Coverage Report

Created: 2026-01-10 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/afmoe.cpp
Line
Count
Source
1
#include "models.h"
2
3
0
llm_build_afmoe::llm_build_afmoe(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
4
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
5
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
6
7
0
    ggml_tensor * cur;
8
0
    ggml_tensor * inpL;
9
10
0
    inpL = build_inp_embd(model.tok_embd);
11
12
    // MuP scaling: embeddings * sqrt(hidden_size)
13
    // mup_enabled = true, hidden_size = 1024, scale = 32.0
14
0
    inpL = ggml_scale(ctx0, inpL, sqrtf(float(n_embd)));
15
0
    cb(inpL, "inp_embd_scaled", -1);
16
17
    // inp_pos - contains the positions
18
0
    ggml_tensor * inp_pos = build_inp_pos();
19
0
    auto * inp_attn = build_attn_inp_kv_iswa();
20
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
21
22
0
    const float kq_scale = 1.0f/sqrtf(float(n_embd_head));
23
24
0
    for (int il = 0; il < n_layer; ++il) {
25
0
        const float freq_base_l  = model.get_rope_freq_base (cparams, il);
26
0
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
27
28
0
        ggml_tensor * inpSA = inpL;
29
30
        // This overlaps with SWA layers in current models, so get_rope_freq_base/scale may be superfluous
31
0
        const bool use_rope = hparams.n_no_rope_layer_step > 0 &&
32
0
                              (il + 1) % hparams.n_no_rope_layer_step != 0;
33
34
        // dual attention normalization (pre)
35
0
        cur = build_norm(inpL,
36
0
                model.layers[il].attn_norm, NULL,
37
0
                LLM_NORM_RMS, il);
38
0
        cb(cur, "attn_norm", il);
39
40
        // self-attention
41
0
        {
42
0
            ggml_tensor * attn_inp = cur;  // save input for gate computation
43
44
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
45
0
            cb(Qcur, "Qcur", il);
46
47
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
48
0
            cb(Kcur, "Kcur", il);
49
50
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
51
0
            cb(Vcur, "Vcur", il);
52
53
            // compute gate from input
54
0
            ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, attn_inp);
55
0
            cb(gate, "attn_gate_proj", il);
56
57
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
58
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
59
60
            // Q/K normalization
61
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
62
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
63
0
            cb(Qcur, "Qcur_normed", il);
64
0
            cb(Kcur, "Kcur_normed", il);
65
66
0
            if (use_rope) {
67
0
                Qcur = ggml_rope_ext(
68
0
                        ctx0, Qcur, inp_pos, nullptr,
69
0
                        n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
70
0
                        ext_factor, attn_factor, beta_fast, beta_slow);
71
0
                cb(Qcur, "Qcur_rope", il);
72
73
0
                Kcur = ggml_rope_ext(
74
0
                        ctx0, Kcur, inp_pos, nullptr,
75
0
                        n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
76
0
                        ext_factor, attn_factor, beta_fast, beta_slow);
77
0
                cb(Kcur, "Kcur_rope", il);
78
0
            }
79
80
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
81
82
0
            cur = build_attn(inp_attn,
83
0
                    NULL, NULL,  // wo will be applied after gating
84
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
85
0
            cb(cur, "attn_out", il);
86
87
            // attention gating: attn_out * sigmoid(gate) BEFORE o_proj
88
0
            gate = ggml_sigmoid(ctx0, gate);
89
0
            cb(gate, "attn_gate_sig", il);
90
0
            cur = ggml_mul(ctx0, cur, gate);
91
0
            cb(cur, "attn_gated", il);
92
93
            // now apply output projection
94
0
            cur = build_lora_mm(model.layers[il].wo, cur);
95
0
            cb(cur, "attn_o_proj", il);
96
0
        }
97
98
        // dual attention normalization (post)
99
0
        cur = build_norm(cur,
100
0
                model.layers[il].attn_post_norm, NULL,
101
0
                LLM_NORM_RMS, il);
102
0
        cb(cur, "attn_post_norm", il);
103
104
0
        if (il == n_layer - 1 && inp_out_ids) {
105
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
106
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
107
0
        }
108
109
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
110
0
        cb(ffn_inp, "ffn_inp", il);
111
112
        // dual ffn normalization (pre)
113
0
        cur = build_norm(ffn_inp,
114
0
                model.layers[il].ffn_norm, NULL,
115
0
                LLM_NORM_RMS, il);
116
0
        cb(cur, "ffn_norm", il);
117
118
        // MoE or dense FFN
119
0
        if ((uint32_t)il >= hparams.n_layer_dense_lead) {
120
            // MoE layer with sigmoid routing, normalization, and scaling
121
0
            ggml_tensor * moe_out = build_moe_ffn(cur,
122
0
                    model.layers[il].ffn_gate_inp,
123
0
                    model.layers[il].ffn_up_exps,
124
0
                    model.layers[il].ffn_gate_exps,
125
0
                    model.layers[il].ffn_down_exps,
126
0
                    model.layers[il].ffn_exp_probs_b,
127
0
                    n_expert, n_expert_used,
128
0
                    LLM_FFN_SILU,
129
0
                    hparams.expert_weights_norm,           // norm_w (route_norm=True)
130
0
                    hparams.expert_weights_scale,          // scale_w
131
0
                    hparams.expert_weights_scale,          // w_scale (route_scale=2.826)
132
0
                    (llama_expert_gating_func_type) hparams.expert_gating_func,
133
0
                    il);
134
0
            cb(moe_out, "ffn_moe_out", il);
135
136
            // shared expert
137
0
            if (hparams.n_expert_shared > 0) {
138
0
                ggml_tensor * ffn_shexp = build_ffn(cur,
139
0
                        model.layers[il].ffn_up_shexp,   NULL, NULL,
140
0
                        model.layers[il].ffn_gate_shexp, NULL, NULL,
141
0
                        model.layers[il].ffn_down_shexp, NULL, NULL,
142
0
                        NULL,
143
0
                        LLM_FFN_SILU, LLM_FFN_PAR, il);
144
0
                cb(ffn_shexp, "ffn_shexp", il);
145
146
0
                cur = ggml_add(ctx0, moe_out, ffn_shexp);
147
0
                cb(cur, "ffn_out", il);
148
0
            } else {
149
0
                cur = moe_out;
150
0
            }
151
0
        } else {
152
            // dense layer
153
0
            cur = build_ffn(cur,
154
0
                    model.layers[il].ffn_up,   NULL, NULL,
155
0
                    model.layers[il].ffn_gate, NULL, NULL,
156
0
                    model.layers[il].ffn_down, NULL, NULL,
157
0
                    NULL,
158
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
159
0
            cb(cur, "ffn_out", il);
160
0
        }
161
162
        // dual ffn normalization (post)
163
0
        cur = build_norm(cur,
164
0
                model.layers[il].ffn_post_norm, NULL,
165
0
                LLM_NORM_RMS, il);
166
0
        cb(cur, "ffn_post_norm", il);
167
168
0
        cur = ggml_add(ctx0, cur, ffn_inp);
169
0
        cur = build_cvec(cur, il);
170
0
        cb(cur, "l_out", il);
171
172
        // input for next layer
173
0
        inpL = cur;
174
0
    }
175
176
0
    cur = inpL;
177
178
0
    cur = build_norm(cur,
179
0
            model.output_norm, NULL,
180
0
            LLM_NORM_RMS, -1);
181
0
    cb(cur, "result_norm", -1);
182
183
0
    res->t_embd = cur;
184
185
    // lm_head
186
0
    cur = build_lora_mm(model.output, cur);
187
0
    cb(cur, "result_output", -1);
188
0
    res->t_logits = cur;
189
190
0
    ggml_build_forward_expand(gf, cur);
191
0
}