Coverage Report

Created: 2026-01-11 07:13

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/llama.cpp/src/models/llama.cpp
Line
Count
Source
1
#include "models.h"
2
3
template <bool embed>
4
0
llm_build_llama<embed>::llm_build_llama(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
5
0
    const int64_t n_embd_head = hparams.n_embd_head_v;
6
7
0
    GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
8
0
    GGML_ASSERT(n_embd_head == hparams.n_rot);
9
10
0
    ggml_tensor * cur;
11
0
    ggml_tensor * inpL;
12
13
0
    inpL = build_inp_embd(model.tok_embd);
14
15
    // inp_pos - contains the positions
16
0
    ggml_tensor * inp_pos = build_inp_pos();
17
18
0
    using inp_attn_type = std::conditional_t<embed, llm_graph_input_attn_no_cache, llm_graph_input_attn_kv>;
19
20
0
    inp_attn_type * inp_attn = nullptr;
21
0
    if constexpr (embed) {
22
0
        inp_attn = build_attn_inp_no_cache();
23
0
    } else {
24
0
        inp_attn = build_attn_inp_kv();
25
0
    }
26
27
0
    const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
28
29
0
    ggml_tensor * inp_out_ids = build_inp_out_ids();
30
31
0
    for (int il = 0; il < n_layer; ++il) {
32
0
        ggml_tensor * inpSA = inpL;
33
34
        // norm
35
0
        cur = build_norm(inpL,
36
0
                model.layers[il].attn_norm, NULL,
37
0
                LLM_NORM_RMS, il);
38
0
        cb(cur, "attn_norm", il);
39
40
        // self-attention
41
0
        {
42
            // rope freq factors for llama3; may return nullptr for llama2 and other models
43
0
            ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
44
45
            // compute Q and K and RoPE them
46
0
            ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
47
0
            cb(Qcur, "Qcur", il);
48
0
            if (model.layers[il].bq) {
49
0
                Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
50
0
                cb(Qcur, "Qcur", il);
51
0
            }
52
0
            ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
53
0
            cb(Kcur, "Kcur", il);
54
0
            if (model.layers[il].bk) {
55
0
                Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
56
0
                cb(Kcur, "Kcur", il);
57
0
            }
58
0
            ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
59
0
            cb(Vcur, "Vcur", il);
60
0
            if (model.layers[il].bv) {
61
0
                Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
62
0
                cb(Vcur, "Vcur", il);
63
0
            }
64
0
            Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
65
0
            Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
66
0
            Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
67
68
0
            Qcur = ggml_rope_ext(
69
0
                    ctx0, Qcur, inp_pos, rope_factors,
70
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
71
0
                    ext_factor, attn_factor, beta_fast, beta_slow
72
0
                    );
73
74
0
            Kcur = ggml_rope_ext(
75
0
                    ctx0, Kcur, inp_pos, rope_factors,
76
0
                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
77
0
                    ext_factor, attn_factor, beta_fast, beta_slow
78
0
                    );
79
80
0
            cb(Qcur, "Qcur", il);
81
0
            cb(Kcur, "Kcur", il);
82
0
            cb(Vcur, "Vcur", il);
83
84
0
            if (hparams.use_kq_norm) {
85
                // Llama4TextL2Norm
86
0
                Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
87
0
                Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
88
0
                cb(Qcur, "Qcur_normed", il);
89
0
                cb(Kcur, "Kcur_normed", il);
90
0
            }
91
0
            cur = build_attn(inp_attn,
92
0
                    model.layers[il].wo, model.layers[il].bo,
93
0
                    Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
94
0
            cb(cur, "attn_out", il);
95
0
        }
96
0
        if (il == n_layer - 1 && inp_out_ids) {
97
0
            cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
98
0
            inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
99
0
        }
100
0
        ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
101
0
        cb(ffn_inp, "ffn_inp", il);
102
103
        // feed-forward network (non-MoE)
104
0
        if (model.layers[il].ffn_gate_inp == nullptr) {
105
106
0
            cur = build_norm(ffn_inp,
107
0
                    model.layers[il].ffn_norm, NULL,
108
0
                    LLM_NORM_RMS, il);
109
0
            cb(cur, "ffn_norm", il);
110
111
0
            cur = build_ffn(cur,
112
0
                    model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
113
0
                    model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
114
0
                    model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
115
0
                    NULL,
116
0
                    LLM_FFN_SILU, LLM_FFN_PAR, il);
117
0
            cb(cur, "ffn_out", il);
118
0
        } else {
119
            // MoE branch
120
0
            cur = build_norm(ffn_inp,
121
0
                    model.layers[il].ffn_norm, NULL,
122
0
                    LLM_NORM_RMS, il);
123
0
            cb(cur, "ffn_norm", il);
124
125
0
            cur = build_moe_ffn(cur,
126
0
                    model.layers[il].ffn_gate_inp,
127
0
                    model.layers[il].ffn_up_exps,
128
0
                    model.layers[il].ffn_gate_exps,
129
0
                    model.layers[il].ffn_down_exps,
130
0
                    nullptr,
131
0
                    n_expert, n_expert_used,
132
0
                    LLM_FFN_SILU, true,
133
0
                    false, 0.0,
134
0
                    LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
135
0
                    il);
136
0
            cb(cur, "ffn_moe_out", il);
137
0
        }
138
0
        cur = ggml_add(ctx0, cur, ffn_inp);
139
0
        cb(cur, "ffn_out", il);
140
141
0
        cur = build_cvec(cur, il);
142
0
        cb(cur, "l_out", il);
143
144
        // input for next layer
145
0
        inpL = cur;
146
0
    }
147
0
    cur = inpL;
148
149
0
    cur = build_norm(cur,
150
0
            model.output_norm, NULL,
151
0
            LLM_NORM_RMS, -1);
152
153
0
    cb(cur, "result_norm", -1);
154
0
    res->t_embd = cur;
155
156
0
    if constexpr (!embed) {
157
        // lm_head
158
0
        cur = build_lora_mm(model.output, cur);
159
160
0
        cb(cur, "result_output", -1);
161
0
        res->t_logits = cur;
162
0
    }
163
164
0
    ggml_build_forward_expand(gf, cur);
165
0
}
Unexecuted instantiation: llm_build_llama<false>::llm_build_llama(llama_model const&, llm_graph_params const&)
Unexecuted instantiation: llm_build_llama<true>::llm_build_llama(llama_model const&, llm_graph_params const&)
166
167
template struct llm_build_llama<false>;
168
template struct llm_build_llama<true>;