Coverage Report

Created: 2025-12-28 06:26

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/arcee.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_arcee::llm_build_arcee(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
9
10
0
    ggml_tensor * cur;
11
0
    ggml_tensor * inpL;
12
13
0
    inpL = build_inp_embd(model.tok_embd);
14
15
    // inp_pos - contains the positions
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
0
    auto * inp_attn = build_attn_inp_kv();
19
20
0
    const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
21
22
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        ggml_tensor * inpSA = inpL;
26
27
        // norm
28
0
        cur = build_norm(inpL,
29
0
                model.layers[il].attn_norm, NULL,
30
0
                LLM_NORM_RMS, il);
31
0
        cb(cur, "attn_norm", il);
32
33
        // self-attention
34
0
        {
35
            // rope freq factors for llama3; may return nullptr for llama2 and other models
36
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
37
38
            // compute Q and K and RoPE them
39
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
40
0
            cb(Qcur, "Qcur", il);
41
0
            if (model.layers[il].bq) {
42
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
43
0
                cb(Qcur, "Qcur", il);
44
0
            }
45
46
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
47
0
            cb(Kcur, "Kcur", il);
48
0
            if (model.layers[il].bk) {
49
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
50
0
                cb(Kcur, "Kcur", il);
51
0
            }
52
53
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
54
0
            cb(Vcur, "Vcur", il);
55
0
            if (model.layers[il].bv) {
56
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
57
0
                cb(Vcur, "Vcur", il);
58
0
            }
59
60
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
61
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
62
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
63
64
0
            Qcur = ggml_rope_ext(
65
0
                    ctx0, Qcur, inp_pos, rope_factors,
66
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
67
0
                    ext_factor, attn_factor, beta_fast, beta_slow
68
0
                    );
69
70
0
            Kcur = ggml_rope_ext(
71
0
                    ctx0, Kcur, inp_pos, rope_factors,
72
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
73
0
                    ext_factor, attn_factor, beta_fast, beta_slow
74
0
                    );
75
76
0
            cb(Qcur, "Qcur", il);
77
0
            cb(Kcur, "Kcur", il);
78
0
            cb(Vcur, "Vcur", il);
79
80
0
            cur = build_attn(inp_attn,
81
0
                    model.layers[il].wo, model.layers[il].bo,
82
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
83
0
            cb(cur, "attn_out", il);
84
0
        }
85
86
0
        if (il == n_layer - 1 && inp_out_ids) {
87
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
88
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
89
0
        }
90
91
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
92
0
        cb(ffn_inp, "ffn_inp", il);
93
94
        // feed-forward network
95
        // ARCEE uses relu^2 instead of silu
96
0
        cur = build_norm(ffn_inp,
97
0
                model.layers[il].ffn_norm, NULL,
98
0
                LLM_NORM_RMS, il);
99
0
        cb(cur, "ffn_norm", il);
100
101
0
        cur = build_ffn(cur,
102
0
                model.layers[il].ffn_up,   NULL, NULL,
103
0
                NULL,                      NULL, NULL,
104
0
                model.layers[il].ffn_down, NULL, NULL,
105
0
                NULL,
106
0
                LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
107
0
        cb(cur, "ffn_out", il);
108
109
0
        cur = ggml_add(ctx0, cur, ffn_inp);
110
0
        cb(cur, "ffn_out", il);
111
112
0
        cur = build_cvec(cur, il);
113
0
        cb(cur, "l_out", il);
114
115
        // input for next layer
116
0
        inpL = cur;
117
0
    }
118
119
0
    cur = inpL;
120
121
0
    cur = build_norm(cur,
122
0
            model.output_norm, NULL,
123
0
            LLM_NORM_RMS, -1);
124
125
0
    cb(cur, "result_norm", -1);
126
0
    res->t_embd = cur;
127
128
    // lm_head
129
0
    cur = build_lora_mm(model.output, cur);
130
131
0
    cb(cur, "result_output", -1);
132
0
    res->t_logits = cur;
133
134
0
    ggml_build_forward_expand(gf, cur);
135
0
}