Coverage Report

Created: 2026-01-11 07:13

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/grovemoe.cpp
Line
Count
Source
1
#include "models.h"
2
3
4
5
llm_build_grovemoe::llm_build_grovemoe(const llama_model & model, const llm_graph_params & params) :
6
0
    llm_graph_context(params) {
7
0
    const int64_t n_embd_head    = hparams.n_embd_head_v;
8
0
    const int64_t n_chunk_expert = n_expert / hparams.n_group_experts;
9
10
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
11
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
12
13
0
    ggml_tensor * cur;
14
0
    ggml_tensor * inpL;
15
16
0
    inpL = build_inp_embd(model.tok_embd);
17
18
    // inp_pos - contains the positions
19
0
    ggml_tensor * inp_pos = build_inp_pos();
20
21
0
    auto * inp_attn = build_attn_inp_kv();
22
23
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
24
25
0
    for (int il = 0; il < n_layer; ++il) {
26
0
        ggml_tensor * inpSA = inpL;
27
28
        // norm
29
0
        cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
30
0
        cb(cur, "attn_norm", il);
31
32
        // self_attention
33
0
        {
34
            // compute Q and K and RoPE them
35
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
36
0
            cb(Qcur, "Qcur", il);
37
38
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
39
0
            cb(Kcur, "Kcur", il);
40
41
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
42
0
            cb(Vcur, "Vcur", il);
43
44
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
45
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
46
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
47
48
0
            Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
49
0
            cb(Qcur, "Qcur_normed", il);
50
51
0
            Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
52
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
53
54
0
            Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
55
0
            cb(Kcur, "Kcur_normed", il);
56
57
0
            Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
58
0
                                 ext_factor, attn_factor, beta_fast, beta_slow);
59
60
0
            cb(Qcur, "Qcur", il);
61
0
            cb(Kcur, "Kcur", il);
62
0
            cb(Vcur, "Vcur", il);
63
64
0
            cur = build_attn(inp_attn,
65
0
                    model.layers[il].wo, model.layers[il].bo,
66
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), il);
67
0
        }
68
69
0
        if (il == n_layer - 1 && inp_out_ids) {
70
0
            cur   = ggml_get_rows(ctx0, cur, inp_out_ids);
71
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
72
0
        }
73
74
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
75
0
        cb(ffn_inp, "ffn_inp", il);
76
77
        // MoE branch
78
0
        cur = build_norm(ffn_inp, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, il);
79
0
        cb(cur, "ffn_norm", il);
80
81
0
        ggml_tensor * probs = build_lora_mm(model.layers[il].ffn_gate_inp, cur);  // [n_expert, n_tokens]
82
0
        cb(probs, "ffn_moe_logits", il);
83
84
0
        ggml_tensor * moe_out =
85
0
            build_moe_ffn(cur,
86
0
                nullptr,
87
0
                model.layers[il].ffn_up_exps,
88
0
                model.layers[il].ffn_gate_exps,
89
0
                model.layers[il].ffn_down_exps,
90
0
                nullptr,
91
0
                n_expert, n_expert_used,
92
0
                LLM_FFN_SILU, true,
93
0
                false, 0.0,
94
0
                LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
95
0
                il,
96
0
                probs);
97
0
        cb(moe_out, "ffn_moe_out", il);
98
0
        cur = moe_out;
99
100
        // TODO: Only do the expert selection and weights once
101
0
        moe_out = build_moe_ffn(cur,
102
0
                    nullptr,
103
0
                    model.layers[il].ffn_up_chexps,
104
0
                    model.layers[il].ffn_gate_chexps,
105
0
                    model.layers[il].ffn_down_chexps,
106
0
                    nullptr,
107
0
                    n_chunk_expert, n_expert_used > n_chunk_expert ? n_chunk_expert : n_expert_used,
108
0
                    LLM_FFN_SILU, true,
109
0
                    false, 0.0,
110
0
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
111
0
                    il,
112
0
                    probs);
113
0
        cb(moe_out, "ffn_adj_moe_out", il);
114
115
0
        cur = ggml_add(ctx0, cur, ggml_scale(ctx0, moe_out, hparams.expert_group_scale));
116
0
        cb(cur, "ffn_final_moe_out", il);
117
118
0
        cur = ggml_add(ctx0, cur, ffn_inp);
119
120
0
        cur = build_cvec(cur, il);
121
0
        cb(cur, "l_out", il);
122
123
        // input for next layer
124
0
        inpL = cur;
125
0
    }
126
127
0
    cur = inpL;
128
129
0
    cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
130
131
0
    cb(cur, "result_norm", -1);
132
0
    res->t_embd = cur;
133
134
    // lm_head
135
0
    cur = build_lora_mm(model.output, cur);
136
137
0
    cb(cur, "result_output", -1);
138
0
    res->t_logits = cur;
139
140
0
    ggml_build_forward_expand(gf, cur);
141
0
}