Coverage Report

Created: 2026-01-10 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/chatglm.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
0
llm_build_chatglm::llm_build_chatglm(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
0
    const int64_t n_embd_gqa  = hparams.n_embd_v_gqa();
7
8
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
9
10
0
    ggml_tensor * cur;
11
0
    ggml_tensor * inpL;
12
13
0
    inpL = build_inp_embd(model.tok_embd);
14
15
    // inp_pos - contains the positions
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
0
    auto * inp_attn = build_attn_inp_kv();
19
20
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
21
22
0
    for (int il = 0; il < n_layer; ++il) {
23
0
        ggml_tensor * inpSA = inpL;
24
25
0
        cur = build_norm(inpL,
26
0
                model.layers[il].attn_norm,
27
0
                NULL,
28
0
                LLM_NORM_RMS, il);
29
0
        cb(cur, "attn_norm", il);
30
31
        // self-attention
32
0
        {
33
0
            ggml_tensor * Qcur = nullptr;
34
0
            ggml_tensor * Kcur = nullptr;
35
0
            ggml_tensor * Vcur = nullptr;
36
37
0
            if (model.layers[il].wqkv == nullptr) {
38
0
                Qcur = build_lora_mm(model.layers[il].wq, cur);
39
0
                if (model.layers[il].bq) {
40
0
                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
41
0
                }
42
0
                Kcur = build_lora_mm(model.layers[il].wk, cur);
43
0
                if (model.layers[il].bk) {
44
0
                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
45
0
                }
46
0
                Vcur = build_lora_mm(model.layers[il].wv, cur);
47
0
                if (model.layers[il].bv) {
48
0
                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
49
0
                }
50
0
                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
51
0
                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
52
0
                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
53
0
            } else {
54
0
                cur = build_lora_mm(model.layers[il].wqkv, cur);
55
0
                cb(cur, "wqkv", il);
56
0
                if (model.layers[il].bqkv) {
57
0
                    cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
58
0
                    cb(cur, "bqkv", il);
59
0
                }
60
0
                Qcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head,    n_tokens, n_embd_head*sizeof(float), cur->nb[1], 0*sizeof(float)*(n_embd));
61
0
                Kcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd));
62
0
                Vcur = ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, n_embd_head*sizeof(float), cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa));
63
0
            }
64
65
            //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
66
0
            Qcur = ggml_rope_ext(
67
0
                    ctx0, Qcur, inp_pos, nullptr,
68
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
69
0
                    ext_factor, attn_factor, beta_fast, beta_slow
70
0
                    );
71
72
0
            Kcur = ggml_rope_ext(
73
0
                    ctx0, Kcur, inp_pos, nullptr,
74
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
75
0
                    ext_factor, attn_factor, beta_fast, beta_slow
76
0
                    );
77
78
0
            cb(Qcur, "Qcur", il);
79
0
            cb(Kcur, "Kcur", il);
80
0
            cb(Vcur, "Vcur", il);
81
82
0
            cur = build_attn(inp_attn,
83
0
                    model.layers[il].wo, NULL,
84
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
85
0
        }
86
87
0
        if (il == n_layer - 1 && inp_out_ids) {
88
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
89
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
90
0
        }
91
92
        // Add the input
93
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
94
0
        cb(ffn_inp, "ffn_inp", il);
95
96
        // FF
97
0
        {
98
0
            cur = build_norm(ffn_inp,
99
0
                    model.layers[il].ffn_norm,
100
0
                    NULL,
101
0
                    LLM_NORM_RMS, il);
102
0
            cb(cur, "ffn_norm", il);
103
104
0
            cur = build_ffn(cur,
105
0
                    model.layers[il].ffn_up,   NULL, NULL,
106
0
                    NULL,                      NULL, NULL,
107
0
                    model.layers[il].ffn_down, NULL, NULL,
108
0
                    NULL,
109
0
                    LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
110
0
            cb(cur, "ffn_out", il);
111
112
0
        }
113
114
0
        inpL = ggml_add(ctx0, cur, ffn_inp);
115
0
        cb(inpL, "l_out", il);
116
0
    }
117
118
0
    cur = build_norm(inpL,
119
0
            model.output_norm,
120
0
            NULL,
121
0
            LLM_NORM_RMS, -1);
122
123
0
    cb(cur, "result_norm", -1);
124
0
    res->t_embd = cur;
125
126
0
    cur = build_lora_mm(model.output, cur);
127
128
0
    cb(cur, "result_output", -1);
129
0
    res->t_logits = cur;
130
131
0
    ggml_build_forward_expand(gf, cur);
132
0
}