Coverage Report

Created: 2026-01-10 06:25

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/mimo2-iswa.cpp
Line
Count
Source
1
2
#include "models.h"
3
4
0
llm_build_mimo2_iswa::llm_build_mimo2_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    ggml_tensor * cur;
6
0
    ggml_tensor * inpL;
7
8
0
    inpL = build_inp_embd(model.tok_embd);
9
10
0
    ggml_tensor * inp_pos = build_inp_pos();
11
0
    auto * inp_attn = build_attn_inp_kv_iswa();
12
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
13
14
0
    for (int il = 0; il < n_layer; ++il) {
15
0
        ggml_tensor * inpSA = inpL;
16
17
0
        uint32_t n_head_l    = hparams.n_head(il);
18
0
        uint32_t n_head_kv_l = hparams.n_head_kv(il);
19
0
        const float freq_base_l  = model.get_rope_freq_base(cparams, il);
20
0
        const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
21
22
0
        cur = inpL;
23
24
        // self_attention
25
0
        {
26
0
            cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
27
0
            cb(cur, "attn_norm", il);
28
29
            // compute Q and K and RoPE them
30
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
31
0
            cb(Qcur, "Qcur", il);
32
33
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
34
0
            cb(Kcur, "Kcur", il);
35
36
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
37
0
            cb(Vcur, "Vcur", il);
38
39
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head_l,    n_tokens);
40
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv_l, n_tokens);
41
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head_v, n_head_kv_l, n_tokens);
42
43
0
            Qcur = ggml_rope_ext(
44
0
                ctx0, Qcur, inp_pos, nullptr,
45
0
                n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
46
0
                ext_factor, attn_factor, beta_fast, beta_slow
47
0
                );
48
49
0
            Kcur = ggml_rope_ext(
50
0
                ctx0, Kcur, inp_pos, nullptr,
51
0
                n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
52
0
                ext_factor, attn_factor, beta_fast, beta_slow
53
0
                );
54
55
0
            cb(Qcur, "Qcur", il);
56
0
            cb(Kcur, "Kcur", il);
57
0
            cb(Vcur, "Vcur", il);
58
59
0
            ggml_tensor * sinks = model.layers[il].attn_sinks;
60
61
0
            cur = build_attn(inp_attn,
62
0
                    model.layers[il].wo, NULL,
63
0
                    Qcur, Kcur, Vcur, nullptr, sinks, nullptr, 1.0f/sqrtf(float(n_embd_head_k)), il);
64
0
        }
65
66
0
        if (il == n_layer - 1 && inp_out_ids) {
67
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
68
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
69
0
        }
70
71
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
72
0
        cb(ffn_inp, "ffn_inp", il);
73
74
0
        cur = build_norm(ffn_inp,
75
0
                model.layers[il].ffn_norm, NULL,
76
0
                LLM_NORM_RMS, il);
77
0
        cb(cur, "ffn_norm", il);
78
79
        // feed-forward network
80
0
        if (model.layers[il].ffn_gate_inp == nullptr) {
81
            // dense branch
82
0
            cur = build_ffn(cur,
83
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
84
0
                    model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
85
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
86
0
                    NULL,
87
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
88
0
            cb(cur, "ffn_out", il);
89
0
        } else {
90
            // MoE branch
91
0
            cur = build_moe_ffn(cur, model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
92
0
                                model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
93
0
                                model.layers[il].ffn_exp_probs_b, n_expert, n_expert_used, LLM_FFN_SILU, true, false,
94
0
                                0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID, il);
95
0
            cb(cur, "ffn_moe_out", il);
96
0
        }
97
98
0
        cur = ggml_add(ctx0, cur, ffn_inp);
99
100
0
        cur = build_cvec(cur, il);
101
0
        cb(cur, "l_out", il);
102
103
        // input for next layer
104
0
        inpL = cur;
105
0
    }
106
107
0
    cur = inpL;
108
109
0
    cur = build_norm(cur,
110
0
            model.output_norm, NULL,
111
0
            LLM_NORM_RMS, -1);
112
113
0
    cb(cur, "result_norm", -1);
114
0
    res->t_embd = cur;
115
116
    // lm_head
117
0
    cur = build_lora_mm(model.output, cur);
118
119
0
    cb(cur, "result_output", -1);
120
0
    res->t_logits = cur;
121
122
0
    ggml_build_forward_expand(gf, cur);
123
0
}