 | if (top_k > 1) { |
7996 | 0 | std::swap(dst_data[0], dst_data[1]); |
7997 | 0 | } |
7998 | 0 | } |
7999 | 0 | } |
8000 | | |
8001 | | void ggml_compute_forward_top_k( |
8002 | | const ggml_compute_params * params, |
8003 | 0 | ggml_tensor * dst) { |
8004 | |
|
8005 | 0 | const ggml_tensor * src0 = dst->src[0]; |
8006 | |
|
8007 | 0 | switch (src0->type) { |
8008 | 0 | case GGML_TYPE_F32: |
8009 | 0 | { |
8010 | 0 | ggml_compute_forward_top_k_f32(params, dst); |
8011 | 0 | } break; |
8012 | 0 | default: |
8013 | 0 | { |
8014 | 0 | GGML_ABORT("fatal error"); |
8015 | 0 | } |
8016 | 0 | } |
8017 | 0 | } |
8018 | | |
8019 | | // ggml_compute_forward_flash_attn_ext |
8020 | | |
8021 | | static void ggml_compute_forward_flash_attn_ext_f16_one_chunk( |
8022 | | const ggml_compute_params * params, |
8023 | | ggml_tensor * dst, |
8024 | 0 | int ir0, int ir1) { |
8025 | 0 | const ggml_tensor * q = dst->src[0]; |
8026 | 0 | const ggml_tensor * k = dst->src[1]; |
8027 | 0 | const ggml_tensor * v = dst->src[2]; |
8028 | 0 | const ggml_tensor * mask = dst->src[3]; |
8029 | 0 | const ggml_tensor * sinks = dst->src[4]; |
8030 | |
|
8031 | 0 | GGML_TENSOR_LOCALS(int64_t, neq, q, ne) |
8032 | 0 | GGML_TENSOR_LOCALS(size_t, nbq, q, nb) |
8033 | 0 | GGML_TENSOR_LOCALS(int64_t, nek, k, ne) |
8034 | 0 | GGML_TENSOR_LOCALS(size_t, nbk, k, nb) |
8035 | 0 | GGML_TENSOR_LOCALS(int64_t, nev, v, ne) |
8036 | 0 | GGML_TENSOR_LOCALS(size_t, nbv, v, nb) |
8037 | 0 | GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) |
8038 | 0 | GGML_TENSOR_LOCALS(size_t, nb, dst, nb) |
8039 | |
|
8040 | 0 | const int64_t DK = nek0; |
8041 | 0 | const int64_t DV = nev0; |
8042 | 0 | const int64_t N = neq1; |
8043 | |
|
8044 | 0 | GGML_ASSERT(ne0 == DV); |
8045 | 0 | GGML_ASSERT(ne2 == N); |
8046 | | |
8047 | | // input tensor rows must be contiguous |
8048 | 0 | GGML_ASSERT(nbq0 == ggml_type_size(q->type)); |
8049 | 0 | GGML_ASSERT(nbk0 == ggml_type_size(k->type)); |
8050 | 0 | GGML_ASSERT(nbv0 == ggml_type_size(v->type)); |
8051 | |
|
8052 | 0 | GGML_ASSERT(neq0 == DK); |
8053 | 0 | GGML_ASSERT(nek0 == DK); |
8054 | 0 | GGML_ASSERT(nev0 == DV); |
8055 | |
|
8056 | 0 | GGML_ASSERT(neq1 == N); |
8057 | | |
8058 | | // dst cannot be transposed or permuted |
8059 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
8060 | 0 | GGML_ASSERT(nb0 <= nb1); |
8061 | 0 | GGML_ASSERT(nb1 <= nb2); |
8062 | 0 | GGML_ASSERT(nb2 <= nb3); |
8063 | | |
8064 | | // broadcast factors |
8065 | 0 | const int64_t rk2 = neq2/nek2; |
8066 | 0 | const int64_t rk3 = neq3/nek3; |
8067 | |
|
8068 | 0 | const int64_t rv2 = neq2/nev2; |
8069 | 0 | const int64_t rv3 = neq3/nev3; |
8070 | | |
8071 | | // parallelize by q rows using ggml_vec_dot_f32 |
8072 | |
|
8073 | 0 | float scale = 1.0f; |
8074 | 0 | float max_bias = 0.0f; |
8075 | 0 | float logit_softcap = 0.0f; |
8076 | |
|
8077 | 0 | memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); |
8078 | 0 | memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); |
8079 | 0 | memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float)); |
8080 | |
|
8081 | 0 | if (logit_softcap != 0) { |
8082 | 0 | scale /= logit_softcap; |
8083 | 0 | } |
8084 | |
|
8085 | 0 | const uint32_t n_head = neq2; |
8086 | 0 | const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head)); |
8087 | |
|
8088 | 0 | const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); |
8089 | 0 | const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); |
8090 | |
|
8091 | 0 | ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type; |
8092 | 0 | ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float; |
8093 | 0 | ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot; |
8094 | 0 | ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float; |
8095 | |
|
8096 | 0 | GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type"); |
8097 | 0 | GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type"); |
8098 | |
|
8099 | 0 | int ith = params->ith; |
8100 | | |
8101 | | // loop over n_batch and n_head |
8102 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
8103 | | // q indices |
8104 | 0 | const int iq3 = ir/(neq2*neq1); |
8105 | 0 | const int iq2 = (ir - iq3*neq2*neq1)/neq1; |
8106 | 0 | const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); |
8107 | |
|
8108 | 0 | const uint32_t h = iq2; // head index |
8109 | 0 | const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f; |
8110 | |
|
8111 | 0 | float S = 0.0f; // sum |
8112 | 0 | float M = -INFINITY; // maximum KQ value |
8113 | |
|
8114 | 0 | float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator |
8115 | 0 | float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer |
8116 | 0 | ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator |
8117 | 0 | ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16 |
8118 | |
|
8119 | 0 | if (v->type == GGML_TYPE_F16) { |
8120 | 0 | memset(VKQ16, 0, DV*sizeof(ggml_fp16_t)); |
8121 | 0 | } else { |
8122 | 0 | memset(VKQ32, 0, DV*sizeof(float)); |
8123 | 0 | } |
8124 | |
|
8125 | 0 | const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1] + (iq2%mask->ne[2])*mask->nb[2] + (iq3%mask->ne[3])*mask->nb[3]) : NULL; |
8126 | | |
8127 | | // k indices |
8128 | 0 | const int ik3 = iq3 / rk3; |
8129 | 0 | const int ik2 = iq2 / rk2; |
8130 | | |
8131 | | // v indices |
8132 | 0 | const int iv3 = iq3 / rv3; |
8133 | 0 | const int iv2 = iq2 / rv2; |
8134 | |
|
8135 | 0 | const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)); |
8136 | 0 | q_to_vec_dot(pq, Q_q, DK); |
8137 | | |
8138 | | // online softmax / attention |
8139 | | // loop over n_kv and n_head_kv |
8140 | | // ref: https://arxiv.org/pdf/2112.05682.pdf |
8141 | 0 | for (int64_t ic = 0; ic < nek1; ++ic) { |
8142 | 0 | const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f; |
8143 | 0 | if (mv == -INFINITY) { |
8144 | 0 | continue; |
8145 | 0 | } |
8146 | | |
8147 | 0 | float s; // KQ value |
8148 | |
|
8149 | 0 | const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3); |
8150 | 0 | kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1); |
8151 | |
|
8152 | 0 | s = s*scale; // scale KQ value |
8153 | |
|
8154 | 0 | if (logit_softcap != 0.0f) { |
8155 | 0 | s = logit_softcap*tanhf(s); |
8156 | 0 | } |
8157 | |
|
8158 | 0 | s += mv; // apply mask |
8159 | |
|
8160 | 0 | const float Mold = M; |
8161 | |
|
8162 | 0 | float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value |
8163 | 0 | float vs = 1.0f; // post-softmax KQ value, expf(s - M) |
8164 | |
|
8165 | 0 | const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3)); |
8166 | |
|
8167 | 0 | if (v->type == GGML_TYPE_F16) { |
8168 | 0 | if (s > M) { |
8169 | | // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f |
8170 | 0 | M = s; |
8171 | 0 | ms = expf(Mold - M); |
8172 | | |
8173 | | // V = V*expf(Mold - M) |
8174 | 0 | ggml_vec_scale_f16(DV, VKQ16, ms); |
8175 | 0 | } else { |
8176 | | // no new maximum, ms == 1.0f, vs != 1.0f |
8177 | 0 | vs = expf(s - M); |
8178 | 0 | } |
8179 | | |
8180 | | // V += v*expf(s - M) |
8181 | 0 | ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs); |
8182 | 0 | } else { |
8183 | 0 | if (s > M) { |
8184 | | // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f |
8185 | 0 | M = s; |
8186 | 0 | ms = expf(Mold - M); |
8187 | | |
8188 | | // V = V*expf(Mold - M) |
8189 | 0 | ggml_vec_scale_f32(DV, VKQ32, ms); |
8190 | 0 | } else { |
8191 | | // no new maximum, ms == 1.0f, vs != 1.0f |
8192 | 0 | vs = expf(s - M); |
8193 | 0 | } |
8194 | | |
8195 | | // V += v*expf(s - M) |
8196 | 0 | if (v_to_float) { |
8197 | 0 | v_to_float(v_data, V32, DV); |
8198 | 0 | ggml_vec_mad_f32(DV, VKQ32, V32, vs); |
8199 | 0 | } else { |
8200 | | // V is F32 |
8201 | 0 | ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs); |
8202 | 0 | } |
8203 | 0 | } |
8204 | |
|
8205 | 0 | S = S*ms + vs; // scale and increment sum with partial sum |
8206 | 0 | } |
8207 | |
|
8208 | 0 | if (v->type == GGML_TYPE_F16) { |
8209 | 0 | for (int64_t d = 0; d < DV; ++d) { |
8210 | 0 | VKQ32[d] = GGML_CPU_FP16_TO_FP32(VKQ16[d]); |
8211 | 0 | } |
8212 | 0 | } |
8213 | | |
8214 | | // sinks |
8215 | 0 | if (sinks) { |
8216 | 0 | const float s = ((float *)((char *) sinks->data))[h]; |
8217 | |
|
8218 | 0 | float ms = 1.0f; |
8219 | 0 | float vs = 1.0f; |
8220 | |
|
8221 | 0 | if (s > M) { |
8222 | 0 | ms = expf(M - s); |
8223 | 0 | ggml_vec_scale_f32(DV, VKQ32, ms); |
8224 | 0 | } else { |
8225 | 0 | vs = expf(s - M); |
8226 | 0 | } |
8227 | |
|
8228 | 0 | S = S*ms + vs; |
8229 | 0 | } |
8230 | | |
8231 | | // V /= S |
8232 | 0 | const float S_inv = S == 0.0f ? 0.0f : 1.0f/S; |
8233 | 0 | ggml_vec_scale_f32(DV, VKQ32, S_inv); |
8234 | | |
8235 | | // dst indices |
8236 | 0 | const int i1 = iq1; |
8237 | 0 | const int i2 = iq2; |
8238 | 0 | const int i3 = iq3; |
8239 | | |
8240 | | // original |
8241 | | //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float)); |
8242 | | |
8243 | | // permute(0, 2, 1, 3) |
8244 | 0 | memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1); |
8245 | 0 | } |
8246 | 0 | } |
8247 | | |
8248 | | static void ggml_compute_forward_flash_attn_ext_f16( |
8249 | | const ggml_compute_params * params, |
8250 | 0 | ggml_tensor * dst) { |
8251 | |
|
8252 | 0 | const ggml_tensor * q = dst->src[0]; |
8253 | 0 | const ggml_tensor * k = dst->src[1]; |
8254 | 0 | const ggml_tensor * v = dst->src[2]; |
8255 | |
|
8256 | 0 | GGML_TENSOR_LOCALS(int64_t, neq, q, ne) |
8257 | 0 | GGML_TENSOR_LOCALS(size_t, nbq, q, nb) |
8258 | 0 | GGML_TENSOR_LOCALS(int64_t, nek, k, ne) |
8259 | 0 | GGML_TENSOR_LOCALS(size_t, nbk, k, nb) |
8260 | 0 | GGML_TENSOR_LOCALS(int64_t, nev, v, ne) |
8261 | 0 | GGML_TENSOR_LOCALS(size_t, nbv, v, nb) |
8262 | 0 | GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) |
8263 | 0 | GGML_TENSOR_LOCALS(size_t, nb, dst, nb) |
8264 | |
|
8265 | 0 | const int64_t DK = nek0; |
8266 | 0 | const int64_t DV = nev0; |
8267 | 0 | const int64_t N = neq1; |
8268 | |
|
8269 | 0 | GGML_ASSERT(ne0 == DV); |
8270 | 0 | GGML_ASSERT(ne2 == N); |
8271 | | |
8272 | | // input tensor rows must be contiguous |
8273 | 0 | GGML_ASSERT(nbq0 == ggml_type_size(q->type)); |
8274 | 0 | GGML_ASSERT(nbk0 == ggml_type_size(k->type)); |
8275 | 0 | GGML_ASSERT(nbv0 == ggml_type_size(v->type)); |
8276 | |
|
8277 | 0 | GGML_ASSERT(neq0 == DK); |
8278 | 0 | GGML_ASSERT(nek0 == DK); |
8279 | 0 | GGML_ASSERT(nev0 == DV); |
8280 | |
|
8281 | 0 | GGML_ASSERT(neq1 == N); |
8282 | | |
8283 | | // dst cannot be transposed or permuted |
8284 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
8285 | 0 | GGML_ASSERT(nb0 <= nb1); |
8286 | 0 | GGML_ASSERT(nb1 <= nb2); |
8287 | 0 | GGML_ASSERT(nb2 <= nb3); |
8288 | | |
8289 | | // parallelize by q rows using ggml_vec_dot_f32 |
8290 | | |
8291 | | // total rows in q |
8292 | 0 | const int64_t nr = neq1*neq2*neq3; |
8293 | | |
8294 | | // rows per thread |
8295 | 0 | const int ith = params->ith; |
8296 | 0 | const int nth = params->nth; |
8297 | | |
8298 | | // disable for NUMA |
8299 | 0 | const bool disable_chunking = ggml_is_numa(); |
8300 | | |
8301 | | // 4x chunks per thread |
8302 | 0 | int nth_scaled = nth * 4; |
8303 | 0 | int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled; |
8304 | 0 | int64_t nchunk = (nr + chunk_size - 1) / chunk_size; |
8305 | |
|
8306 | 0 | if (nth == 1 || nchunk < nth || disable_chunking) { |
8307 | 0 | nchunk = nth; |
8308 | 0 | } |
8309 | |
|
8310 | 0 | if (ith == 0) { |
8311 | | // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start. |
8312 | 0 | ggml_threadpool_chunk_set(params->threadpool, nth); |
8313 | 0 | } |
8314 | |
|
8315 | 0 | ggml_barrier(params->threadpool); |
8316 | | |
8317 | | // The number of elements in each chunk |
8318 | 0 | const int64_t dr = (nr + nchunk - 1) / nchunk; |
8319 | | |
8320 | | // The first chunk comes from our thread_id, the rest will get auto-assigned. |
8321 | 0 | int current_chunk = ith; |
8322 | |
|
8323 | 0 | while (current_chunk < nchunk) { |
8324 | 0 | const int64_t ir0 = dr * current_chunk; |
8325 | 0 | const int64_t ir1 = MIN(ir0 + dr, nr); |
8326 | |
|
8327 | 0 | ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1); |
8328 | |
|
8329 | 0 | current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1); |
8330 | 0 | } |
8331 | 0 | } |
8332 | | |
8333 | | void ggml_compute_forward_flash_attn_ext( |
8334 | | const ggml_compute_params * params, |
8335 | 0 | ggml_tensor * dst) { |
8336 | 0 | switch (dst->op_params[3]) { |
8337 | 0 | case GGML_PREC_DEFAULT: |
8338 | 0 | case GGML_PREC_F32: |
8339 | 0 | { |
8340 | | // uses F32 accumulators |
8341 | 0 | ggml_compute_forward_flash_attn_ext_f16(params, dst); |
8342 | 0 | } break; |
8343 | 0 | default: |
8344 | 0 | { |
8345 | 0 | GGML_ABORT("fatal error"); |
8346 | 0 | } |
8347 | 0 | } |
8348 | 0 | } |
8349 | | |
8350 | | // ggml_compute_forward_flash_attn_back |
8351 | | |
8352 | | static void ggml_compute_forward_flash_attn_back_f32( |
8353 | | const ggml_compute_params * params, |
8354 | | const bool masked, |
8355 | 0 | ggml_tensor * dst) { |
8356 | |
|
8357 | 0 | const ggml_tensor * q = dst->src[0]; |
8358 | 0 | const ggml_tensor * k = dst->src[1]; |
8359 | 0 | const ggml_tensor * v = dst->src[2]; |
8360 | 0 | const ggml_tensor * d = dst->src[3]; |
8361 | |
|
8362 | 0 | GGML_TENSOR_LOCALS(int64_t, neq, q, ne) |
8363 | 0 | GGML_TENSOR_LOCALS(size_t, nbq, q, nb) |
8364 | 0 | GGML_TENSOR_LOCALS(int64_t, nek, k, ne) |
8365 | 0 | GGML_TENSOR_LOCALS(size_t, nbk, k, nb) |
8366 | 0 | GGML_TENSOR_LOCALS(int64_t, nev, v, ne) |
8367 | 0 | GGML_TENSOR_LOCALS(size_t, nbv, v, nb) |
8368 | 0 | GGML_TENSOR_LOCALS(int64_t, ned, d, ne) |
8369 | 0 | GGML_TENSOR_LOCALS(size_t, nbd, d, nb) |
8370 | 0 | GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) |
8371 | 0 | GGML_TENSOR_LOCALS(size_t, nb, dst, nb) |
8372 | |
|
8373 | 0 | const int ith = params->ith; |
8374 | 0 | const int nth = params->nth; |
8375 | |
|
8376 | 0 | const int64_t D = neq0; |
8377 | 0 | const int64_t N = neq1; |
8378 | 0 | const int64_t P = nek1 - N; |
8379 | 0 | const int64_t M = P + N; |
8380 | |
|
8381 | 0 | const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); |
8382 | 0 | const int mxDM = MAX(D, Mup); |
8383 | | |
8384 | | // GGML_ASSERT(ne0 == D); |
8385 | | // GGML_ASSERT(ne1 == N); |
8386 | 0 | GGML_ASSERT(P >= 0); |
8387 | |
|
8388 | 0 | GGML_ASSERT(nbq0 == sizeof(float)); |
8389 | 0 | GGML_ASSERT(nbk0 == sizeof(float)); |
8390 | 0 | GGML_ASSERT(nbv0 == sizeof(float)); |
8391 | |
|
8392 | 0 | GGML_ASSERT(neq0 == D); |
8393 | 0 | GGML_ASSERT(nek0 == D); |
8394 | 0 | GGML_ASSERT(nev1 == D); |
8395 | 0 | GGML_ASSERT(ned0 == D); |
8396 | |
|
8397 | 0 | GGML_ASSERT(neq1 == N); |
8398 | 0 | GGML_ASSERT(nek1 == N + P); |
8399 | 0 | GGML_ASSERT(nev1 == D); |
8400 | 0 | GGML_ASSERT(ned1 == N); |
8401 | | |
8402 | | // dst cannot be transposed or permuted |
8403 | 0 | GGML_ASSERT(nb0 == sizeof(float)); |
8404 | 0 | GGML_ASSERT(nb0 <= nb1); |
8405 | 0 | GGML_ASSERT(nb1 <= nb2); |
8406 | 0 | GGML_ASSERT(nb2 <= nb3); |
8407 | |
|
8408 | 0 | if (ith == 0) { |
8409 | 0 | memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3); |
8410 | 0 | } |
8411 | 0 | ggml_barrier(params->threadpool); |
8412 | |
|
8413 | 0 | const int64_t elem_q = ggml_nelements(q); |
8414 | 0 | const int64_t elem_k = ggml_nelements(k); |
8415 | |
|
8416 | 0 | ggml_type result_type = dst->type; |
8417 | 0 | GGML_ASSERT(ggml_blck_size(result_type) == 1); |
8418 | 0 | const size_t tsize = ggml_type_size(result_type); |
8419 | |
|
8420 | 0 | const size_t offs_q = 0; |
8421 | 0 | const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); |
8422 | 0 | const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); |
8423 | |
|
8424 | 0 | void * grad_q = (char *) dst->data; |
8425 | 0 | void * grad_k = (char *) dst->data + offs_k; |
8426 | 0 | void * grad_v = (char *) dst->data + offs_v; |
8427 | |
|
8428 | 0 | const size_t nbgq1 = nb0*neq0; |
8429 | 0 | const size_t nbgq2 = nb0*neq0*neq1; |
8430 | 0 | const size_t nbgq3 = nb0*neq0*neq1*neq2; |
8431 | |
|
8432 | 0 | const size_t nbgk1 = nb0*nek0; |
8433 | 0 | const size_t nbgk2 = nb0*nek0*nek1; |
8434 | 0 | const size_t nbgk3 = nb0*nek0*nek1*neq2; |
8435 | |
|
8436 | 0 | const size_t nbgv1 = nb0*nev0; |
8437 | 0 | const size_t nbgv2 = nb0*nev0*nev1; |
8438 | 0 | const size_t nbgv3 = nb0*nev0*nev1*neq2; |
8439 | | |
8440 | | // parallelize by k rows using ggml_vec_dot_f32 |
8441 | | |
8442 | | // total rows in k |
8443 | 0 | const int nr = nek2*nek3; |
8444 | | |
8445 | | // rows per thread |
8446 | 0 | const int dr = (nr + nth - 1)/nth; |
8447 | | |
8448 | | // row range for this thread |
8449 | 0 | const int ir0 = dr*ith; |
8450 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
8451 | |
|
8452 | 0 | const float scale = 1.0f/sqrtf(D); |
8453 | | |
8454 | | //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); |
8455 | | |
8456 | | // how often k2 (and v2) is repeated in q2 |
8457 | 0 | int nrep = neq2/nek2; |
8458 | |
|
8459 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
8460 | | // q indices |
8461 | 0 | const int ik3 = ir/(nek2); |
8462 | 0 | const int ik2 = ir - ik3*nek2; |
8463 | |
|
8464 | 0 | const int iq3 = ik3; |
8465 | 0 | const int id3 = ik3; |
8466 | 0 | const int iv3 = ik3; |
8467 | 0 | const int iv2 = ik2; |
8468 | |
|
8469 | 0 | for (int irep = 0; irep < nrep; ++irep) { |
8470 | 0 | const int iq2 = ik2 + irep*nek2; |
8471 | 0 | const int id2 = iq2; |
8472 | | |
8473 | | // (ik2 + irep*nek2) % nek2 == ik2 |
8474 | 0 | for (int iq1 = 0; iq1 < neq1; ++iq1) { |
8475 | 0 | const int id1 = iq1; |
8476 | | |
8477 | | // not sure about CACHE_LINE_SIZE_F32.. |
8478 | | // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset? |
8479 | 0 | float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32); |
8480 | 0 | float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32); |
8481 | |
|
8482 | 0 | for (int i = M; i < Mup; ++i) { |
8483 | 0 | S[i] = -INFINITY; |
8484 | 0 | } |
8485 | |
|
8486 | 0 | const int64_t masked_begin = masked ? (P + iq1 + 1) : M; |
8487 | 0 | for (int64_t ic = 0; ic < masked_begin; ++ic) { |
8488 | | // k indices |
8489 | 0 | const int ik1 = ic; |
8490 | | |
8491 | | // S indices |
8492 | 0 | const int i1 = ik1; |
8493 | |
|
8494 | 0 | ggml_vec_dot_f32(neq0, |
8495 | 0 | S + i1, 0, |
8496 | 0 | (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0, |
8497 | 0 | (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1); |
8498 | 0 | } |
8499 | | |
8500 | | // scale |
8501 | 0 | ggml_vec_scale_f32(masked_begin, S, scale); |
8502 | |
|
8503 | 0 | for (int64_t i = masked_begin; i < M; i++) { |
8504 | 0 | S[i] = -INFINITY; |
8505 | 0 | } |
8506 | | |
8507 | | // softmax |
8508 | | // exclude known -INF S[..] values from max and loop |
8509 | | // dont forget to set their SM values to zero |
8510 | 0 | { |
8511 | 0 | float max = -INFINITY; |
8512 | 0 | ggml_vec_max_f32(masked_begin, &max, S); |
8513 | |
|
8514 | 0 | ggml_float sum = 0.0; |
8515 | 0 | { |
8516 | | #ifdef GGML_SOFT_MAX_ACCELERATE |
8517 | | max = -max; |
8518 | | vDSP_vsadd(SM, 1, &max, SM, 1, Mup); |
8519 | | vvexpf(SM, SM, &Mup); |
8520 | | ggml_vec_sum_f32(Mup, &sum, SM); |
8521 | | #else |
8522 | 0 | sum = ggml_vec_soft_max_f32(Mup, SM, S, max); |
8523 | 0 | #endif |
8524 | 0 | } |
8525 | |
|
8526 | 0 | assert(sum > 0.0); |
8527 | |
|
8528 | 0 | sum = 1.0/sum; |
8529 | 0 | ggml_vec_scale_f32(masked_begin, SM, sum); |
8530 | |
|
8531 | 0 | } |
8532 | | |
8533 | | // step-by-step explanation |
8534 | 0 | { |
8535 | | // forward-process shape grads from backward process |
8536 | | // parallel_for ik2,ik3: |
8537 | | // for irep: |
8538 | | // iq2 = ik2 + irep*nek2 |
8539 | | // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur] |
8540 | | // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur] |
8541 | | // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur] |
8542 | | // for iq1: |
8543 | | // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur |
8544 | | // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur |
8545 | | // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4 |
8546 | | // S0 = -Inf [D,1,1,1] |
8547 | | // ~S1[i] = dot(kcur[:D,i], qcur) |
8548 | | // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale |
8549 | | // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P) |
8550 | | // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) |
8551 | | // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur |
8552 | | // ~S5[i] = dot(vcur[:,i], S4) |
8553 | | // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3] |
8554 | | // ~dst[i,iq1,iq2,iq3] = S5[i] ^ |
8555 | | // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3] |
8556 | | // dst backward-/ grad[dst] = d |
8557 | | // |
8558 | | // output gradients with their dependencies: |
8559 | | // |
8560 | | // grad[kcur] = grad[S1].T @ qcur |
8561 | | // grad[S1] = diag_mask_zero(grad[S3], P) * scale |
8562 | | // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) |
8563 | | // grad[S4] = grad[S5] @ vcur |
8564 | | // grad[S4] = d[:D,id1,id2,id3] @ vcur |
8565 | | // grad[qcur] = grad[S1] @ kcur |
8566 | | // grad[vcur] = grad[S5].T @ S4 |
8567 | | // grad[vcur] = d[:D,id1,id2,id3].T @ S4 |
8568 | | // |
8569 | | // in post-order: |
8570 | | // |
8571 | | // S1 = qcur @ kcur.T |
8572 | | // S2 = S1 * scale |
8573 | | // S3 = diag_mask_inf(S2, P) |
8574 | | // S4 = softmax(S3) |
8575 | | // grad[S4] = d[:D,id1,id2,id3] @ vcur |
8576 | | // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) |
8577 | | // grad[S1] = diag_mask_zero(grad[S3], P) * scale |
8578 | | // grad[qcur] = grad[S1] @ kcur |
8579 | | // grad[kcur] = grad[S1].T @ qcur |
8580 | | // grad[vcur] = d[:D,id1,id2,id3].T @ S4 |
8581 | | // |
8582 | | // using less variables (SM=S4): |
8583 | | // |
8584 | | // S = diag_mask_inf(qcur @ kcur.T * scale, P) |
8585 | | // SM = softmax(S) |
8586 | | // S = d[:D,iq1,iq2,iq3] @ vcur |
8587 | | // dot_SM_gradSM = dot(SM, S) |
8588 | | // S = SM * (S - dot(SM, S)) |
8589 | | // S = diag_mask_zero(S, P) * scale |
8590 | | // |
8591 | | // grad[q][:D,iq1,iq2,iq3] += S @ kcur |
8592 | | // grad[k][:D,:M,ik2,ik3] += S.T @ qcur |
8593 | | // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM |
8594 | 0 | } |
8595 | | |
8596 | | // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] |
8597 | | // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] |
8598 | | // for ic: |
8599 | | // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3] |
8600 | | // exclude known future zero S[..] values from operation |
8601 | 0 | ggml_vec_set_f32(masked_begin, S, 0); |
8602 | 0 | for (int64_t ic = 0; ic < D; ++ic) { |
8603 | 0 | ggml_vec_mad_f32(masked_begin, |
8604 | 0 | S, |
8605 | 0 | (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), |
8606 | 0 | *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); |
8607 | 0 | } |
8608 | | |
8609 | | // S = SM * (S - dot(SM, S)) |
8610 | 0 | float dot_SM_gradSM = 0; |
8611 | 0 | ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1); |
8612 | 0 | ggml_vec_acc1_f32(M, S, -dot_SM_gradSM); |
8613 | 0 | ggml_vec_mul_f32 (masked_begin, S, S, SM); |
8614 | | |
8615 | | // S = diag_mask_zero(S, P) * scale |
8616 | | // already done by above ggml_vec_set_f32 |
8617 | | |
8618 | | // exclude known zero S[..] values from operation |
8619 | 0 | ggml_vec_scale_f32(masked_begin, S, scale); |
8620 | | |
8621 | | // S shape [M,1] |
8622 | | // SM shape [M,1] |
8623 | | // kcur shape [D,M] |
8624 | | // qcur shape [D,1] |
8625 | | // vcur shape [M,D] |
8626 | | |
8627 | | // grad[q][:D,iq1,iq2,iq3] += S @ kcur |
8628 | | // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M] |
8629 | | // for ic: |
8630 | | // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3] |
8631 | | // exclude known zero S[..] values from loop |
8632 | 0 | for (int64_t ic = 0; ic < masked_begin; ++ic) { |
8633 | 0 | ggml_vec_mad_f32(D, |
8634 | 0 | (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)), |
8635 | 0 | (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)), |
8636 | 0 | S[ic]); |
8637 | 0 | } |
8638 | | |
8639 | | // grad[k][:D,:M,iq2,iq3] += S.T @ qcur |
8640 | | // for ic: |
8641 | | // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0] |
8642 | | // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0] |
8643 | | // exclude known zero S[..] values from loop |
8644 | 0 | for (int64_t ic = 0; ic < masked_begin; ++ic) { |
8645 | 0 | ggml_vec_mad_f32(D, |
8646 | 0 | (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)), |
8647 | 0 | (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), |
8648 | 0 | S[ic]); |
8649 | 0 | } |
8650 | | |
8651 | | // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM |
8652 | | // for ic: |
8653 | | // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M] |
8654 | | // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M] |
8655 | | // exclude known zero SM[..] values from mad |
8656 | 0 | for (int64_t ic = 0; ic < D; ++ic) { |
8657 | 0 | ggml_vec_mad_f32(masked_begin, |
8658 | 0 | (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)), |
8659 | 0 | SM, |
8660 | 0 | *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); |
8661 | 0 | } |
8662 | 0 | } |
8663 | 0 | } |
8664 | 0 | } |
8665 | 0 | } |
8666 | | |
8667 | | void ggml_compute_forward_flash_attn_back( |
8668 | | const ggml_compute_params * params, |
8669 | | const bool masked, |
8670 | 0 | ggml_tensor * dst) { |
8671 | |
|
8672 | 0 | const ggml_tensor * q = dst->src[0]; |
8673 | |
|
8674 | 0 | switch (q->type) { |
8675 | 0 | case GGML_TYPE_F32: |
8676 | 0 | { |
8677 | 0 | ggml_compute_forward_flash_attn_back_f32(params, masked, dst); |
8678 | 0 | } break; |
8679 | 0 | default: |
8680 | 0 | { |
8681 | 0 | GGML_ABORT("fatal error"); |
8682 | 0 | } |
8683 | 0 | } |
8684 | 0 | } |
8685 | | |
8686 | | // ggml_compute_forward_ssm_conv |
8687 | | |
8688 | | static void ggml_compute_forward_ssm_conv_f32( |
8689 | | const ggml_compute_params * params, |
8690 | 0 | ggml_tensor * dst) { |
8691 | 0 | const ggml_tensor * src0 = dst->src[0]; // conv_x |
8692 | 0 | const ggml_tensor * src1 = dst->src[1]; // conv1d.weight |
8693 | |
|
8694 | 0 | const int ith = params->ith; |
8695 | 0 | const int nth = params->nth; |
8696 | |
|
8697 | 0 | const int nc = src1->ne[0]; // d_conv |
8698 | 0 | const int ncs = src0->ne[0]; // d_conv - 1 + n_t |
8699 | 0 | const int nr = src0->ne[1]; // d_inner |
8700 | 0 | const int n_t = dst->ne[1]; // tokens per sequence |
8701 | 0 | const int n_s = dst->ne[2]; // number of sequences in the batch |
8702 | |
|
8703 | 0 | GGML_ASSERT( dst->ne[0] == nr); |
8704 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
8705 | 0 | GGML_ASSERT(src1->nb[0] == sizeof(float)); |
8706 | 0 | GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float)); |
8707 | | |
8708 | | // rows per thread |
8709 | 0 | const int dr = (nr + nth - 1)/nth; |
8710 | | |
8711 | | // row range for this thread |
8712 | 0 | const int ir0 = dr*ith; |
8713 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
8714 | 0 | const int ir = ir1 - ir0; |
8715 | |
|
8716 | 0 | for (int i3 = 0; i3 < n_s; ++i3) { |
8717 | 0 | for (int i2 = 0; i2 < n_t; ++i2) { |
8718 | | // {d_conv - 1 + n_t, d_inner, n_seqs} |
8719 | | // sliding window |
8720 | 0 | const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s} |
8721 | 0 | const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner} |
8722 | 0 | float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s} |
8723 | | |
8724 | | // TODO: transpose the output for smaller strides for big batches? |
8725 | | // d_inner |
8726 | 0 | for (int i1 = 0; i1 < ir; ++i1) { |
8727 | | // rowwise dot product |
8728 | | // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision |
8729 | 0 | float sumf = 0.0f; |
8730 | | |
8731 | | // d_conv |
8732 | 0 | for (int i0 = 0; i0 < nc; ++i0) { |
8733 | 0 | sumf += s[i0 + i1*ncs] * c[i0 + i1*nc]; |
8734 | 0 | } |
8735 | 0 | x[i1] = sumf; |
8736 | 0 | } |
8737 | 0 | } |
8738 | 0 | } |
8739 | 0 | } |
8740 | | |
8741 | | void ggml_compute_forward_ssm_conv( |
8742 | | const ggml_compute_params * params, |
8743 | 0 | ggml_tensor * dst) { |
8744 | 0 | switch (dst->src[0]->type) { |
8745 | 0 | case GGML_TYPE_F32: |
8746 | 0 | { |
8747 | 0 | ggml_compute_forward_ssm_conv_f32(params, dst); |
8748 | 0 | } break; |
8749 | 0 | default: |
8750 | 0 | { |
8751 | 0 | GGML_ABORT("fatal error"); |
8752 | 0 | } |
8753 | 0 | } |
8754 | 0 | } |
8755 | | |
8756 | | // ggml_compute_forward_ssm_scan |
8757 | | |
8758 | | static void ggml_compute_forward_ssm_scan_f32( |
8759 | | const ggml_compute_params * params, |
8760 | 0 | ggml_tensor * dst) { |
8761 | 0 | const ggml_tensor * src0 = dst->src[0]; // s {d_state, dim, n_head, n_seqs+} |
8762 | 0 | const ggml_tensor * src1 = dst->src[1]; // x {dim, n_head, n_seq_tokens, n_seqs} |
8763 | 0 | const ggml_tensor * src2 = dst->src[2]; // dt {n_head, n_seq_tokens, n_seqs} |
8764 | 0 | const ggml_tensor * src3 = dst->src[3]; // A {d_state, n_head} or {1, n_head} |
8765 | 0 | const ggml_tensor * src4 = dst->src[4]; // B {d_state, n_group, n_seq_tokens, n_seqs} |
8766 | 0 | const ggml_tensor * src5 = dst->src[5]; // C {d_state, n_group, n_seq_tokens, n_seqs} |
8767 | 0 | const ggml_tensor * src6 = dst->src[6]; // ids {n_seqs} |
8768 | |
|
8769 | 0 | const int ith = params->ith; |
8770 | 0 | const int nth = params->nth; |
8771 | |
|
8772 | 0 | const int64_t nc = src0->ne[0]; // d_state |
8773 | 0 | const int64_t nr = src0->ne[1]; // dim |
8774 | 0 | const int64_t nh = src1->ne[1]; // n_head |
8775 | 0 | const int64_t ng = src4->ne[1]; |
8776 | 0 | const int64_t nt = src1->ne[2]; // number of tokens per sequence |
8777 | 0 | const int64_t ns = src1->ne[3]; // number of sequences in the batch |
8778 | | |
8779 | | // can't use ggml_nbytes because src1 is not necessarily contiguous |
8780 | 0 | const int64_t s_off = ggml_nelements(src1) * ggml_element_size(src1); |
8781 | |
|
8782 | 0 | GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*ns == ggml_nelements(dst)); |
8783 | 0 | GGML_ASSERT(src0->nb[0] == sizeof(float)); |
8784 | 0 | GGML_ASSERT(src1->nb[0] == sizeof(float)); |
8785 | 0 | GGML_ASSERT(src2->nb[0] == sizeof(float)); |
8786 | 0 | GGML_ASSERT(src3->nb[0] == sizeof(float)); |
8787 | 0 | GGML_ASSERT(src4->nb[0] == sizeof(float)); |
8788 | 0 | GGML_ASSERT(src5->nb[0] == sizeof(float)); |
8789 | 0 | GGML_ASSERT(src6->nb[0] == sizeof(int32_t)); |
8790 | 0 | GGML_ASSERT(nh % ng == 0); |
8791 | | |
8792 | | // heads per thread |
8793 | 0 | const int dh = (nh + nth - 1)/nth; |
8794 | | |
8795 | | // head range for this thread |
8796 | 0 | const int ih0 = dh*ith; |
8797 | 0 | const int ih1 = MIN(ih0 + dh, nh); |
8798 | |
|
8799 | 0 | const int32_t * ids = (const int32_t *) src6->data; |
8800 | |
|
8801 | 0 | for (int i3 = 0; i3 < ns; ++i3) { |
8802 | 0 | const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb[3])); // {d_state, dim, nh, ns} |
8803 | 0 | float * s = ( float *) (( char *) dst->data + i3*(src0->nb[3]) + s_off); // {d_state, dim, nh, ns} |
8804 | |
|
8805 | 0 | for (int i2 = 0; i2 < nt; ++i2) { |
8806 | 0 | const float * x = (const float *) ((const char *) src1->data + i2*(src1->nb[2]) + i3*(src1->nb[3])); // {dim, nh, nt, ns} |
8807 | 0 | const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {nh, nt, ns} |
8808 | 0 | const float * A = (const float *) ((const char *) src3->data); // {d_state, nh} or {1, nh} |
8809 | 0 | const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[2]) + i3*(src4->nb[3])); // {d_state, ng, nt, ns} |
8810 | 0 | const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[2]) + i3*(src5->nb[3])); // {d_state, ng, nt, ns} |
8811 | 0 | float * y = ( float *) (( char *) dst->data + i2*(nh*nr*sizeof(float)) + i3*(nt*nh*nr*sizeof(float))); // {dim, nh, nt, ns} |
8812 | |
|
8813 | 0 | if (src3->ne[0] == 1) { |
8814 | | // Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop |
8815 | | |
8816 | | // n_head |
8817 | 0 | for (int h = ih0; h < ih1; ++h) { |
8818 | | // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16 |
8819 | 0 | const float dt_soft_plus = ggml_compute_softplus_f32(dt[h]); |
8820 | 0 | const float dA = expf(dt_soft_plus * A[h]); |
8821 | 0 | const int g = h / (nh / ng); // repeat_interleave |
8822 | | |
8823 | | // dim |
8824 | 0 | for (int i1 = 0; i1 < nr; ++i1) { |
8825 | 0 | const int ii = i1 + h*nr; |
8826 | 0 | const float x_dt = x[ii] * dt_soft_plus; |
8827 | 0 | float sumf = 0.0f; |
8828 | 0 | #if defined(GGML_SIMD) |
8829 | | #if defined(__ARM_FEATURE_SVE) |
8830 | | const int ggml_f32_epr = svcntw(); |
8831 | | const int ggml_f32_step = 1 * ggml_f32_epr; |
8832 | | |
8833 | | const int np = (nc & ~(ggml_f32_step - 1)); |
8834 | | |
8835 | | GGML_F32_VEC sum = GGML_F32_VEC_ZERO; |
8836 | | |
8837 | | GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA); |
8838 | | GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt); |
8839 | | |
8840 | | for (int i = 0; i < np; i += ggml_f32_step) { |
8841 | | // TODO: maybe unroll more? |
8842 | | for (int j = 0; j < 1; j++) { |
8843 | | GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc); |
8844 | | GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + g*nc); |
8845 | | GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + g*nc); |
8846 | | |
8847 | | t0 = GGML_F32_VEC_MUL(t0, adA); |
8848 | | t1 = GGML_F32_VEC_MUL(t1, axdt); |
8849 | | |
8850 | | t0 = GGML_F32_VEC_ADD(t0, t1); |
8851 | | |
8852 | | sum = GGML_F32_VEC_FMA(sum, t0, t2); |
8853 | | |
8854 | | GGML_F32_VEC_STORE(s + i + j*ggml_f32_epr + ii*nc, t0); |
8855 | | } |
8856 | | } |
8857 | | |
8858 | | sumf = GGML_F32xt_REDUCE_ONE(sum); |
8859 | | #elif defined(__riscv_v_intrinsic) |
8860 | | // todo: RVV implementation |
8861 | | const int np = 0; |
8862 | | #else |
8863 | 0 | const int np = (nc & ~(GGML_F32_STEP - 1)); |
8864 | |
|
8865 | 0 | GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; |
8866 | |
|
8867 | 0 | GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA); |
8868 | 0 | GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt); |
8869 | |
|
8870 | 0 | GGML_F32_VEC ax[GGML_F32_ARR]; |
8871 | 0 | GGML_F32_VEC ay[GGML_F32_ARR]; |
8872 | 0 | GGML_F32_VEC az[GGML_F32_ARR]; |
8873 | |
|
8874 | 0 | for (int i = 0; i < np; i += GGML_F32_STEP) { |
8875 | 0 | for (int j = 0; j < GGML_F32_ARR; j++) { |
8876 | 0 | ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc); |
8877 | 0 | ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + g*nc); |
8878 | 0 | az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + g*nc); |
8879 | |
|
8880 | 0 | ax[j] = GGML_F32_VEC_MUL(ax[j], adA); |
8881 | 0 | ay[j] = GGML_F32_VEC_MUL(ay[j], axdt); |
8882 | |
|
8883 | 0 | ax[j] = GGML_F32_VEC_ADD(ax[j], ay[j]); |
8884 | |
|
8885 | 0 | sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], az[j]); |
8886 | |
|
8887 | 0 | GGML_F32_VEC_STORE(s + i + j*GGML_F32_EPR + ii*nc, ax[j]); |
8888 | 0 | } |
8889 | 0 | } |
8890 | | |
8891 | | // reduce sum0..sum3 to sum0 |
8892 | 0 | GGML_F32_VEC_REDUCE(sumf, sum); |
8893 | 0 | #endif |
8894 | | #else |
8895 | | const int np = 0; |
8896 | | #endif |
8897 | | // d_state |
8898 | 0 | for (int i0 = np; i0 < nc; ++i0) { |
8899 | 0 | const int i = i0 + ii*nc; |
8900 | 0 | const int ig = i0 + g*nc; |
8901 | | // state = prev_state * dA + dB * x |
8902 | 0 | const float state = (s0[i] * dA) + (B[ig] * x_dt); |
8903 | | // y = rowwise_dotprod(state, C) |
8904 | 0 | sumf += state * C[ig]; |
8905 | 0 | s[i] = state; |
8906 | 0 | } |
8907 | 0 | y[ii] = sumf; |
8908 | 0 | } |
8909 | 0 | } |
8910 | 0 | } else { |
8911 | | // Mamba-1 has an element-wise decay factor for the states |
8912 | | |
8913 | | // n_head |
8914 | 0 | for (int h = ih0; h < ih1; ++h) { |
8915 | | // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16 |
8916 | 0 | const float dt_soft_plus = ggml_compute_softplus_f32(dt[h]); |
8917 | 0 | const int g = h / (nh / ng); // repeat_interleave |
8918 | | |
8919 | | // dim |
8920 | 0 | for (int i1 = 0; i1 < nr; ++i1) { |
8921 | 0 | const int ii = i1 + h*nr; |
8922 | 0 | const float x_dt = x[ii] * dt_soft_plus; |
8923 | | #if defined(__ARM_FEATURE_SVE) |
8924 | | svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt); |
8925 | | svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus); |
8926 | | svfloat32_t r1_vector = GGML_F32_VEC_ZERO; |
8927 | | |
8928 | | // d_state |
8929 | | // TODO: what happens when (d_state % svcntw()) != 0? |
8930 | | for (int64_t k = 0; k < nc; k += svcntw()) { |
8931 | | svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]); |
8932 | | svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + g*nc]); |
8933 | | svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + g*nc]); |
8934 | | svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]); |
8935 | | |
8936 | | svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA); |
8937 | | t1 = exp_ps_sve(svptrue_b32(), t1); |
8938 | | svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB); |
8939 | | |
8940 | | vs0 = GGML_F32_VEC_FMA(t2, vs0, t1); |
8941 | | r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector); |
8942 | | |
8943 | | GGML_F32_VEC_STORE(&s[ii*nc + k], vs0); |
8944 | | } |
8945 | | y[ii] = GGML_F32xt_REDUCE_ONE(r1_vector); |
8946 | | #else |
8947 | 0 | float sumf = 0.0f; |
8948 | | // NOTE: can't really use GGML_SIMD here because d_state is usually 16 |
8949 | | // and also because expf is used within the loop. |
8950 | | // d_state |
8951 | 0 | for (int i0 = 0; i0 < nc; ++i0) { |
8952 | 0 | const int i = i0 + ii*nc; |
8953 | 0 | const int ig = i0 + g*nc; |
8954 | | // state = prev_state * dA + dB * x |
8955 | 0 | const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt); |
8956 | | // y = rowwise_dotprod(state, C) |
8957 | 0 | sumf += state * C[ig]; |
8958 | 0 | s[i] = state; |
8959 | 0 | } |
8960 | 0 | y[ii] = sumf; |
8961 | 0 | #endif |
8962 | 0 | } |
8963 | 0 | } |
8964 | 0 | } |
8965 | | // use the output as the source when it's not the first token-wise iteration |
8966 | 0 | s0 = s; |
8967 | 0 | } |
8968 | 0 | } |
8969 | 0 | } |
8970 | | |
8971 | | void ggml_compute_forward_ssm_scan( |
8972 | | const ggml_compute_params * params, |
8973 | 0 | ggml_tensor * dst) { |
8974 | 0 | switch (dst->src[0]->type) { |
8975 | 0 | case GGML_TYPE_F32: |
8976 | 0 | { |
8977 | 0 | ggml_compute_forward_ssm_scan_f32(params, dst); |
8978 | 0 | } break; |
8979 | 0 | default: |
8980 | 0 | { |
8981 | 0 | GGML_ABORT("fatal error"); |
8982 | 0 | } |
8983 | 0 | } |
8984 | 0 | } |
8985 | | |
8986 | | // ggml_compute_forward_win_part |
8987 | | |
8988 | | static void ggml_compute_forward_win_part_f32( |
8989 | | const ggml_compute_params * params, |
8990 | 0 | ggml_tensor * dst) { |
8991 | 0 | GGML_UNUSED(params); |
8992 | |
|
8993 | 0 | const ggml_tensor * src0 = dst->src[0]; |
8994 | |
|
8995 | 0 | GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) |
8996 | 0 | GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) |
8997 | |
|
8998 | 0 | const int32_t nep0 = ((const int32_t *)(dst->op_params))[0]; |
8999 | 0 | const int32_t nep1 = ((const int32_t *)(dst->op_params))[1]; |
9000 | 0 | const int32_t w = ((const int32_t *)(dst->op_params))[2]; |
9001 | |
|
9002 | 0 | assert(ne00 == ne0); |
9003 | 0 | assert(ne3 == nep0*nep1); |
9004 | | |
9005 | | // TODO: optimize / multi-thread |
9006 | 0 | for (int py = 0; py < nep1; ++py) { |
9007 | 0 | for (int px = 0; px < nep0; ++px) { |
9008 | 0 | const int64_t i3 = py*nep0 + px; |
9009 | 0 | for (int64_t i2 = 0; i2 < ne2; ++i2) { |
9010 | 0 | for (int64_t i1 = 0; i1 < ne1; ++i1) { |
9011 | 0 | for (int64_t i0 = 0; i0 < ne0; ++i0) { |
9012 | 0 | const int64_t i02 = py*w + i2; |
9013 | 0 | const int64_t i01 = px*w + i1; |
9014 | 0 | const int64_t i00 = i0; |
9015 | |
|
9016 | 0 | const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0; |
9017 | 0 | const int64_t j = i02*ne01*ne00 + i01*ne00 + i00; |
9018 | |
|
9019 | 0 | if (py*w + i2 >= ne02 || px*w + i1 >= ne01) { |
9020 | 0 | ((float *) dst->data)[i] = 0.0f; |
9021 | 0 | } else { |
9022 | 0 | ((float *) dst->data)[i] = ((float *) src0->data)[j]; |
9023 | 0 | } |
9024 | 0 | } |
9025 | 0 | } |
9026 | 0 | } |
9027 | 0 | } |
9028 | 0 | } |
9029 | 0 | } |
9030 | | |
9031 | | void ggml_compute_forward_win_part( |
9032 | | const ggml_compute_params * params, |
9033 | 0 | ggml_tensor * dst) { |
9034 | |
|
9035 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9036 | |
|
9037 | 0 | switch (src0->type) { |
9038 | 0 | case GGML_TYPE_F32: |
9039 | 0 | { |
9040 | 0 | ggml_compute_forward_win_part_f32(params, dst); |
9041 | 0 | } break; |
9042 | 0 | default: |
9043 | 0 | { |
9044 | 0 | GGML_ABORT("fatal error"); |
9045 | 0 | } |
9046 | 0 | } |
9047 | 0 | } |
9048 | | |
9049 | | // ggml_compute_forward_win_unpart |
9050 | | |
9051 | | static void ggml_compute_forward_win_unpart_f32( |
9052 | | const ggml_compute_params * params, |
9053 | 0 | ggml_tensor * dst) { |
9054 | 0 | GGML_UNUSED(params); |
9055 | |
|
9056 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9057 | |
|
9058 | 0 | GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) |
9059 | 0 | GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) |
9060 | |
|
9061 | 0 | const int32_t w = ((const int32_t *)(dst->op_params))[0]; |
9062 | | |
9063 | | // padding |
9064 | 0 | const int px = (w - ne1%w)%w; |
9065 | | //const int py = (w - ne2%w)%w; |
9066 | |
|
9067 | 0 | const int npx = (px + ne1)/w; |
9068 | | //const int npy = (py + ne2)/w; |
9069 | |
|
9070 | 0 | assert(ne0 == ne00); |
9071 | | |
9072 | | // TODO: optimize / multi-thread |
9073 | 0 | for (int64_t i2 = 0; i2 < ne2; ++i2) { |
9074 | 0 | for (int64_t i1 = 0; i1 < ne1; ++i1) { |
9075 | 0 | for (int64_t i0 = 0; i0 < ne0; ++i0) { |
9076 | 0 | const int ip2 = i2/w; |
9077 | 0 | const int ip1 = i1/w; |
9078 | |
|
9079 | 0 | const int64_t i02 = i2%w; |
9080 | 0 | const int64_t i01 = i1%w; |
9081 | 0 | const int64_t i00 = i0; |
9082 | |
|
9083 | 0 | const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00; |
9084 | 0 | const int64_t j = i2*ne1*ne0 + i1*ne0 + i0; |
9085 | |
|
9086 | 0 | ((float *) dst->data)[j] = ((float *) src0->data)[i]; |
9087 | 0 | } |
9088 | 0 | } |
9089 | 0 | } |
9090 | 0 | } |
9091 | | |
9092 | | void ggml_compute_forward_win_unpart( |
9093 | | const ggml_compute_params * params, |
9094 | 0 | ggml_tensor * dst) { |
9095 | |
|
9096 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9097 | |
|
9098 | 0 | switch (src0->type) { |
9099 | 0 | case GGML_TYPE_F32: |
9100 | 0 | { |
9101 | 0 | ggml_compute_forward_win_unpart_f32(params, dst); |
9102 | 0 | } break; |
9103 | 0 | default: |
9104 | 0 | { |
9105 | 0 | GGML_ABORT("fatal error"); |
9106 | 0 | } |
9107 | 0 | } |
9108 | 0 | } |
9109 | | |
9110 | | //gmml_compute_forward_unary |
9111 | | |
9112 | | void ggml_compute_forward_unary( |
9113 | | const ggml_compute_params * params, |
9114 | 0 | ggml_tensor * dst) { |
9115 | |
|
9116 | 0 | const ggml_unary_op op = ggml_get_unary_op(dst); |
9117 | |
|
9118 | 0 | switch (op) { |
9119 | 0 | case GGML_UNARY_OP_ABS: |
9120 | 0 | { |
9121 | 0 | ggml_compute_forward_abs(params, dst); |
9122 | 0 | } break; |
9123 | 0 | case GGML_UNARY_OP_SGN: |
9124 | 0 | { |
9125 | 0 | ggml_compute_forward_sgn(params, dst); |
9126 | 0 | } break; |
9127 | 0 | case GGML_UNARY_OP_NEG: |
9128 | 0 | { |
9129 | 0 | ggml_compute_forward_neg(params, dst); |
9130 | 0 | } break; |
9131 | 0 | case GGML_UNARY_OP_STEP: |
9132 | 0 | { |
9133 | 0 | ggml_compute_forward_step(params, dst); |
9134 | 0 | } break; |
9135 | 0 | case GGML_UNARY_OP_TANH: |
9136 | 0 | { |
9137 | 0 | ggml_compute_forward_tanh(params, dst); |
9138 | 0 | } break; |
9139 | 0 | case GGML_UNARY_OP_ELU: |
9140 | 0 | { |
9141 | 0 | ggml_compute_forward_elu(params, dst); |
9142 | 0 | } break; |
9143 | 0 | case GGML_UNARY_OP_RELU: |
9144 | 0 | { |
9145 | 0 | ggml_compute_forward_relu(params, dst); |
9146 | 0 | } break; |
9147 | 0 | case GGML_UNARY_OP_SIGMOID: |
9148 | 0 | { |
9149 | 0 | ggml_compute_forward_sigmoid(params, dst); |
9150 | 0 | } break; |
9151 | 0 | case GGML_UNARY_OP_GELU: |
9152 | 0 | { |
9153 | 0 | ggml_compute_forward_gelu(params, dst); |
9154 | 0 | } break; |
9155 | 0 | case GGML_UNARY_OP_GELU_ERF: |
9156 | 0 | { |
9157 | 0 | ggml_compute_forward_gelu_erf(params, dst); |
9158 | 0 | } break; |
9159 | 0 | case GGML_UNARY_OP_GELU_QUICK: |
9160 | 0 | { |
9161 | 0 | ggml_compute_forward_gelu_quick(params, dst); |
9162 | 0 | } break; |
9163 | 0 | case GGML_UNARY_OP_SILU: |
9164 | 0 | { |
9165 | 0 | ggml_compute_forward_silu(params, dst); |
9166 | 0 | } break; |
9167 | 0 | case GGML_UNARY_OP_HARDSWISH: |
9168 | 0 | { |
9169 | 0 | ggml_compute_forward_hardswish(params, dst); |
9170 | 0 | } break; |
9171 | 0 | case GGML_UNARY_OP_HARDSIGMOID: |
9172 | 0 | { |
9173 | 0 | ggml_compute_forward_hardsigmoid(params, dst); |
9174 | 0 | } break; |
9175 | 0 | case GGML_UNARY_OP_EXP: |
9176 | 0 | { |
9177 | 0 | ggml_compute_forward_exp(params, dst); |
9178 | 0 | } break; |
9179 | 0 | case GGML_UNARY_OP_FLOOR: |
9180 | 0 | { |
9181 | 0 | ggml_compute_forward_floor(params, dst); |
9182 | 0 | } break; |
9183 | 0 | case GGML_UNARY_OP_CEIL: |
9184 | 0 | { |
9185 | 0 | ggml_compute_forward_ceil(params, dst); |
9186 | 0 | } break; |
9187 | 0 | case GGML_UNARY_OP_ROUND: |
9188 | 0 | { |
9189 | 0 | ggml_compute_forward_round(params, dst); |
9190 | 0 | } break; |
9191 | 0 | case GGML_UNARY_OP_TRUNC: |
9192 | 0 | { |
9193 | 0 | ggml_compute_forward_trunc(params, dst); |
9194 | 0 | } break; |
9195 | 0 | case GGML_UNARY_OP_XIELU: |
9196 | 0 | { |
9197 | 0 | ggml_compute_forward_xielu(params, dst); |
9198 | 0 | } break; |
9199 | 0 | case GGML_UNARY_OP_EXPM1: |
9200 | 0 | { |
9201 | 0 | ggml_compute_forward_expm1(params, dst); |
9202 | 0 | } break; |
9203 | 0 | case GGML_UNARY_OP_SOFTPLUS: |
9204 | 0 | { |
9205 | 0 | ggml_compute_forward_softplus(params, dst); |
9206 | 0 | } break; |
9207 | 0 | default: |
9208 | 0 | { |
9209 | 0 | GGML_ABORT("fatal error"); |
9210 | 0 | } |
9211 | 0 | } |
9212 | 0 | } |
9213 | | |
9214 | | //ggml_compute_forward_glu |
9215 | | |
9216 | | void ggml_compute_forward_glu( |
9217 | | const ggml_compute_params * params, |
9218 | 0 | ggml_tensor * dst) { |
9219 | |
|
9220 | 0 | const ggml_glu_op op = ggml_get_glu_op(dst); |
9221 | |
|
9222 | 0 | switch (op) { |
9223 | 0 | case GGML_GLU_OP_REGLU: |
9224 | 0 | { |
9225 | 0 | ggml_compute_forward_reglu(params, dst); |
9226 | 0 | } break; |
9227 | 0 | case GGML_GLU_OP_GEGLU: |
9228 | 0 | { |
9229 | 0 | ggml_compute_forward_geglu(params, dst); |
9230 | 0 | } break; |
9231 | 0 | case GGML_GLU_OP_SWIGLU: |
9232 | 0 | { |
9233 | 0 | ggml_compute_forward_swiglu(params, dst); |
9234 | 0 | } break; |
9235 | 0 | case GGML_GLU_OP_SWIGLU_OAI: |
9236 | 0 | { |
9237 | 0 | ggml_compute_forward_swiglu_oai(params, dst); |
9238 | 0 | } break; |
9239 | 0 | case GGML_GLU_OP_GEGLU_ERF: |
9240 | 0 | { |
9241 | 0 | ggml_compute_forward_geglu_erf(params, dst); |
9242 | 0 | } break; |
9243 | 0 | case GGML_GLU_OP_GEGLU_QUICK: |
9244 | 0 | { |
9245 | 0 | ggml_compute_forward_geglu_quick(params, dst); |
9246 | 0 | } break; |
9247 | 0 | default: |
9248 | 0 | { |
9249 | 0 | GGML_ABORT("fatal error"); |
9250 | 0 | } |
9251 | 0 | } |
9252 | 0 | } |
9253 | | |
9254 | | // ggml_compute_forward_get_rel_pos |
9255 | | |
9256 | | static void ggml_compute_forward_get_rel_pos_f16( |
9257 | | const ggml_compute_params * params, |
9258 | 0 | ggml_tensor * dst) { |
9259 | 0 | GGML_UNUSED(params); |
9260 | |
|
9261 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9262 | | |
9263 | | // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322 |
9264 | |
|
9265 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
9266 | |
|
9267 | 0 | const int64_t w = ne1; |
9268 | |
|
9269 | 0 | ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data; |
9270 | 0 | ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data; |
9271 | |
|
9272 | 0 | for (int64_t i2 = 0; i2 < ne2; ++i2) { |
9273 | 0 | for (int64_t i1 = 0; i1 < ne1; ++i1) { |
9274 | 0 | const int64_t pos = (w - i1 - 1) + i2; |
9275 | 0 | for (int64_t i0 = 0; i0 < ne0; ++i0) { |
9276 | 0 | dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0]; |
9277 | 0 | } |
9278 | 0 | } |
9279 | 0 | } |
9280 | 0 | } |
9281 | | |
9282 | | void ggml_compute_forward_get_rel_pos( |
9283 | | const ggml_compute_params * params, |
9284 | 0 | ggml_tensor * dst) { |
9285 | |
|
9286 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9287 | |
|
9288 | 0 | switch (src0->type) { |
9289 | 0 | case GGML_TYPE_F16: |
9290 | 0 | case GGML_TYPE_BF16: |
9291 | 0 | { |
9292 | 0 | ggml_compute_forward_get_rel_pos_f16(params, dst); |
9293 | 0 | } break; |
9294 | 0 | default: |
9295 | 0 | { |
9296 | 0 | GGML_ABORT("fatal error"); |
9297 | 0 | } |
9298 | 0 | } |
9299 | 0 | } |
9300 | | |
9301 | | // ggml_compute_forward_add_rel_pos |
9302 | | |
9303 | | static void ggml_compute_forward_add_rel_pos_f32( |
9304 | | const ggml_compute_params * params, |
9305 | 0 | ggml_tensor * dst) { |
9306 | |
|
9307 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9308 | 0 | const ggml_tensor * src1 = dst->src[1]; |
9309 | 0 | const ggml_tensor * src2 = dst->src[2]; |
9310 | |
|
9311 | 0 | const bool inplace = (bool) ((int32_t *) dst->op_params)[0]; |
9312 | 0 | if (!inplace) { |
9313 | 0 | if (params->ith == 0) { |
9314 | 0 | memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst)); |
9315 | 0 | } |
9316 | 0 | ggml_barrier(params->threadpool); |
9317 | 0 | } |
9318 | | // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359 |
9319 | |
|
9320 | 0 | float * src1_data = (float *) src1->data; |
9321 | 0 | float * src2_data = (float *) src2->data; |
9322 | 0 | float * dst_data = (float *) dst->data; |
9323 | |
|
9324 | 0 | const int64_t ne10 = src1->ne[0]; |
9325 | 0 | const int64_t ne11 = src1->ne[1]; |
9326 | 0 | const int64_t ne12 = src1->ne[2]; |
9327 | 0 | const int64_t ne13 = src1->ne[3]; |
9328 | |
|
9329 | 0 | const int ith = params->ith; |
9330 | 0 | const int nth = params->nth; |
9331 | | |
9332 | | // total patches in dst |
9333 | 0 | const int np = ne13; |
9334 | | |
9335 | | // patches per thread |
9336 | 0 | const int dp = (np + nth - 1)/nth; |
9337 | | |
9338 | | // patch range for this thread |
9339 | 0 | const int ip0 = dp*ith; |
9340 | 0 | const int ip1 = MIN(ip0 + dp, np); |
9341 | |
|
9342 | 0 | for (int64_t i13 = ip0; i13 < ip1; ++i13) { |
9343 | 0 | for (int64_t i12 = 0; i12 < ne12; ++i12) { |
9344 | 0 | for (int64_t i11 = 0; i11 < ne11; ++i11) { |
9345 | 0 | const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10; |
9346 | 0 | for (int64_t i10 = 0; i10 < ne10; ++i10) { |
9347 | 0 | const int64_t jp0 = jp1 + i10; |
9348 | 0 | const float src1_e = src1_data[jp0]; |
9349 | 0 | const float src2_e = src2_data[jp0]; |
9350 | |
|
9351 | 0 | const int64_t jdh = jp0 * ne10; |
9352 | 0 | const int64_t jdw = jdh - (ne10 - 1) * i10; |
9353 | |
|
9354 | 0 | for (int64_t j = 0; j < ne10; ++j) { |
9355 | 0 | dst_data[jdh + j ] += src2_e; |
9356 | 0 | dst_data[jdw + j*ne10] += src1_e; |
9357 | 0 | } |
9358 | 0 | } |
9359 | 0 | } |
9360 | 0 | } |
9361 | 0 | } |
9362 | 0 | } |
9363 | | |
9364 | | void ggml_compute_forward_add_rel_pos( |
9365 | | const ggml_compute_params * params, |
9366 | 0 | ggml_tensor * dst) { |
9367 | |
|
9368 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9369 | |
|
9370 | 0 | switch (src0->type) { |
9371 | 0 | case GGML_TYPE_F32: |
9372 | 0 | { |
9373 | 0 | ggml_compute_forward_add_rel_pos_f32(params, dst); |
9374 | 0 | } break; |
9375 | 0 | default: |
9376 | 0 | { |
9377 | 0 | GGML_ABORT("fatal error"); |
9378 | 0 | } |
9379 | 0 | } |
9380 | 0 | } |
9381 | | |
9382 | | // ggml_compute_forward_rwkv_wkv6 |
9383 | | |
9384 | | static void ggml_compute_forward_rwkv_wkv6_f32( |
9385 | | const ggml_compute_params * params, |
9386 | 0 | ggml_tensor * dst) { |
9387 | 0 | const int64_t T = dst->src[1]->ne[2]; |
9388 | 0 | const int64_t C = dst->ne[0]; |
9389 | 0 | const int64_t HEADS = dst->src[1]->ne[1]; |
9390 | 0 | const int64_t n_seqs = dst->src[5]->ne[1]; |
9391 | 0 | const int64_t head_size = C / HEADS; |
9392 | |
|
9393 | 0 | float * dst_data = (float *) dst->data; |
9394 | 0 | float * state = ((float *) dst->data) + C * T; |
9395 | |
|
9396 | 0 | const int ith = params->ith; |
9397 | 0 | const int nth = params->nth; |
9398 | |
|
9399 | 0 | if (ith >= HEADS) { |
9400 | 0 | return; |
9401 | 0 | } |
9402 | | |
9403 | 0 | const int h_start = (HEADS * ith) / nth; |
9404 | 0 | const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ? |
9405 | 0 | (HEADS * (ith + 1)) / nth : HEADS; |
9406 | |
|
9407 | 0 | float * k = (float *) dst->src[0]->data; |
9408 | 0 | float * v = (float *) dst->src[1]->data; |
9409 | 0 | float * r = (float *) dst->src[2]->data; |
9410 | 0 | float * time_faaaa = (float *) dst->src[3]->data; |
9411 | 0 | float * time_decay = (float *) dst->src[4]->data; |
9412 | |
|
9413 | 0 | size_t t_stride = HEADS * head_size; // Same to C |
9414 | |
|
9415 | 0 | size_t h_stride = C / HEADS; |
9416 | 0 | GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS |
9417 | 0 | size_t h_stride_2d = head_size * head_size; |
9418 | |
|
9419 | 0 | if (ith == 0) { |
9420 | 0 | memset(dst_data, 0, T * C * sizeof(float)); |
9421 | 0 | } |
9422 | 0 | ggml_barrier(params->threadpool); |
9423 | | |
9424 | |
|
9425 | 0 | #if defined(__AVX__) && !defined(__AVX512F__) |
9426 | 0 | #define GGML_F32X GGML_F32x8 |
9427 | 0 | #define GGML_F32X_SET1 GGML_F32x8_SET1 |
9428 | 0 | #define GGML_F32X_LOAD GGML_F32x8_LOAD |
9429 | 0 | #define GGML_F32X_STORE GGML_F32x8_STORE |
9430 | 0 | #define GGML_F32X_MUL GGML_F32x8_MUL |
9431 | 0 | #define GGML_F32X_FMA GGML_F32x8_FMA |
9432 | 0 | #define WKV_VECTOR_SIZE 8 |
9433 | | #elif defined(__AVX512F__) |
9434 | | #define GGML_F32X GGML_F32x16 |
9435 | | #define GGML_F32X_SET1 GGML_F32x16_SET1 |
9436 | | #define GGML_F32X_LOAD GGML_F32x16_LOAD |
9437 | | #define GGML_F32X_STORE GGML_F32x16_STORE |
9438 | | #define GGML_F32X_MUL GGML_F32x16_MUL |
9439 | | #define GGML_F32X_FMA GGML_F32x16_FMA |
9440 | | #define WKV_VECTOR_SIZE 16 |
9441 | | #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) |
9442 | | #define GGML_F32X GGML_F32xt |
9443 | | #define GGML_F32X_SET1 GGML_F32xt_SET1 |
9444 | | #define GGML_F32X_LOAD GGML_F32xt_LOAD |
9445 | | #define GGML_F32X_STORE GGML_F32xt_STORE |
9446 | | #define GGML_F32X_MUL GGML_F32xt_MUL |
9447 | | #define GGML_F32X_FMA GGML_F32xt_FMA |
9448 | | #define WKV_VECTOR_SIZE 8 |
9449 | | #elif defined(__ARM_NEON) && defined(__aarch64__) |
9450 | | #define GGML_F32X GGML_F32x4 |
9451 | | #define GGML_F32X_SET1 GGML_F32x4_SET1 |
9452 | | #define GGML_F32X_LOAD GGML_F32x4_LOAD |
9453 | | #define GGML_F32X_STORE GGML_F32x4_STORE |
9454 | | #define GGML_F32X_MUL GGML_F32x4_MUL |
9455 | | #define GGML_F32X_FMA GGML_F32x4_FMA |
9456 | | #define WKV_VECTOR_SIZE 4 |
9457 | | #endif |
9458 | |
|
9459 | 0 | #ifdef WKV_VECTOR_SIZE |
9460 | 0 | int wkv_vector_size; |
9461 | | #if defined(__ARM_FEATURE_SVE) |
9462 | | wkv_vector_size = svcntw(); |
9463 | | #else |
9464 | 0 | wkv_vector_size = WKV_VECTOR_SIZE; |
9465 | 0 | #endif |
9466 | 0 | const int64_t vec_count = head_size / wkv_vector_size; |
9467 | |
|
9468 | 0 | for (int64_t t = 0; t < T; t++) { |
9469 | 0 | size_t t_offset = t * t_stride; |
9470 | 0 | size_t state_offset = head_size * C * (t / (T / n_seqs)); |
9471 | 0 | float * state_cur = state + state_offset; |
9472 | 0 | float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset; |
9473 | |
|
9474 | 0 | for (int64_t h = h_start; h < h_end; h++) { |
9475 | 0 | size_t h_offset = h * h_stride; |
9476 | 0 | size_t t_h_offset = t_offset + h_offset; |
9477 | 0 | size_t h_2d_offset = h * h_stride_2d; |
9478 | |
|
9479 | 0 | for (int64_t i = 0; i < head_size; i++) { |
9480 | 0 | size_t t_h_i_offset = t_h_offset + i; |
9481 | 0 | size_t h_i_offset = h_offset + i; |
9482 | 0 | size_t h_2d_i_offset = h_2d_offset + i * h_stride; |
9483 | |
|
9484 | 0 | float k_val = k[t_h_i_offset]; |
9485 | 0 | float r_val = r[t_h_i_offset]; |
9486 | 0 | float time_faaaa_val = time_faaaa[h_i_offset]; |
9487 | 0 | float time_decay_val = time_decay[t_h_i_offset]; |
9488 | | |
9489 | | // Broadcast scalar values to vectors |
9490 | 0 | GGML_F32X k_vec = GGML_F32X_SET1(k_val); |
9491 | 0 | GGML_F32X r_vec = GGML_F32X_SET1(r_val); |
9492 | 0 | GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val); |
9493 | 0 | GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val); |
9494 | |
|
9495 | 0 | for (int64_t j = 0; j < vec_count; j++) { |
9496 | 0 | size_t base_j = j * wkv_vector_size; |
9497 | 0 | size_t t_h_j_offset = t_h_offset + base_j; |
9498 | 0 | size_t h_2d_i_j_offset = h_2d_i_offset + base_j; |
9499 | | |
9500 | | // Load x elements at once |
9501 | 0 | GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]); |
9502 | 0 | GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]); |
9503 | 0 | GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]); |
9504 | | |
9505 | | // Compute kv = v * k |
9506 | 0 | GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec); |
9507 | | |
9508 | | // Compute temp = kv * time_faaaa + prev_state |
9509 | 0 | GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec); |
9510 | | |
9511 | | // Update dst: dst += temp * r |
9512 | 0 | dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec); |
9513 | 0 | GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec); |
9514 | | |
9515 | | // Update state: state = prev_state * time_decay + kv |
9516 | 0 | GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec); |
9517 | 0 | GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec); |
9518 | 0 | } |
9519 | | |
9520 | | // Handle remaining elements, this will not be used. |
9521 | 0 | for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) { |
9522 | 0 | size_t t_h_j_offset = t_h_offset + j; |
9523 | 0 | size_t h_2d_i_j_offset = h_2d_i_offset + j; |
9524 | 0 | float v_val = v[t_h_j_offset]; |
9525 | 0 | float kv_val = v_val * k_val; |
9526 | 0 | float prev_state_val = state_prev[h_2d_i_j_offset]; |
9527 | 0 | float temp_val = kv_val * time_faaaa_val + prev_state_val; |
9528 | 0 | dst_data[t_h_j_offset] += temp_val * r_val; |
9529 | 0 | state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val; |
9530 | 0 | } |
9531 | 0 | } |
9532 | 0 | } |
9533 | 0 | } |
9534 | |
|
9535 | | #else |
9536 | | // basically fused operations: |
9537 | | // dst = r @ (time_faaaa * (k @ v) + state), |
9538 | | // state = time_decay * state + (k @ v), |
9539 | | // recursive through each token |
9540 | | for (int64_t t = 0; t < T; t++) { |
9541 | | size_t t_offset = t * t_stride; |
9542 | | size_t state_offset = head_size * C * (t / (T / n_seqs)); |
9543 | | float * state_cur = state + state_offset; |
9544 | | float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset; |
9545 | | |
9546 | | for (int64_t h = h_start; h < h_end; h++) { |
9547 | | size_t h_offset = h * h_stride; |
9548 | | size_t t_h_offset = t_offset + h_offset; |
9549 | | size_t h_2d_offset = h * h_stride_2d; |
9550 | | |
9551 | | for (int64_t i = 0; i < head_size; i++) { |
9552 | | size_t t_h_i_offset = t_h_offset + i; |
9553 | | size_t h_i_offset = h_offset + i; |
9554 | | size_t h_2d_i_offset = h_2d_offset + i * h_stride; |
9555 | | |
9556 | | float k_val = k[t_h_i_offset]; |
9557 | | float r_val = r[t_h_i_offset]; |
9558 | | float time_faaaa_val = time_faaaa[h_i_offset]; |
9559 | | // RWKV v6: different time_decay for each token. |
9560 | | float time_decay_val = time_decay[t_h_i_offset]; |
9561 | | |
9562 | | for (int64_t j = 0; j < head_size; j++) { |
9563 | | size_t t_h_j_offset = t_h_offset + j; |
9564 | | size_t h_2d_i_j_offset = h_2d_i_offset + j; |
9565 | | |
9566 | | float v_val = v[t_h_j_offset]; |
9567 | | float kv_val = v_val * k_val; |
9568 | | float prev_state_val = state_prev[h_2d_i_j_offset]; |
9569 | | float temp_val = kv_val * time_faaaa_val + prev_state_val; |
9570 | | dst_data[t_h_j_offset] += temp_val * r_val; |
9571 | | state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val; |
9572 | | } |
9573 | | } |
9574 | | } |
9575 | | } |
9576 | | #endif |
9577 | 0 | } |
9578 | | |
9579 | | |
9580 | | void ggml_compute_forward_rwkv_wkv6( |
9581 | | const ggml_compute_params * params, |
9582 | 0 | ggml_tensor * dst) { |
9583 | |
|
9584 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9585 | |
|
9586 | 0 | switch (src0->type) { |
9587 | 0 | case GGML_TYPE_F32: |
9588 | 0 | { |
9589 | 0 | ggml_compute_forward_rwkv_wkv6_f32(params, dst); |
9590 | 0 | } break; |
9591 | 0 | default: |
9592 | 0 | { |
9593 | 0 | GGML_ABORT("fatal error"); |
9594 | 0 | } |
9595 | 0 | } |
9596 | 0 | } |
9597 | | |
9598 | | // ggml_compute_forward_gla |
9599 | | |
9600 | | static void ggml_compute_forward_gla_f32( |
9601 | | const ggml_compute_params * params, |
9602 | 0 | ggml_tensor * dst) { |
9603 | 0 | const int64_t T = dst->src[1]->ne[2]; |
9604 | 0 | const int64_t C = dst->ne[0]; |
9605 | 0 | const int64_t HEADS = dst->src[1]->ne[1]; |
9606 | 0 | const int64_t n_seqs = dst->src[4]->ne[1]; |
9607 | 0 | const int64_t head_size = C / HEADS; |
9608 | 0 | const float scale = ggml_get_op_params_f32(dst, 0); |
9609 | |
|
9610 | 0 | float * dst_data = (float *) dst->data; |
9611 | 0 | float * state = ((float *) dst->data) + C * T; |
9612 | |
|
9613 | 0 | const int ith = params->ith; |
9614 | 0 | const int nth = params->nth; |
9615 | |
|
9616 | 0 | if (ith >= HEADS) { |
9617 | 0 | return; |
9618 | 0 | } |
9619 | | |
9620 | 0 | const int h_start = (HEADS * ith) / nth; |
9621 | 0 | const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ? |
9622 | 0 | (HEADS * (ith + 1)) / nth : HEADS; |
9623 | |
|
9624 | 0 | float * k = (float *) dst->src[0]->data; |
9625 | 0 | float * v = (float *) dst->src[1]->data; |
9626 | 0 | float * q = (float *) dst->src[2]->data; |
9627 | 0 | float * g = (float *) dst->src[3]->data; |
9628 | |
|
9629 | 0 | size_t t_stride = HEADS * head_size; // Same to C |
9630 | |
|
9631 | 0 | size_t h_stride = C / HEADS; |
9632 | 0 | GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS |
9633 | 0 | size_t h_stride_2d = head_size * head_size; |
9634 | |
|
9635 | 0 | if (ith == 0) { |
9636 | 0 | memset(dst_data, 0, T * C * sizeof(float)); |
9637 | 0 | } |
9638 | 0 | ggml_barrier(params->threadpool); |
9639 | | |
9640 | |
|
9641 | 0 | #if defined(__AVX__) && !defined(__AVX512F__) |
9642 | 0 | #define GGML_F32X GGML_F32x8 |
9643 | 0 | #define GGML_F32X_SET1 GGML_F32x8_SET1 |
9644 | 0 | #define GGML_F32X_LOAD GGML_F32x8_LOAD |
9645 | 0 | #define GGML_F32X_STORE GGML_F32x8_STORE |
9646 | 0 | #define GGML_F32X_MUL GGML_F32x8_MUL |
9647 | 0 | #define GGML_F32X_FMA GGML_F32x8_FMA |
9648 | 0 | #define GLA_VECTOR_SIZE 8 |
9649 | | #elif defined(__AVX512F__) |
9650 | | #define GGML_F32X GGML_F32x16 |
9651 | | #define GGML_F32X_SET1 GGML_F32x16_SET1 |
9652 | | #define GGML_F32X_LOAD GGML_F32x16_LOAD |
9653 | | #define GGML_F32X_STORE GGML_F32x16_STORE |
9654 | | #define GGML_F32X_MUL GGML_F32x16_MUL |
9655 | | #define GGML_F32X_FMA GGML_F32x16_FMA |
9656 | | #define GLA_VECTOR_SIZE 16 |
9657 | | #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__) |
9658 | | #define GGML_F32X GGML_F32xt |
9659 | | #define GGML_F32X_SET1 GGML_F32xt_SET1 |
9660 | | #define GGML_F32X_LOAD GGML_F32xt_LOAD |
9661 | | #define GGML_F32X_STORE GGML_F32xt_STORE |
9662 | | #define GGML_F32X_MUL GGML_F32xt_MUL |
9663 | | #define GGML_F32X_FMA GGML_F32xt_FMA |
9664 | | #define GLA_VECTOR_SIZE 8 |
9665 | | #elif defined(__ARM_NEON) && defined(__aarch64__) |
9666 | | #define GGML_F32X GGML_F32x4 |
9667 | | #define GGML_F32X_SET1 GGML_F32x4_SET1 |
9668 | | #define GGML_F32X_LOAD GGML_F32x4_LOAD |
9669 | | #define GGML_F32X_STORE GGML_F32x4_STORE |
9670 | | #define GGML_F32X_MUL GGML_F32x4_MUL |
9671 | | #define GGML_F32X_FMA GGML_F32x4_FMA |
9672 | | #define GLA_VECTOR_SIZE 4 |
9673 | | #endif |
9674 | |
|
9675 | 0 | #ifdef GLA_VECTOR_SIZE |
9676 | 0 | int gla_vector_size; |
9677 | | #if defined(__ARM_FEATURE_SVE) |
9678 | | gla_vector_size = svcntw(); |
9679 | | #else |
9680 | 0 | gla_vector_size = GLA_VECTOR_SIZE; |
9681 | 0 | #endif |
9682 | 0 | const int64_t vec_count = head_size / gla_vector_size; |
9683 | |
|
9684 | 0 | for (int64_t t = 0; t < T; t++) { |
9685 | 0 | size_t t_offset = t * t_stride; |
9686 | 0 | size_t state_offset = head_size * C * (t / (T / n_seqs)); |
9687 | 0 | float * state_cur = state + state_offset; |
9688 | 0 | float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset; |
9689 | |
|
9690 | 0 | for (int64_t h = h_start; h < h_end; h++) { |
9691 | 0 | size_t h_offset = h * h_stride; |
9692 | 0 | size_t t_h_offset = t_offset + h_offset; |
9693 | 0 | size_t h_2d_offset = h * h_stride_2d; |
9694 | |
|
9695 | 0 | for (int64_t i = 0; i < head_size; i++) { |
9696 | 0 | size_t t_h_i_offset = t_h_offset + i; |
9697 | 0 | size_t h_2d_i_offset = h_2d_offset + i * h_stride; |
9698 | |
|
9699 | 0 | float k_val = k[t_h_i_offset]; |
9700 | 0 | float q_val = q[t_h_i_offset] * scale; |
9701 | 0 | float g_val = g[t_h_i_offset]; |
9702 | | |
9703 | | // Broadcast scalar values to vectors |
9704 | 0 | GGML_F32X k_vec = GGML_F32X_SET1(k_val); |
9705 | 0 | GGML_F32X q_vec = GGML_F32X_SET1(q_val); |
9706 | 0 | GGML_F32X g_vec = GGML_F32X_SET1(g_val); |
9707 | |
|
9708 | 0 | for (int64_t j = 0; j < vec_count; j++) { |
9709 | 0 | size_t base_j = j * gla_vector_size; |
9710 | 0 | size_t t_h_j_offset = t_h_offset + base_j; |
9711 | 0 | size_t h_2d_i_j_offset = h_2d_i_offset + base_j; |
9712 | | |
9713 | | // Load x elements at once |
9714 | 0 | GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]); |
9715 | 0 | GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]); |
9716 | 0 | GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]); |
9717 | | |
9718 | | // Compute kv = v * k |
9719 | 0 | GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec); |
9720 | | |
9721 | | // Compute temp = prev_state * g + kv |
9722 | 0 | GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec); |
9723 | | |
9724 | | // Update dst: dst += temp * q |
9725 | 0 | dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec); |
9726 | 0 | GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec); |
9727 | | |
9728 | | // Update state |
9729 | 0 | GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec); |
9730 | 0 | } |
9731 | | |
9732 | | // Handle remaining elements, this will not be used. |
9733 | 0 | for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) { |
9734 | 0 | size_t t_h_j_offset = t_h_offset + j; |
9735 | 0 | size_t h_2d_i_j_offset = h_2d_i_offset + j; |
9736 | 0 | float v_val = v[t_h_j_offset]; |
9737 | 0 | float kv_val = v_val * k_val; |
9738 | 0 | float prev_state_val = state_prev[h_2d_i_j_offset]; |
9739 | 0 | float temp_val = kv_val + prev_state_val * g_val; |
9740 | 0 | dst_data[t_h_j_offset] += temp_val * q_val; |
9741 | 0 | state_cur[h_2d_i_j_offset] = temp_val; |
9742 | 0 | } |
9743 | 0 | } |
9744 | 0 | } |
9745 | 0 | } |
9746 | |
|
9747 | | #else |
9748 | | for (int64_t t = 0; t < T; t++) { |
9749 | | size_t t_offset = t * t_stride; |
9750 | | size_t state_offset = head_size * C * (t / (T / n_seqs)); |
9751 | | float * state_cur = state + state_offset; |
9752 | | float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset; |
9753 | | |
9754 | | for (int64_t h = h_start; h < h_end; h++) { |
9755 | | size_t h_offset = h * h_stride; |
9756 | | size_t t_h_offset = t_offset + h_offset; |
9757 | | size_t h_2d_offset = h * h_stride_2d; |
9758 | | |
9759 | | for (int64_t i = 0; i < head_size; i++) { |
9760 | | size_t t_h_i_offset = t_h_offset + i; |
9761 | | size_t h_2d_i_offset = h_2d_offset + i * h_stride; |
9762 | | |
9763 | | float k_val = k[t_h_i_offset]; |
9764 | | float q_val = q[t_h_i_offset] * scale; |
9765 | | float g_val = g[t_h_i_offset]; |
9766 | | |
9767 | | for (int64_t j = 0; j < head_size; j++) { |
9768 | | size_t t_h_j_offset = t_h_offset + j; |
9769 | | size_t h_2d_i_j_offset = h_2d_i_offset + j; |
9770 | | |
9771 | | float v_val = v[t_h_j_offset]; |
9772 | | float kv_val = v_val * k_val; |
9773 | | float prev_state_val = state_prev[h_2d_i_j_offset]; |
9774 | | float temp_val = prev_state_val * g_val + kv_val; |
9775 | | dst_data[t_h_j_offset] += temp_val * q_val; |
9776 | | state_cur[h_2d_i_j_offset] = temp_val; |
9777 | | } |
9778 | | } |
9779 | | } |
9780 | | } |
9781 | | #endif |
9782 | 0 | } |
9783 | | |
9784 | | |
9785 | | void ggml_compute_forward_gla( |
9786 | | const ggml_compute_params * params, |
9787 | 0 | ggml_tensor * dst) { |
9788 | |
|
9789 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9790 | |
|
9791 | 0 | switch (src0->type) { |
9792 | 0 | case GGML_TYPE_F32: |
9793 | 0 | { |
9794 | 0 | ggml_compute_forward_gla_f32(params, dst); |
9795 | 0 | } break; |
9796 | 0 | default: |
9797 | 0 | { |
9798 | 0 | GGML_ABORT("fatal error"); |
9799 | 0 | } |
9800 | 0 | } |
9801 | 0 | } |
9802 | | |
9803 | 0 | static void ggml_compute_forward_solve_tri_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst) { |
9804 | 0 | const struct ggml_tensor * src0 = dst->src[0]; // A (lower triangular) |
9805 | 0 | const struct ggml_tensor * src1 = dst->src[1]; // B (RHS) |
9806 | |
|
9807 | 0 | GGML_TENSOR_BINARY_OP_LOCALS; |
9808 | |
|
9809 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F32); |
9810 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
9811 | 0 | GGML_ASSERT(dst->type == GGML_TYPE_F32); |
9812 | |
|
9813 | 0 | GGML_ASSERT(ne00 == ne01); // A must be square |
9814 | 0 | GGML_ASSERT(ne0 == ne10); // solution cols == B cols |
9815 | 0 | GGML_ASSERT(ne1 == ne11); // solution rows == B rows |
9816 | |
|
9817 | 0 | GGML_ASSERT(ne02 == ne12 && ne12 == ne2); |
9818 | 0 | GGML_ASSERT(ne03 == ne13 && ne13 == ne3); |
9819 | |
|
9820 | 0 | const int ith = params->ith; |
9821 | 0 | const int nth = params->nth; |
9822 | |
|
9823 | 0 | const int64_t k = ne10; // number of RHS columns |
9824 | 0 | const int64_t n = ne11; // A is n×n |
9825 | 0 | const int64_t nr = ne02 * ne03 * k; // we're parallelizing on columns here, so seq x token x column will be the unit |
9826 | | |
9827 | | // chunks per thread |
9828 | 0 | const int64_t dr = (nr + nth - 1)/nth; |
9829 | | |
9830 | | // chunk range for this thread |
9831 | 0 | const int64_t ir0 = dr*ith; |
9832 | 0 | const int64_t ir1 = MIN(ir0 + dr, nr); |
9833 | |
|
9834 | 0 | const float * A = (const float *) src0->data; // [n, n, B1, B2] |
9835 | 0 | const float * B = (const float *) src1->data; // [n, k, B1, B2] |
9836 | 0 | float * X = ( float *) dst->data; // [n, k, B1, B2] |
9837 | |
|
9838 | 0 | for (int64_t ir = ir0; ir < ir1; ++ir) { |
9839 | 0 | const int64_t i03 = ir/(ne02*k); |
9840 | 0 | const int64_t i02 = (ir - i03*ne02*k)/k; |
9841 | 0 | const int64_t i01 = (ir - i03*ne02*k - i02*k); |
9842 | |
|
9843 | 0 | const float * A_batch = A + i02 * nb02 / sizeof(float) + i03 * nb03 / sizeof(float); |
9844 | 0 | const float * B_batch = B + i02 * nb12 / sizeof(float) + i03 * nb13 / sizeof(float); |
9845 | |
|
9846 | 0 | float * X_batch = X + i02 * nb2 / sizeof(float) + i03 * nb3 / sizeof(float); |
9847 | |
|
9848 | 0 | for (int64_t i00 = 0; i00 < n; ++i00) { |
9849 | 0 | float sum = 0.0f; |
9850 | 0 | for (int64_t t = 0; t < i00; ++t) { |
9851 | 0 | sum += A_batch[i00 * n + t] * X_batch[t * k + i01]; |
9852 | 0 | } |
9853 | |
|
9854 | 0 | const float diag = A_batch[i00 * n + i00]; |
9855 | 0 | assert(diag != 0.0f && "Zero diagonal in triangular matrix"); |
9856 | |
|
9857 | 0 | X_batch[i00 * k + i01] = (B_batch[i00 * k + i01] - sum) / diag; |
9858 | 0 | } |
9859 | 0 | } |
9860 | 0 | } |
9861 | | |
9862 | 0 | void ggml_compute_forward_solve_tri(const struct ggml_compute_params * params, struct ggml_tensor * dst) { |
9863 | 0 | const ggml_tensor * src0 = dst->src[0]; |
9864 | 0 | const ggml_tensor * src1 = dst->src[1]; |
9865 | |
|
9866 | 0 | if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) { |
9867 | 0 | ggml_compute_forward_solve_tri_f32(params, dst); |
9868 | 0 | } else { |
9869 | 0 | GGML_ABORT("fatal error"); |
9870 | 0 | } |
9871 | 0 | } |
9872 | | |
9873 | | // ggml_compute_forward_rwkv_wkv7 |
9874 | | |
9875 | | static void ggml_compute_forward_rwkv_wkv7_f32( |
9876 | | const ggml_compute_params * params, |
9877 | 0 | ggml_tensor * dst) { |
9878 | 0 | const int64_t T = dst->src[1]->ne[2]; |
9879 | 0 | const int64_t C = dst->ne[0]; |
9880 | 0 | const int64_t HEADS = dst->src[1]->ne[1]; |
9881 | 0 | const int64_t n_seqs = dst->src[6]->ne[1]; |
9882 | 0 | const int64_t head_size = C / HEADS; |
9883 | |
|
9884 | 0 | float * dst_data = (float *) dst->data; |
9885 | 0 | float * state = ((float *) dst->data) + C * T; |
9886 | |
|
9887 | 0 | const int ith = params->ith; |
9888 | 0 | const int nth = params->nth; |
9889 | |
|
9890 | 0 | if (ith >= HEADS) { |
9891 | 0 | return; |
9892 | 0 | } |
9893 | | |
9894 | 0 | const int h_start = (HEADS * ith) / nth; |
9895 | 0 | const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ? |
9896 | 0 | (HEADS * (ith + 1)) / nth : HEADS; |
9897 | |
|
9898 | 0 | float * r = (float *) dst->src[0]->data; |
9899 | 0 | float * w = (float *) dst->src[1]->data; |
9900 | 0 | float * k = (float *) dst->src[2]->data; |
9901 | 0 | float * v = (float *) dst->src[3]->data; |
9902 | 0 | float * a = (float *) dst->src[4]->data; |
9903 | 0 | float * b = (float *) dst->src[5]->data; |
9904 | |
|
9905 | 0 | int64_t t_stride = HEADS * head_size; // Same to C |
9906 | |
|
9907 | 0 | int64_t h_stride = C / HEADS; |
9908 | 0 | GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS |
9909 | 0 | int64_t h_stride_2d = head_size * head_size; |
9910 | |
|
9911 | 0 | #if defined(GGML_SIMD) |
9912 | | #if defined(__ARM_FEATURE_SVE) || defined(__riscv_v_intrinsic) |
9913 | | // scalar Route to scalar implementation //TODO: Write SVE code and RVV code |
9914 | | for (int64_t t = 0; t < T; t++) { |
9915 | | int64_t t_offset = t * t_stride; |
9916 | | int64_t state_offset = head_size * C * (t / (T / n_seqs)); |
9917 | | float * state_cur = state + state_offset; |
9918 | | float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset; |
9919 | | |
9920 | | for (int64_t h = h_start; h < h_end; h++) { |
9921 | | int64_t h_offset = h * h_stride; |
9922 | | int64_t t_h_offset = t_offset + h_offset; |
9923 | | int64_t h_2d_offset = h * h_stride_2d; |
9924 | | |
9925 | | for (int64_t i = 0; i < head_size; i++) { |
9926 | | int64_t t_h_i_offset = t_h_offset + i; |
9927 | | int64_t h_2d_i_offset = h_2d_offset + i * h_stride; |
9928 | | |
9929 | | float v_val = v[t_h_i_offset]; |
9930 | | |
9931 | | float sa = 0, result = 0; |
9932 | | for (int64_t j = 0; j < head_size; j++) { |
9933 | | sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j]; |
9934 | | } |
9935 | | |
9936 | | for (int64_t j = 0; j < head_size; j++) { |
9937 | | int64_t t_h_j_offset = t_h_offset + j; |
9938 | | int64_t h_2d_i_j_offset = h_2d_i_offset + j; |
9939 | | |
9940 | | float r_val = r[t_h_j_offset]; |
9941 | | float w_val = w[t_h_j_offset]; |
9942 | | float k_val = k[t_h_j_offset]; |
9943 | | float b_val = b[t_h_j_offset]; |
9944 | | float kv_val = v_val * k_val; |
9945 | | float prev_state_val = state_prev[h_2d_i_j_offset]; |
9946 | | state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val; |
9947 | | result += state_cur[h_2d_i_j_offset] * r_val; |
9948 | | } |
9949 | | dst_data[t_h_i_offset] = result; |
9950 | | } |
9951 | | } |
9952 | | } |
9953 | | #else |
9954 | 0 | for (int64_t t = 0; t < T; t++) { |
9955 | 0 | int64_t t_offset = t * t_stride; |
9956 | 0 | int64_t state_offset = head_size * C * (t / (T / n_seqs)); |
9957 | 0 | float * state_cur = state + state_offset; |
9958 | 0 | float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset; |
9959 | |
|
9960 | 0 | for (int64_t h = h_start; h < h_end; h++) { |
9961 | 0 | int64_t h_offset = h * h_stride; |
9962 | 0 | int64_t t_h_offset = t_offset + h_offset; |
9963 | 0 | int64_t h_2d_offset = h * h_stride_2d; |
9964 | |
|
9965 | 0 | for (int64_t ii = 0; ii < head_size; ii++) { |
9966 | 0 | int64_t t_h_i_offset = t_h_offset + ii; |
9967 | 0 | int64_t h_2d_i_offset = h_2d_offset + ii * h_stride; |
9968 | |
|
9969 | 0 | GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]); |
9970 | |
|
9971 | 0 | float sa = 0; |
9972 | 0 | { |
9973 | 0 | GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; |
9974 | 0 | GGML_F32_VEC ax[GGML_F32_ARR]; |
9975 | 0 | GGML_F32_VEC ay[GGML_F32_ARR]; |
9976 | 0 | for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) { |
9977 | 0 | for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) { |
9978 | 0 | ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]); |
9979 | 0 | ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]); |
9980 | 0 | sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]); |
9981 | 0 | } |
9982 | 0 | } |
9983 | 0 | GGML_F32_VEC_REDUCE(sa, sum); |
9984 | 0 | } |
9985 | |
|
9986 | 0 | GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa); |
9987 | |
|
9988 | 0 | int64_t j = 0; |
9989 | 0 | GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; |
9990 | 0 | for (; j < head_size; j += GGML_F32_STEP) { |
9991 | 0 | for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) { |
9992 | 0 | int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR; |
9993 | 0 | int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR; |
9994 | |
|
9995 | 0 | GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]); |
9996 | 0 | GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]); |
9997 | 0 | GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]); |
9998 | 0 | GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]); |
9999 | |
|
10000 | 0 | k_vec = GGML_F32_VEC_MUL(v_vec, k_vec); |
10001 | |
|
10002 | 0 | GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]); |
10003 | | // kv + s * decay + sa * b |
10004 | 0 | state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec); |
10005 | 0 | state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec); |
10006 | 0 | GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec); |
10007 | |
|
10008 | 0 | result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec); |
10009 | 0 | } |
10010 | 0 | } |
10011 | 0 | GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec); |
10012 | | |
10013 | | // There shouldn't be left-overs though. |
10014 | 0 | for (; j < head_size; j++) { |
10015 | 0 | int64_t t_h_j_offset = t_h_offset + j; |
10016 | 0 | int64_t h_2d_i_j_offset = h_2d_i_offset + j; |
10017 | |
|
10018 | 0 | float r_val = r[t_h_j_offset]; |
10019 | 0 | float w_val = w[t_h_j_offset]; |
10020 | 0 | float k_val = k[t_h_j_offset]; |
10021 | 0 | float b_val = b[t_h_j_offset]; |
10022 | 0 | float kv_val = v[t_h_i_offset] * k_val; |
10023 | |
|
10024 | 0 | float prev_state_val = state_prev[h_2d_i_j_offset]; |
10025 | 0 | state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val; |
10026 | 0 | dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val; |
10027 | 0 | } |
10028 | 0 | } |
10029 | 0 | } |
10030 | 0 | } |
10031 | 0 | #endif |
10032 | | #else |
10033 | | for (int64_t t = 0; t < T; t++) { |
10034 | | int64_t t_offset = t * t_stride; |
10035 | | int64_t state_offset = head_size * C * (t / (T / n_seqs)); |
10036 | | float * state_cur = state + state_offset; |
10037 | | float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset; |
10038 | | |
10039 | | for (int64_t h = h_start; h < h_end; h++) { |
10040 | | int64_t h_offset = h * h_stride; |
10041 | | int64_t t_h_offset = t_offset + h_offset; |
10042 | | int64_t h_2d_offset = h * h_stride_2d; |
10043 | | |
10044 | | for (int64_t i = 0; i < head_size; i++) { |
10045 | | int64_t t_h_i_offset = t_h_offset + i; |
10046 | | int64_t h_2d_i_offset = h_2d_offset + i * h_stride; |
10047 | | |
10048 | | float v_val = v[t_h_i_offset]; |
10049 | | |
10050 | | float sa = 0, result = 0; |
10051 | | for (int64_t j = 0; j < head_size; j++) { |
10052 | | sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j]; |
10053 | | } |
10054 | | |
10055 | | for (int64_t j = 0; j < head_size; j++) { |
10056 | | int64_t t_h_j_offset = t_h_offset + j; |
10057 | | int64_t h_2d_i_j_offset = h_2d_i_offset + j; |
10058 | | |
10059 | | float r_val = r[t_h_j_offset]; |
10060 | | float w_val = w[t_h_j_offset]; |
10061 | | float k_val = k[t_h_j_offset]; |
10062 | | float b_val = b[t_h_j_offset]; |
10063 | | float kv_val = v_val * k_val; |
10064 | | float prev_state_val = state_prev[h_2d_i_j_offset]; |
10065 | | state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val; |
10066 | | result += state_cur[h_2d_i_j_offset] * r_val; |
10067 | | } |
10068 | | dst_data[t_h_i_offset] = result; |
10069 | | } |
10070 | | } |
10071 | | } |
10072 | | #endif |
10073 | 0 | } |
10074 | | |
10075 | | |
10076 | | void ggml_compute_forward_rwkv_wkv7( |
10077 | | const ggml_compute_params * params, |
10078 | 0 | ggml_tensor * dst) { |
10079 | |
|
10080 | 0 | const ggml_tensor * src0 = dst->src[0]; |
10081 | |
|
10082 | 0 | switch (src0->type) { |
10083 | 0 | case GGML_TYPE_F32: |
10084 | 0 | { |
10085 | 0 | ggml_compute_forward_rwkv_wkv7_f32(params, dst); |
10086 | 0 | } break; |
10087 | 0 | default: |
10088 | 0 | { |
10089 | 0 | GGML_ABORT("fatal error"); |
10090 | 0 | } |
10091 | 0 | } |
10092 | 0 | } |
10093 | | |
10094 | | // ggml_compute_forward_map_custom1 |
10095 | | |
10096 | | void ggml_compute_forward_map_custom1( |
10097 | | const ggml_compute_params * params, |
10098 | 0 | ggml_tensor * dst) { |
10099 | |
|
10100 | 0 | const ggml_tensor * a = dst->src[0]; |
10101 | |
|
10102 | 0 | struct ggml_map_custom1_op_params p; |
10103 | 0 | memcpy(&p, dst->op_params, sizeof(p)); |
10104 | |
|
10105 | 0 | p.fun(dst, a, params->ith, params->nth, p.userdata); |
10106 | 0 | } |
10107 | | |
10108 | | // ggml_compute_forward_map_custom2 |
10109 | | |
10110 | | void ggml_compute_forward_map_custom2( |
10111 | | const ggml_compute_params * params, |
10112 | 0 | ggml_tensor * dst) { |
10113 | |
|
10114 | 0 | const ggml_tensor * a = dst->src[0]; |
10115 | 0 | const ggml_tensor * b = dst->src[1]; |
10116 | |
|
10117 | 0 | struct ggml_map_custom2_op_params p; |
10118 | 0 | memcpy(&p, dst->op_params, sizeof(p)); |
10119 | |
|
10120 | 0 | p.fun(dst, a, b, params->ith, params->nth, p.userdata); |
10121 | 0 | } |
10122 | | |
10123 | | // ggml_compute_forward_map_custom3 |
10124 | | |
10125 | | void ggml_compute_forward_map_custom3( |
10126 | | const ggml_compute_params * params, |
10127 | 0 | ggml_tensor * dst) { |
10128 | |
|
10129 | 0 | const ggml_tensor * a = dst->src[0]; |
10130 | 0 | const ggml_tensor * b = dst->src[1]; |
10131 | 0 | const ggml_tensor * c = dst->src[2]; |
10132 | |
|
10133 | 0 | struct ggml_map_custom3_op_params p; |
10134 | 0 | memcpy(&p, dst->op_params, sizeof(p)); |
10135 | |
|
10136 | 0 | p.fun(dst, a, b, c, params->ith, params->nth, p.userdata); |
10137 | 0 | } |
10138 | | |
10139 | | // ggml_compute_forward_custom |
10140 | | |
10141 | | void ggml_compute_forward_custom( |
10142 | | const struct ggml_compute_params * params, |
10143 | 0 | struct ggml_tensor * dst) { |
10144 | |
|
10145 | 0 | struct ggml_custom_op_params p; |
10146 | 0 | memcpy(&p, dst->op_params, sizeof(p)); |
10147 | |
|
10148 | 0 | p.fun(dst, params->ith, params->nth, p.userdata); |
10149 | 0 | } |
10150 | | |
10151 | | // ggml_compute_forward_cross_entropy_loss |
10152 | | |
10153 | | static void ggml_compute_forward_cross_entropy_loss_f32( |
10154 | | const ggml_compute_params * params, |
10155 | 0 | ggml_tensor * dst) { |
10156 | |
|
10157 | 0 | const ggml_tensor * src0 = dst->src[0]; |
10158 | 0 | const ggml_tensor * src1 = dst->src[1]; |
10159 | |
|
10160 | 0 | GGML_ASSERT(src0->type == GGML_TYPE_F32); |
10161 | 0 | GGML_ASSERT(src1->type == GGML_TYPE_F32); |
10162 | 0 | GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); |
10163 | 0 | GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type)); |
10164 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, src1)); |
10165 | 0 | GGML_ASSERT(ggml_is_scalar(dst)); |
10166 | 0 | GGML_ASSERT(dst->type == GGML_TYPE_F32); |
10167 | | |
10168 | | // TODO: handle transposed/permuted matrices |
10169 | 0 | const int64_t nc = src0->ne[0]; |
10170 | 0 | const int64_t nr = ggml_nrows(src0); |
10171 | |
|
10172 | 0 | const int ith = params->ith; |
10173 | 0 | const int nth = params->nth; |
10174 | |
|
10175 | 0 | float * sums = (float *) params->wdata; |
10176 | 0 | float * st = ((float *) params->wdata) + nth + ith*nc; |
10177 | 0 | float sum_thread = 0.0f; |
10178 | |
|
10179 | 0 | GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc)); |
10180 | | |
10181 | | // rows per thread |
10182 | 0 | const int64_t dr = (nr + nth - 1)/nth; |
10183 | | |
10184 | | // row range for this thread |
10185 | 0 | const int64_t ir0 = dr*ith; |
10186 | 0 | const int64_t ir1 = MIN(ir0 + dr, nr); |
10187 | |
|
10188 | 0 | for (int64_t i1 = ir0; i1 < ir1; ++i1) { |
10189 | 0 | const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]); |
10190 | 0 | const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]); |
10191 | |
|
10192 | | #ifndef NDEBUG |
10193 | | for (int64_t i = 0; i < nc; ++i) { |
10194 | | //printf("p[%d] = %f\n", i, p[i]); |
10195 | | assert(!isnan(s0[i])); |
10196 | | assert(!isnan(s1[i])); |
10197 | | } |
10198 | | #endif |
10199 | |
|
10200 | 0 | float max = -INFINITY; |
10201 | 0 | ggml_vec_max_f32(nc, &max, s0); |
10202 | 0 | const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max); |
10203 | 0 | assert(sum_softmax >= 0.0); |
10204 | |
|
10205 | 0 | ggml_vec_add1_f32(nc, st, st, -sum_softmax); |
10206 | 0 | ggml_vec_mul_f32(nc, st, st, s1); |
10207 | |
|
10208 | 0 | float sum_st = 0.0f; |
10209 | 0 | ggml_vec_sum_f32(nc, &sum_st, st); |
10210 | 0 | sum_thread += sum_st; |
10211 | |
|
10212 | | #ifndef NDEBUG |
10213 | | for (int64_t i = 0; i < nc; ++i) { |
10214 | | assert(!isnan(st[i])); |
10215 | | assert(!isinf(st[i])); |
10216 | | } |
10217 | | #endif |
10218 | 0 | } |
10219 | 0 | sums[ith] = sum_thread; |
10220 | 0 | ggml_barrier(params->threadpool); |
10221 | |
|
10222 | 0 | if (ith == 0) { |
10223 | 0 | float * dp = (float *) dst->data; |
10224 | 0 | ggml_vec_sum_f32(nth, dp, sums); |
10225 | 0 | dp[0] *= -1.0f / (float) nr; |
10226 | 0 | } |
10227 | 0 | } |
10228 | | |
10229 | | void ggml_compute_forward_cross_entropy_loss( |
10230 | | const ggml_compute_params * params, |
10231 | 0 | ggml_tensor * dst) { |
10232 | |
|
10233 | 0 | const ggml_tensor * src0 = dst->src[0]; |
10234 | |
|
10235 | 0 | switch (src0->type) { |
10236 | 0 | case GGML_TYPE_F32: |
10237 | 0 | { |
10238 | 0 | ggml_compute_forward_cross_entropy_loss_f32(params, dst); |
10239 | 0 | } break; |
10240 | 0 | default: |
10241 | 0 | { |
10242 | 0 | GGML_ABORT("fatal error"); |
10243 | 0 | } |
10244 | 0 | } |
10245 | 0 | } |
10246 | | |
10247 | | // ggml_compute_forward_cross_entropy_loss_back |
10248 | | |
10249 | | static void ggml_compute_forward_cross_entropy_loss_back_f32( |
10250 | | const ggml_compute_params * params, |
10251 | 0 | ggml_tensor * dst) { |
10252 | |
|
10253 | 0 | const ggml_tensor * grad = dst->src[0]; // gradient of forward pass output |
10254 | 0 | const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass |
10255 | 0 | const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass |
10256 | |
|
10257 | 0 | GGML_ASSERT(ggml_is_contiguous(dst)); |
10258 | 0 | GGML_ASSERT(ggml_is_contiguous(src0f)); |
10259 | 0 | GGML_ASSERT(ggml_is_contiguous(src1f)); |
10260 | 0 | GGML_ASSERT(ggml_is_contiguous(grad)); |
10261 | 0 | GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst)); |
10262 | |
|
10263 | 0 | const int64_t ith = params->ith; |
10264 | 0 | const int64_t nth = params->nth; |
10265 | | |
10266 | | // TODO: handle transposed/permuted matrices |
10267 | 0 | const int64_t nc = src0f->ne[0]; |
10268 | 0 | const int64_t nr = ggml_nrows(src0f); |
10269 | | |
10270 | | // rows per thread |
10271 | 0 | const int64_t dr = (nr + nth - 1)/nth; |
10272 | | |
10273 | | // row range for this thread |
10274 | 0 | const int64_t ir0 = dr*ith; |
10275 | 0 | const int64_t ir1 = MIN(ir0 + dr, nr); |
10276 | |
|
10277 | 0 | const float d_by_nr = ((const float *) grad->data)[0] / (float) nr; |
10278 | |
|
10279 | 0 | for (int64_t i1 = ir0; i1 < ir1; i1++) { |
10280 | 0 | float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]); |
10281 | 0 | const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]); |
10282 | 0 | const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]); |
10283 | |
|
10284 | | #ifndef NDEBUG |
10285 | | for (int64_t i = 0; i < nc; ++i) { |
10286 | | //printf("p[%d] = %f\n", i, p[i]); |
10287 | | assert(!isnan(s0[i])); |
10288 | | assert(!isnan(s1[i])); |
10289 | | } |
10290 | | #endif |
10291 | | |
10292 | | // soft_max |
10293 | 0 | float max = -INFINITY; |
10294 | 0 | ggml_vec_max_f32(nc, &max, s0); |
10295 | 0 | const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max); |
10296 | 0 | assert(sum > 0.0); |
10297 | 0 | ggml_vec_scale_f32(nc, ds0, 1.0/sum); |
10298 | | |
10299 | | // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr |
10300 | 0 | ggml_vec_sub_f32(nc, ds0, ds0, s1); |
10301 | 0 | ggml_vec_scale_f32(nc, ds0, d_by_nr); |
10302 | |
|
10303 | | #ifndef NDEBUG |
10304 | | for (int64_t i = 0; i < nc; ++i) { |
10305 | | assert(!isnan(ds0[i])); |
10306 | | assert(!isinf(ds0[i])); |
10307 | | } |
10308 | | #endif |
10309 | 0 | } |
10310 | 0 | } |
10311 | | |
10312 | | void ggml_compute_forward_cross_entropy_loss_back( |
10313 | | const ggml_compute_params * params, |
10314 | 0 | ggml_tensor * dst) { |
10315 | |
|
10316 | 0 | const ggml_tensor * src0 = dst->src[0]; |
10317 | |
|
10318 | 0 | switch (src0->type) { |
10319 | 0 | case GGML_TYPE_F32: |
10320 | 0 | { |
10321 | 0 | ggml_compute_forward_cross_entropy_loss_back_f32(params, dst); |
10322 | 0 | } break; |
10323 | 0 | default: |
10324 | 0 | { |
10325 | 0 | GGML_ABORT("fatal error"); |
10326 | 0 | } |
10327 | 0 | } |
10328 | 0 | } |
10329 | | |
10330 | | static void ggml_compute_forward_opt_step_adamw_f32( |
10331 | | const ggml_compute_params * params, |
10332 | 0 | ggml_tensor * dst) { |
10333 | |
|
10334 | 0 | const ggml_tensor * src0 = dst->src[0]; |
10335 | 0 | const ggml_tensor * src0_grad = dst->src[1]; |
10336 | 0 | const ggml_tensor * src0_grad_m = dst->src[2]; |
10337 | 0 | const ggml_tensor * src0_grad_v = dst->src[3]; |
10338 | 0 | const ggml_tensor * adamw_params = dst->src[4]; |
10339 | |
|
10340 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, src0_grad)); |
10341 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m)); |
10342 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v)); |
10343 | 0 | GGML_ASSERT(ggml_nelements(adamw_params) == 7); |
10344 | |
|
10345 | 0 | const int ith = params->ith; |
10346 | 0 | const int nth = params->nth; |
10347 | |
|
10348 | 0 | const int nr = ggml_nrows(src0); |
10349 | |
|
10350 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
10351 | 0 | GGML_ASSERT(nb00 == sizeof(float)); |
10352 | | |
10353 | | // rows per thread |
10354 | 0 | const int dr = (nr + nth - 1)/nth; |
10355 | | |
10356 | | // row range for this thread |
10357 | 0 | const int ir0 = dr*ith; |
10358 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
10359 | |
|
10360 | 0 | const float * adamw_params_ptr = ggml_get_data_f32(adamw_params); |
10361 | |
|
10362 | 0 | const float alpha = adamw_params_ptr[0]; |
10363 | 0 | const float beta1 = adamw_params_ptr[1]; |
10364 | 0 | const float beta2 = adamw_params_ptr[2]; |
10365 | 0 | const float eps = adamw_params_ptr[3]; |
10366 | 0 | const float wd = adamw_params_ptr[4]; |
10367 | 0 | const float beta1h = adamw_params_ptr[5]; |
10368 | 0 | const float beta2h = adamw_params_ptr[6]; |
10369 | 0 | const float keep = 1.f - alpha * wd; |
10370 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
10371 | 0 | const int64_t i03 = ir/(ne02*ne01); |
10372 | 0 | const int64_t i02 = (ir - i03*ne02*ne01)/ne01; |
10373 | 0 | const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); |
10374 | |
|
10375 | 0 | const size_t offset = i03*nb03 + i02*nb02 + i01*nb01; |
10376 | |
|
10377 | 0 | float * w = (float *) ((char *) src0->data + offset); // weight |
10378 | 0 | const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad |
10379 | 0 | float * m = (float *) ((char *) src0_grad_m->data + offset); |
10380 | 0 | float * v = (float *) ((char *) src0_grad_v->data + offset); |
10381 | |
|
10382 | 0 | for (int i00 = 0; i00 < ne00; ++i00) { |
10383 | 0 | m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1); |
10384 | 0 | v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2); |
10385 | |
|
10386 | 0 | const float mh = m[i00]*beta1h; |
10387 | 0 | const float vh = sqrtf(v[i00]*beta2h) + eps; |
10388 | | |
10389 | | // The weight decay is applied independently of the Adam momenta m and v. |
10390 | | // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss. |
10391 | | // See: https://arxiv.org/pdf/1711.05101v3.pdf |
10392 | 0 | w[i00] = w[i00] * keep - alpha * mh / vh; |
10393 | 0 | } |
10394 | 0 | } |
10395 | 0 | } |
10396 | | |
10397 | | void ggml_compute_forward_opt_step_adamw( |
10398 | | const ggml_compute_params * params, |
10399 | 0 | ggml_tensor * dst) { |
10400 | |
|
10401 | 0 | const ggml_tensor * src0 = dst->src[0]; |
10402 | |
|
10403 | 0 | switch (src0->type) { |
10404 | 0 | case GGML_TYPE_F32: |
10405 | 0 | { |
10406 | 0 | ggml_compute_forward_opt_step_adamw_f32(params, dst); |
10407 | 0 | } break; |
10408 | 0 | default: |
10409 | 0 | { |
10410 | 0 | GGML_ABORT("fatal error"); |
10411 | 0 | } |
10412 | 0 | } |
10413 | 0 | } |
10414 | | |
10415 | 0 | static void ggml_compute_forward_opt_step_sgd_f32(const ggml_compute_params * params, ggml_tensor * dst) { |
10416 | 0 | const ggml_tensor * src0 = dst->src[0]; |
10417 | 0 | const ggml_tensor * src0_grad = dst->src[1]; |
10418 | 0 | const ggml_tensor * sgd_params = dst->src[2]; |
10419 | |
|
10420 | 0 | GGML_ASSERT(ggml_are_same_shape(src0, src0_grad)); |
10421 | 0 | GGML_ASSERT(ggml_nelements(sgd_params) == 2); |
10422 | |
|
10423 | 0 | const int ith = params->ith; |
10424 | 0 | const int nth = params->nth; |
10425 | |
|
10426 | 0 | const int nr = ggml_nrows(src0); |
10427 | |
|
10428 | 0 | GGML_TENSOR_UNARY_OP_LOCALS |
10429 | 0 | GGML_ASSERT(nb00 == sizeof(float)); |
10430 | | |
10431 | | // rows per thread |
10432 | 0 | const int dr = (nr + nth - 1) / nth; |
10433 | | |
10434 | | // row range for this thread |
10435 | 0 | const int ir0 = dr * ith; |
10436 | 0 | const int ir1 = MIN(ir0 + dr, nr); |
10437 | | |
10438 | | // using adamw param subset we care about - alpha, wd - could have a separate struct |
10439 | 0 | const float * sgd_params_ptr = ggml_get_data_f32(sgd_params); |
10440 | 0 | const float alpha = sgd_params_ptr[0]; |
10441 | 0 | const float keep = 1.f - alpha * sgd_params_ptr[1]; |
10442 | |
|
10443 | 0 | for (int ir = ir0; ir < ir1; ++ir) { |
10444 | 0 | const int64_t i03 = ir / (ne02 * ne01); |
10445 | 0 | const int64_t i02 = (ir - i03 * ne02 * ne01) / ne01; |
10446 | 0 | const int64_t i01 = (ir - i03 * ne02 * ne01 - i02 * ne01); |
10447 | |
|
10448 | 0 | const size_t offset = i03 * nb03 + i02 * nb02 + i01 * nb01; |
10449 | |
|
10450 | 0 | float * w = (float *) ((char *) src0->data + offset); // weight |
10451 | 0 | const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad |
10452 | |
|
10453 | 0 | for (int i00 = 0; i00 < ne00; ++i00) { |
10454 | 0 | w[i00] = w[i00] * keep - alpha * g[i00]; |
10455 | 0 | } |
10456 | 0 | } |
10457 | 0 | } |
10458 | | |
10459 | 0 | void ggml_compute_forward_opt_step_sgd(const ggml_compute_params * params, ggml_tensor * dst) { |
10460 | 0 | const ggml_tensor * src0 = dst->src[0]; |
10461 | |
|
10462 | 0 | switch (src0->type) { |
10463 | 0 | case GGML_TYPE_F32: |
10464 | 0 | { |
10465 | 0 | ggml_compute_forward_opt_step_sgd_f32(params, dst); |
10466 | 0 | } |
10467 | 0 | break; |
10468 | 0 | default: |
10469 | 0 | { |
10470 | 0 | GGML_ABORT("fatal error - sgd is F32 only"); |
10471 | 0 | } |
10472 | 0 | } |
10473 | 0 | } |