/src/llama.cpp/common/common.h
Line | Count | Source |
1 | | // Various helper functions and utilities |
2 | | |
3 | | #pragma once |
4 | | |
5 | | #include "ggml-opt.h" |
6 | | #include "llama-cpp.h" |
7 | | |
8 | | #include <set> |
9 | | #include <sstream> |
10 | | #include <string> |
11 | | #include <string_view> |
12 | | #include <vector> |
13 | | #include <map> |
14 | | |
15 | | #if defined(_WIN32) && !defined(_WIN32_WINNT) |
16 | | #define _WIN32_WINNT 0x0A00 |
17 | | #endif |
18 | | |
19 | | #ifdef _WIN32 |
20 | | #define DIRECTORY_SEPARATOR '\\' |
21 | | #else |
22 | 0 | #define DIRECTORY_SEPARATOR '/' |
23 | | #endif // _WIN32 |
24 | | |
25 | | #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0) |
26 | | #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0) |
27 | | |
28 | | #define print_build_info() do { \ |
29 | | fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \ |
30 | | fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \ |
31 | | } while(0) |
32 | | |
33 | | struct common_time_meas { |
34 | | common_time_meas(int64_t & t_acc, bool disable = false); |
35 | | ~common_time_meas(); |
36 | | |
37 | | const int64_t t_start_us; |
38 | | |
39 | | int64_t & t_acc; |
40 | | }; |
41 | | |
42 | | struct common_adapter_lora_info { |
43 | | std::string path; |
44 | | float scale; |
45 | | |
46 | | std::string task_name; |
47 | | std::string prompt_prefix; |
48 | | |
49 | | struct llama_adapter_lora * ptr; |
50 | | }; |
51 | | |
52 | | using llama_tokens = std::vector<llama_token>; |
53 | | |
54 | | // build info |
55 | | extern int LLAMA_BUILD_NUMBER; |
56 | | extern const char * LLAMA_COMMIT; |
57 | | extern const char * LLAMA_COMPILER; |
58 | | extern const char * LLAMA_BUILD_TARGET; |
59 | | |
60 | | struct common_control_vector_load_info; |
61 | | |
62 | | // |
63 | | // CPU utils |
64 | | // |
65 | | |
66 | | struct cpu_params { |
67 | | int n_threads = -1; |
68 | | bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask. |
69 | | bool mask_valid = false; // Default: any CPU |
70 | | enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime) |
71 | | bool strict_cpu = false; // Use strict CPU placement |
72 | | uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling) |
73 | | }; |
74 | | |
75 | | int32_t cpu_get_num_physical_cores(); |
76 | | int32_t cpu_get_num_math(); |
77 | | |
78 | | // |
79 | | // Common params |
80 | | // |
81 | | |
82 | | enum llama_example { |
83 | | LLAMA_EXAMPLE_DEBUG, |
84 | | LLAMA_EXAMPLE_COMMON, |
85 | | LLAMA_EXAMPLE_SPECULATIVE, |
86 | | LLAMA_EXAMPLE_COMPLETION, |
87 | | LLAMA_EXAMPLE_CLI, |
88 | | LLAMA_EXAMPLE_EMBEDDING, |
89 | | LLAMA_EXAMPLE_PERPLEXITY, |
90 | | LLAMA_EXAMPLE_RETRIEVAL, |
91 | | LLAMA_EXAMPLE_PASSKEY, |
92 | | LLAMA_EXAMPLE_IMATRIX, |
93 | | LLAMA_EXAMPLE_BENCH, |
94 | | LLAMA_EXAMPLE_SERVER, |
95 | | LLAMA_EXAMPLE_CVECTOR_GENERATOR, |
96 | | LLAMA_EXAMPLE_EXPORT_LORA, |
97 | | LLAMA_EXAMPLE_MTMD, |
98 | | LLAMA_EXAMPLE_LOOKUP, |
99 | | LLAMA_EXAMPLE_PARALLEL, |
100 | | LLAMA_EXAMPLE_TTS, |
101 | | LLAMA_EXAMPLE_DIFFUSION, |
102 | | LLAMA_EXAMPLE_FINETUNE, |
103 | | LLAMA_EXAMPLE_FIT_PARAMS, |
104 | | |
105 | | LLAMA_EXAMPLE_COUNT, |
106 | | }; |
107 | | |
108 | | enum common_sampler_type { |
109 | | COMMON_SAMPLER_TYPE_NONE = 0, |
110 | | COMMON_SAMPLER_TYPE_DRY = 1, |
111 | | COMMON_SAMPLER_TYPE_TOP_K = 2, |
112 | | COMMON_SAMPLER_TYPE_TOP_P = 3, |
113 | | COMMON_SAMPLER_TYPE_MIN_P = 4, |
114 | | //COMMON_SAMPLER_TYPE_TFS_Z = 5, |
115 | | COMMON_SAMPLER_TYPE_TYPICAL_P = 6, |
116 | | COMMON_SAMPLER_TYPE_TEMPERATURE = 7, |
117 | | COMMON_SAMPLER_TYPE_XTC = 8, |
118 | | COMMON_SAMPLER_TYPE_INFILL = 9, |
119 | | COMMON_SAMPLER_TYPE_PENALTIES = 10, |
120 | | COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11, |
121 | | }; |
122 | | |
123 | | // dimensionality reduction methods, used by cvector-generator |
124 | | enum dimre_method { |
125 | | DIMRE_METHOD_PCA, |
126 | | DIMRE_METHOD_MEAN, |
127 | | }; |
128 | | |
129 | | enum common_conversation_mode { |
130 | | COMMON_CONVERSATION_MODE_DISABLED = 0, |
131 | | COMMON_CONVERSATION_MODE_ENABLED = 1, |
132 | | COMMON_CONVERSATION_MODE_AUTO = 2, |
133 | | }; |
134 | | |
135 | | enum common_grammar_trigger_type { |
136 | | COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN, |
137 | | COMMON_GRAMMAR_TRIGGER_TYPE_WORD, |
138 | | COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN, |
139 | | COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL, |
140 | | }; |
141 | | |
142 | | struct common_grammar_trigger { |
143 | | common_grammar_trigger_type type; |
144 | | std::string value; |
145 | | llama_token token = LLAMA_TOKEN_NULL; |
146 | | }; |
147 | | |
148 | | enum common_params_sampling_config : uint64_t { |
149 | | COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0, |
150 | | COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1, |
151 | | COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2, |
152 | | COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3, |
153 | | COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4, |
154 | | COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5, |
155 | | COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6, |
156 | | COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7, |
157 | | COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8, |
158 | | COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9, |
159 | | COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10, |
160 | | COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11, |
161 | | }; |
162 | | |
163 | | |
164 | | // sampling parameters |
165 | | struct common_params_sampling { |
166 | | uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler |
167 | | |
168 | | int32_t n_prev = 64; // number of previous tokens to remember |
169 | | int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens. |
170 | | int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens |
171 | | int32_t top_k = 40; // <= 0 to use vocab size |
172 | | float top_p = 0.95f; // 1.0 = disabled |
173 | | float min_p = 0.05f; // 0.0 = disabled |
174 | | float xtc_probability = 0.00f; // 0.0 = disabled |
175 | | float xtc_threshold = 0.10f; // > 0.5 disables XTC |
176 | | float typ_p = 1.00f; // typical_p, 1.0 = disabled |
177 | | float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities |
178 | | float dynatemp_range = 0.00f; // 0.0 = disabled |
179 | | float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler |
180 | | int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size) |
181 | | float penalty_repeat = 1.00f; // 1.0 = disabled |
182 | | float penalty_freq = 0.00f; // 0.0 = disabled |
183 | | float penalty_present = 0.00f; // 0.0 = disabled |
184 | | float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition: |
185 | | float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length) |
186 | | int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty |
187 | | int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size) |
188 | | int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0 |
189 | | float top_n_sigma = -1.00f;// -1.0 = disabled |
190 | | float mirostat_tau = 5.00f; // target entropy |
191 | | float mirostat_eta = 0.10f; // learning rate |
192 | | bool ignore_eos = false; |
193 | | bool no_perf = false; // disable performance metrics |
194 | | bool timing_per_token = false; |
195 | | |
196 | | uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers |
197 | | |
198 | | std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY |
199 | | |
200 | | std::vector<enum common_sampler_type> samplers = { |
201 | | COMMON_SAMPLER_TYPE_PENALTIES, |
202 | | COMMON_SAMPLER_TYPE_DRY, |
203 | | COMMON_SAMPLER_TYPE_TOP_N_SIGMA, |
204 | | COMMON_SAMPLER_TYPE_TOP_K, |
205 | | COMMON_SAMPLER_TYPE_TYPICAL_P, |
206 | | COMMON_SAMPLER_TYPE_TOP_P, |
207 | | COMMON_SAMPLER_TYPE_MIN_P, |
208 | | COMMON_SAMPLER_TYPE_XTC, |
209 | | COMMON_SAMPLER_TYPE_TEMPERATURE, |
210 | | }; |
211 | | |
212 | | std::string grammar; // optional BNF-like grammar to constrain sampling |
213 | | bool grammar_lazy = false; |
214 | | std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars) |
215 | | std::set<llama_token> preserved_tokens; |
216 | | |
217 | | std::vector<llama_logit_bias> logit_bias; // logit biases to apply |
218 | | std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens |
219 | | |
220 | | bool backend_sampling = false; |
221 | | |
222 | 0 | bool has_logit_bias() const { |
223 | 0 | return !logit_bias.empty(); |
224 | 0 | } |
225 | | |
226 | | // print the parameters into a string |
227 | | std::string print() const; |
228 | | }; |
229 | | |
230 | | struct common_params_model { |
231 | | std::string path = ""; // model local path // NOLINT |
232 | | std::string url = ""; // model url to download // NOLINT |
233 | | std::string hf_repo = ""; // HF repo // NOLINT |
234 | | std::string hf_file = ""; // HF file // NOLINT |
235 | | std::string docker_repo = ""; // Docker repo // NOLINT |
236 | | std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT |
237 | | }; |
238 | | |
239 | | struct common_params_speculative { |
240 | | std::vector<ggml_backend_dev_t> devices; // devices to use for offloading |
241 | | |
242 | | int32_t n_ctx = 0; // draft context size |
243 | | int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding |
244 | | int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding |
245 | | int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default) |
246 | | float p_split = 0.1f; // speculative decoding split probability |
247 | | float p_min = 0.75f; // minimum speculative decoding probability (greedy) |
248 | | std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements |
249 | | std::vector<llama_model_tensor_buft_override> tensor_buft_overrides; |
250 | | |
251 | | ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K |
252 | | ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V |
253 | | |
254 | | struct cpu_params cpuparams; |
255 | | struct cpu_params cpuparams_batch; |
256 | | |
257 | | struct common_params_model model; |
258 | | }; |
259 | | |
260 | | struct common_params_vocoder { |
261 | | struct common_params_model model; |
262 | | |
263 | | std::string speaker_file = ""; // speaker file path // NOLINT |
264 | | |
265 | | bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT |
266 | | }; |
267 | | |
268 | | struct common_params_diffusion { |
269 | | int32_t steps = 128; |
270 | | bool visual_mode = false; |
271 | | |
272 | | float eps = 0; // epsilon for timesteps |
273 | | int32_t block_length = 0; // block length for generation |
274 | | |
275 | | int32_t algorithm = 4; // default algorithm: low-confidence |
276 | | float alg_temp = 0.0f; // algorithm temperature |
277 | | |
278 | | float cfg_scale = 0; // classifier-free guidance scale |
279 | | bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0 |
280 | | }; |
281 | | |
282 | | // reasoning API response format (not to be confused as chat template's reasoning format) |
283 | | enum common_reasoning_format { |
284 | | COMMON_REASONING_FORMAT_NONE, |
285 | | COMMON_REASONING_FORMAT_AUTO, // Same as deepseek, using `message.reasoning_content` |
286 | | COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode |
287 | | COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas. |
288 | | // do not extend this enum unless you absolutely have to |
289 | | // in most cases, use COMMON_REASONING_FORMAT_AUTO |
290 | | // see: https://github.com/ggml-org/llama.cpp/pull/15408 |
291 | | }; |
292 | | |
293 | | |
294 | | struct lr_opt { |
295 | | float lr0 = 1e-5; // learning rate at first epoch |
296 | | float lr_min = -1; |
297 | | float decay_epochs = -1; // if >0, the learning rate starts at lr0 and decays to lr_min after this many epochs |
298 | | float scale_epoch = 0; |
299 | | float wd = 0; |
300 | | unsigned epochs = 2; |
301 | | |
302 | | unsigned epoch; // set by optimizer outer (epochs) loop |
303 | | // learning rate decay - constant LR per epoch only for now |
304 | | float get_lr(float e) const; |
305 | 0 | float get_lr() const { return get_lr(epoch); } |
306 | | // must call after arg parse, before get_lr |
307 | | void init(); |
308 | | }; |
309 | | |
310 | | struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata); |
311 | | |
312 | | struct common_params { |
313 | | int32_t n_predict = -1; // max. number of new tokens to predict, -1 == no limit |
314 | | int32_t n_ctx = 0; // context size, 0 == context the model was trained with |
315 | | int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS) |
316 | | int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS) |
317 | | int32_t n_keep = 0; // number of tokens to keep from initial prompt |
318 | | int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited) |
319 | | int32_t n_parallel = 1; // number of parallel sequences to decode |
320 | | int32_t n_sequences = 1; // number of sequences to decode |
321 | | int32_t grp_attn_n = 1; // group-attention factor |
322 | | int32_t grp_attn_w = 512; // group-attention width |
323 | | int32_t n_print = -1; // print token count every n tokens (-1 = disabled) |
324 | | float rope_freq_base = 0.0f; // RoPE base frequency |
325 | | float rope_freq_scale = 0.0f; // RoPE frequency scaling factor |
326 | | float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor |
327 | | float yarn_attn_factor = -1.0f; // YaRN magnitude scaling factor |
328 | | float yarn_beta_fast = -1.0f; // YaRN low correction dim |
329 | | float yarn_beta_slow = -1.0f; // YaRN high correction dim |
330 | | int32_t yarn_orig_ctx = 0; // YaRN original context length |
331 | | |
332 | | // offload params |
333 | | std::vector<ggml_backend_dev_t> devices; // devices to use for offloading |
334 | | |
335 | | int32_t n_gpu_layers = -1; // number of layers to store in VRAM, -1 is auto, <= -2 is all |
336 | | int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors |
337 | | float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs |
338 | | bool fit_params = true; // whether to fit unset model/context parameters to free device memory |
339 | | int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use |
340 | | |
341 | | // margin per device in bytes for fitting parameters to free memory: |
342 | | std::vector<size_t> fit_params_target = std::vector<size_t>(llama_max_devices(), 1024 * 1024*1024); |
343 | | |
344 | | enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs |
345 | | |
346 | | struct cpu_params cpuparams; |
347 | | struct cpu_params cpuparams_batch; |
348 | | |
349 | | ggml_backend_sched_eval_callback cb_eval = nullptr; |
350 | | void * cb_eval_user_data = nullptr; |
351 | | |
352 | | ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED; |
353 | | |
354 | | enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; |
355 | | enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings |
356 | | enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings |
357 | | enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention |
358 | | |
359 | | struct common_params_sampling sampling; |
360 | | struct common_params_speculative speculative; |
361 | | struct common_params_vocoder vocoder; |
362 | | struct common_params_diffusion diffusion; |
363 | | |
364 | | struct common_params_model model; |
365 | | |
366 | | std::string model_alias = ""; // model alias // NOLINT |
367 | | std::string hf_token = ""; // HF token // NOLINT |
368 | | std::string prompt = ""; // NOLINT |
369 | | std::string system_prompt = ""; // NOLINT |
370 | | std::string prompt_file = ""; // store the external prompt file name // NOLINT |
371 | | std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT |
372 | | std::string input_prefix = ""; // string to prefix user inputs with // NOLINT |
373 | | std::string input_suffix = ""; // string to suffix user inputs with // NOLINT |
374 | | std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT |
375 | | std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT |
376 | | std::string logits_file = ""; // file for saving *all* logits // NOLINT |
377 | | |
378 | | // llama-debug specific options |
379 | | std::string logits_output_dir = "data"; // directory for saving logits output files // NOLINT |
380 | | bool save_logits = false; // whether to save logits to files // NOLINT |
381 | | std::vector<std::string> tensor_filter; // filter tensor names for debug output (regex) // NOLINT |
382 | | |
383 | | std::vector<std::string> in_files; // all input files |
384 | | std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts) |
385 | | std::vector<llama_model_kv_override> kv_overrides; |
386 | | std::vector<llama_model_tensor_buft_override> tensor_buft_overrides; |
387 | | |
388 | | bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply) |
389 | | std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale |
390 | | |
391 | | std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale |
392 | | |
393 | | int32_t verbosity = 3; // LOG_LEVEL_INFO |
394 | | int32_t control_vector_layer_start = -1; // layer range for control vector |
395 | | int32_t control_vector_layer_end = -1; // layer range for control vector |
396 | | bool offline = false; |
397 | | |
398 | | int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used. |
399 | | int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line |
400 | | // (which is more convenient to use for plotting) |
401 | | // |
402 | | bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt |
403 | | size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score |
404 | | |
405 | | bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt |
406 | | size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed |
407 | | |
408 | | bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt |
409 | | size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed |
410 | | |
411 | | bool kl_divergence = false; // compute KL divergence |
412 | | |
413 | | bool usage = false; // print usage |
414 | | bool completion = false; // print source-able completion script |
415 | | bool use_color = false; // use color to distinguish generations and inputs |
416 | | bool special = false; // enable special token output |
417 | | bool interactive = false; // interactive mode |
418 | | bool interactive_first = false; // wait for user input immediately |
419 | | bool prompt_cache_all = false; // save user input and generations to prompt cache |
420 | | bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it |
421 | | |
422 | | bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\" |
423 | | bool multiline_input = false; // reverse the usage of `\` |
424 | | bool simple_io = false; // improves compatibility with subprocesses and limited consoles |
425 | | bool cont_batching = true; // insert new sequences for decoding on-the-fly |
426 | | bool no_perf = false; // disable performance metrics |
427 | | bool show_timings = true; // show timing information on CLI |
428 | | bool ctx_shift = false; // context shift on infinite text generation |
429 | | bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055) |
430 | | bool kv_unified = false; // enable unified KV cache |
431 | | |
432 | | bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix |
433 | | bool use_mmap = true; // enable mmap to use filesystem cache |
434 | | bool use_direct_io = true; // read from disk without buffering for faster model loading |
435 | | bool use_mlock = false; // use mlock to keep model in memory |
436 | | bool verbose_prompt = false; // print prompt tokens before generation |
437 | | bool display_prompt = true; // print prompt before generation |
438 | | bool no_kv_offload = false; // disable KV offloading |
439 | | bool warmup = true; // warmup run |
440 | | bool check_tensors = false; // validate tensor data |
441 | | bool no_op_offload = false; // globally disable offload host tensor operations to device |
442 | | bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking) |
443 | | bool no_host = false; // bypass host buffer allowing extra buffers to be used |
444 | | |
445 | | bool single_turn = false; // single turn chat conversation |
446 | | |
447 | | ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K |
448 | | ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V |
449 | | |
450 | | common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO; |
451 | | |
452 | | // multimodal models (see tools/mtmd) |
453 | | struct common_params_model mmproj; |
454 | | bool mmproj_use_gpu = true; // use GPU for multimodal model |
455 | | bool no_mmproj = false; // explicitly disable multimodal model |
456 | | std::vector<std::string> image; // path to image file(s) |
457 | | int image_min_tokens = -1; |
458 | | int image_max_tokens = -1; |
459 | | |
460 | | // finetune |
461 | | struct lr_opt lr; |
462 | | enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW; |
463 | | float val_split = 0.05f; // fraction of the data used for the validation set |
464 | | |
465 | | // embedding |
466 | | bool embedding = false; // get only sentence embedding |
467 | | int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm) |
468 | | std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix |
469 | | std::string embd_sep = "\n"; // separator of embeddings |
470 | | std::string cls_sep = "\t"; // separator of classification sequences |
471 | | |
472 | | // server params |
473 | | int32_t port = 8080; // server listens on this network port |
474 | | int32_t timeout_read = 600; // http read timeout in seconds |
475 | | int32_t timeout_write = timeout_read; // http write timeout in seconds |
476 | | int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool) |
477 | | int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting |
478 | | int32_t n_ctx_checkpoints = 8; // max number of context checkpoints per slot |
479 | | int32_t cache_ram_mib = 8192; // -1 = no limit, 0 - disable, 1 = 1 MiB, etc. |
480 | | |
481 | | std::string hostname = "127.0.0.1"; |
482 | | std::string public_path = ""; // NOLINT |
483 | | std::string api_prefix = ""; // NOLINT |
484 | | std::string chat_template = ""; // NOLINT |
485 | | bool use_jinja = true; // NOLINT |
486 | | bool enable_chat_template = true; |
487 | | common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; |
488 | | int reasoning_budget = -1; |
489 | | bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response |
490 | | int sleep_idle_seconds = -1; // if >0, server will sleep after this many seconds of idle time |
491 | | |
492 | | std::vector<std::string> api_keys; |
493 | | |
494 | | std::string ssl_file_key = ""; // NOLINT |
495 | | std::string ssl_file_cert = ""; // NOLINT |
496 | | |
497 | | std::map<std::string, std::string> default_template_kwargs; |
498 | | |
499 | | // webui configs |
500 | | bool webui = true; |
501 | | std::string webui_config_json; |
502 | | |
503 | | // "advanced" endpoints are disabled by default for better security |
504 | | bool endpoint_slots = true; |
505 | | bool endpoint_props = false; // only control POST requests, not GET |
506 | | bool endpoint_metrics = false; |
507 | | |
508 | | // router server configs |
509 | | std::string models_dir = ""; // directory containing models for the router server |
510 | | std::string models_preset = ""; // directory containing model presets for the router server |
511 | | int models_max = 4; // maximum number of models to load simultaneously |
512 | | bool models_autoload = true; // automatically load models when requested via the router server |
513 | | |
514 | | bool log_json = false; |
515 | | |
516 | | std::string slot_save_path; |
517 | | std::string media_path; // path to directory for loading media files |
518 | | |
519 | | float slot_prompt_similarity = 0.1f; |
520 | | |
521 | | // batched-bench params |
522 | | bool is_pp_shared = false; |
523 | | bool is_tg_separate = false; |
524 | | |
525 | | std::vector<int32_t> n_pp; |
526 | | std::vector<int32_t> n_tg; |
527 | | std::vector<int32_t> n_pl; |
528 | | |
529 | | // retrieval params |
530 | | std::vector<std::string> context_files; // context files to embed |
531 | | |
532 | | int32_t chunk_size = 64; // chunk size for context embedding |
533 | | |
534 | | std::string chunk_separator = "\n"; // chunk separator for context embedding |
535 | | |
536 | | // passkey params |
537 | | int32_t n_junk = 250; // number of times to repeat the junk text |
538 | | int32_t i_pos = -1; // position of the passkey in the junk text |
539 | | |
540 | | // imatrix params |
541 | | int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations |
542 | | int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations |
543 | | int32_t i_chunk = 0; // start processing from this chunk |
544 | | int8_t imat_dat = 0; // whether the legacy imatrix.dat format should be output (gguf <= 0 < dat) |
545 | | |
546 | | bool process_output = false; // collect data for the output tensor |
547 | | bool compute_ppl = true; // whether to compute perplexity |
548 | | bool show_statistics = false; // show imatrix statistics per tensor |
549 | | bool parse_special = false; // whether to parse special tokens during imatrix tokenization |
550 | | |
551 | | // cvector-generator params |
552 | | int n_pca_batch = 100; |
553 | | int n_pca_iterations = 1000; |
554 | | dimre_method cvector_dimre_method = DIMRE_METHOD_PCA; |
555 | | std::string cvector_positive_file = "tools/cvector-generator/positive.txt"; |
556 | | std::string cvector_negative_file = "tools/cvector-generator/negative.txt"; |
557 | | |
558 | | bool spm_infill = false; // suffix/prefix/middle pattern for infill |
559 | | |
560 | | // batched-bench params |
561 | | bool batched_bench_output_jsonl = false; |
562 | | |
563 | | // common params |
564 | | std::string out_file; // output filename for all example programs |
565 | | // optional callback for model loading progress and cancellation: |
566 | | // called with a progress value between 0.0 and 1.0. |
567 | | // return false from callback to abort model loading or true to continue |
568 | | llama_progress_callback load_progress_callback = NULL; |
569 | | void * load_progress_callback_user_data = NULL; |
570 | | |
571 | 0 | bool has_speculative() const { |
572 | 0 | return !speculative.model.path.empty() || !speculative.model.hf_repo.empty(); |
573 | 0 | } |
574 | | }; |
575 | | |
576 | | // call once at the start of a program if it uses libcommon |
577 | | // initializes the logging system and prints info about the build |
578 | | void common_init(); |
579 | | |
580 | | std::string common_params_get_system_info(const common_params & params); |
581 | | |
582 | | bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]); |
583 | | bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]); |
584 | | void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr); |
585 | | bool set_process_priority(enum ggml_sched_priority prio); |
586 | | |
587 | | // |
588 | | // String utils |
589 | | // |
590 | | |
591 | | #ifdef __GNUC__ |
592 | | # if defined(__MINGW32__) && !defined(__clang__) |
593 | | # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) |
594 | | # else |
595 | | # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) |
596 | | # endif |
597 | | #else |
598 | | # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) |
599 | | #endif |
600 | | |
601 | | LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2) |
602 | | std::string string_format(const char * fmt, ...); |
603 | | |
604 | | std::string string_strip(const std::string & str); |
605 | | std::string string_get_sortable_timestamp(); |
606 | | |
607 | | std::string string_join(const std::vector<std::string> & values, const std::string & separator); |
608 | | std::vector<std::string> string_split(const std::string & str, const std::string & delimiter); |
609 | | std::string string_repeat(const std::string & str, size_t n); |
610 | | |
611 | | void string_replace_all(std::string & s, const std::string & search, const std::string & replace); |
612 | | |
613 | | std::string regex_escape(const std::string & s); |
614 | | |
615 | | template<class T> |
616 | | static std::vector<T> string_split(const std::string & str, char delim) { |
617 | | static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string"); |
618 | | std::vector<T> values; |
619 | | std::istringstream str_stream(str); |
620 | | std::string token; |
621 | | while (std::getline(str_stream, token, delim)) { |
622 | | T value; |
623 | | std::istringstream token_stream(token); |
624 | | token_stream >> value; |
625 | | values.push_back(value); |
626 | | } |
627 | | return values; |
628 | | } |
629 | | |
630 | | template<> |
631 | | std::vector<std::string> string_split<std::string>(const std::string & input, char separator) |
632 | 0 | { |
633 | 0 | std::vector<std::string> parts; |
634 | 0 | size_t begin_pos = 0; |
635 | 0 | size_t separator_pos = input.find(separator); |
636 | 0 | while (separator_pos != std::string::npos) { |
637 | 0 | std::string part = input.substr(begin_pos, separator_pos - begin_pos); |
638 | 0 | parts.emplace_back(part); |
639 | 0 | begin_pos = separator_pos + 1; |
640 | 0 | separator_pos = input.find(separator, begin_pos); |
641 | 0 | } |
642 | 0 | parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos)); |
643 | 0 | return parts; |
644 | 0 | } Unexecuted instantiation: fuzz_inference.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) Unexecuted instantiation: common.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) Unexecuted instantiation: log.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) Unexecuted instantiation: sampling.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) Unexecuted instantiation: json-schema-to-grammar.cpp:std::__1::vector<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> >, std::__1::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > > > string_split<std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > >(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, char) |
645 | | |
646 | | static bool string_starts_with(const std::string & str, |
647 | 0 | const std::string & prefix) { // While we wait for C++20's std::string::starts_with... |
648 | 0 | return str.rfind(prefix, 0) == 0; |
649 | 0 | } Unexecuted instantiation: fuzz_inference.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) Unexecuted instantiation: common.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) Unexecuted instantiation: log.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) Unexecuted instantiation: sampling.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) Unexecuted instantiation: json-schema-to-grammar.cpp:string_starts_with(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) |
650 | | |
651 | | // While we wait for C++20's std::string::ends_with... |
652 | | bool string_ends_with(const std::string_view & str, const std::string_view & suffix); |
653 | | bool string_remove_suffix(std::string & str, const std::string_view & suffix); |
654 | | size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop); |
655 | | |
656 | | bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides); |
657 | | void string_process_escapes(std::string & input); |
658 | | |
659 | | std::string string_from(bool value); |
660 | | std::string string_from(const std::vector<int> & values); |
661 | | std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens); |
662 | | std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch); |
663 | | |
664 | | // |
665 | | // Filesystem utils |
666 | | // |
667 | | |
668 | | bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false); |
669 | | bool fs_create_directory_with_parents(const std::string & path); |
670 | | bool fs_is_directory(const std::string & path); |
671 | | |
672 | | std::string fs_get_cache_directory(); |
673 | | std::string fs_get_cache_file(const std::string & filename); |
674 | | |
675 | | struct common_file_info { |
676 | | std::string path; |
677 | | std::string name; |
678 | | size_t size = 0; // in bytes |
679 | | bool is_dir = false; |
680 | | }; |
681 | | std::vector<common_file_info> fs_list(const std::string & path, bool include_directories); |
682 | | |
683 | | // |
684 | | // TTY utils |
685 | | // |
686 | | |
687 | | // Auto-detect if colors can be enabled based on terminal and environment |
688 | | bool tty_can_use_colors(); |
689 | | |
690 | | // |
691 | | // Model utils |
692 | | // |
693 | | |
694 | | struct common_sampler; |
695 | | |
696 | | // note: defines the model, context, samplers, ets. lifetimes |
697 | | struct common_init_result { |
698 | | common_init_result(common_params & params); |
699 | | ~common_init_result(); |
700 | | |
701 | | llama_model * model(); |
702 | | llama_context * context(); |
703 | | |
704 | | common_sampler * sampler(llama_seq_id seq_id); |
705 | | void reset_samplers(); |
706 | | |
707 | | std::vector<llama_adapter_lora_ptr> & lora(); |
708 | | |
709 | | void free_context(); |
710 | | |
711 | | private: |
712 | | struct impl; |
713 | | std::unique_ptr<impl> pimpl; |
714 | | }; |
715 | | |
716 | | using common_init_result_ptr = std::unique_ptr<common_init_result>; |
717 | | |
718 | | common_init_result_ptr common_init_from_params(common_params & params); |
719 | | |
720 | | struct llama_model_params common_model_params_to_llama ( common_params & params); |
721 | | struct llama_context_params common_context_params_to_llama(const common_params & params); |
722 | | struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params); |
723 | | |
724 | | // clear LoRA adapters from context, then apply new list of adapters |
725 | | void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora); |
726 | | |
727 | | std::string get_model_endpoint(); |
728 | | |
729 | | // |
730 | | // Batch utils |
731 | | // |
732 | | |
733 | | void common_batch_clear(struct llama_batch & batch); |
734 | | |
735 | | void common_batch_add( |
736 | | struct llama_batch & batch, |
737 | | llama_token id, |
738 | | llama_pos pos, |
739 | | const std::vector<llama_seq_id> & seq_ids, |
740 | | bool logits); |
741 | | |
742 | | // |
743 | | // Token utils |
744 | | // |
745 | | |
746 | | // longest common prefix |
747 | | size_t common_lcp(const llama_tokens & a, const llama_tokens & b); |
748 | | |
749 | | // longet common subsequence |
750 | | size_t common_lcs(const llama_tokens & a, const llama_tokens & b); |
751 | | |
752 | | // |
753 | | // Vocab utils |
754 | | // |
755 | | |
756 | | // tokenizes a string into a vector of tokens |
757 | | // should work similar to Python's `tokenizer.encode` |
758 | | std::vector<llama_token> common_tokenize( |
759 | | const struct llama_context * ctx, |
760 | | const std::string & text, |
761 | | bool add_special, |
762 | | bool parse_special = false); |
763 | | |
764 | | std::vector<llama_token> common_tokenize( |
765 | | const struct llama_vocab * vocab, |
766 | | const std::string & text, |
767 | | bool add_special, |
768 | | bool parse_special = false); |
769 | | |
770 | | // tokenizes a token into a piece, optionally renders special/control tokens |
771 | | // should work similar to Python's `tokenizer.id_to_piece` |
772 | | std::string common_token_to_piece( |
773 | | const struct llama_context * ctx, |
774 | | llama_token token, |
775 | | bool special = true); |
776 | | |
777 | | std::string common_token_to_piece( |
778 | | const struct llama_vocab * vocab, |
779 | | llama_token token, |
780 | | bool special = true); |
781 | | |
782 | | // detokenizes a vector of tokens into a string |
783 | | // should work similar to Python's `tokenizer.decode` |
784 | | // optionally renders special/control tokens |
785 | | std::string common_detokenize( |
786 | | const struct llama_context * ctx, |
787 | | const std::vector<llama_token> & tokens, |
788 | | bool special = true); |
789 | | |
790 | | std::string common_detokenize( |
791 | | const struct llama_vocab * vocab, |
792 | | const std::vector<llama_token> & tokens, |
793 | | bool special = true); |
794 | | |
795 | | // |
796 | | // Embedding utils |
797 | | // |
798 | | |
799 | | // TODO: repace embd_norm with an enum |
800 | | void common_embd_normalize(const float * inp, float * out, int n, int embd_norm); |
801 | | |
802 | | float common_embd_similarity_cos(const float * embd1, const float * embd2, int n); |
803 | | |
804 | | // |
805 | | // Control vector utils |
806 | | // |
807 | | |
808 | | struct common_control_vector_data { |
809 | | int n_embd; |
810 | | |
811 | | // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd |
812 | | std::vector<float> data; |
813 | | }; |
814 | | |
815 | | struct common_control_vector_load_info { |
816 | | float strength; |
817 | | |
818 | | std::string fname; |
819 | | }; |
820 | | |
821 | | // Load control vectors, scale each by strength, and add them together. |
822 | | // On error, returns {-1, empty} |
823 | | common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos); |
824 | | |
825 | | // |
826 | | // Split utils |
827 | | // |
828 | | |
829 | | namespace { |
830 | | |
831 | | const char * const LLM_KV_SPLIT_NO = "split.no"; |
832 | | const char * const LLM_KV_SPLIT_COUNT = "split.count"; |
833 | | const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"; |
834 | | |
835 | | } |
836 | | |
837 | | // |
838 | | // MoE utils |
839 | | // |
840 | | |
841 | | const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps"; |
842 | | |
843 | 0 | static std::string llm_ffn_exps_block_regex(int idx) { |
844 | 0 | return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX); |
845 | 0 | } Unexecuted instantiation: fuzz_inference.cpp:llm_ffn_exps_block_regex(int) Unexecuted instantiation: common.cpp:llm_ffn_exps_block_regex(int) Unexecuted instantiation: log.cpp:llm_ffn_exps_block_regex(int) Unexecuted instantiation: sampling.cpp:llm_ffn_exps_block_regex(int) Unexecuted instantiation: json-schema-to-grammar.cpp:llm_ffn_exps_block_regex(int) |
846 | | |
847 | 0 | static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() { |
848 | 0 | return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() }; |
849 | 0 | } Unexecuted instantiation: fuzz_inference.cpp:llm_ffn_exps_cpu_override() Unexecuted instantiation: common.cpp:llm_ffn_exps_cpu_override() Unexecuted instantiation: log.cpp:llm_ffn_exps_cpu_override() Unexecuted instantiation: sampling.cpp:llm_ffn_exps_cpu_override() Unexecuted instantiation: json-schema-to-grammar.cpp:llm_ffn_exps_cpu_override() |
850 | | |
851 | | // |
852 | | // training utils |
853 | | // |
854 | | |
855 | | ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride); |
856 | | |
857 | | // "adamw" or "sgd" (case insensitive) |
858 | | enum ggml_opt_optimizer_type common_opt_get_optimizer(const char *); |