/src/llama.cpp/src/models/rwkv7.cpp
Line | Count | Source |
1 | | #include "models.h" |
2 | | |
3 | | llm_build_rwkv7::llm_build_rwkv7(const llama_model & model, const llm_graph_params & params) : |
4 | 0 | llm_build_rwkv7_base(model, params) { |
5 | 0 | GGML_ASSERT(hparams.token_shift_count == 2); |
6 | |
|
7 | 0 | ggml_tensor * cur; |
8 | 0 | ggml_tensor * inpL; |
9 | 0 | ggml_tensor * v_first = nullptr; |
10 | |
|
11 | 0 | inpL = build_inp_embd(model.tok_embd); |
12 | 0 | inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1); |
13 | |
|
14 | 0 | auto * rs_inp = build_rs_inp(); |
15 | |
|
16 | 0 | const auto n_embd = hparams.n_embd; |
17 | 0 | const auto n_seq_tokens = ubatch.n_seq_tokens; |
18 | 0 | const auto n_seqs = ubatch.n_seqs; |
19 | |
|
20 | 0 | ggml_tensor * inp_out_ids = build_inp_out_ids(); |
21 | |
|
22 | 0 | for (int il = 0; il < n_layer; ++il) { |
23 | 0 | const llama_layer * layer = &model.layers[il]; |
24 | 0 | inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs); |
25 | |
|
26 | 0 | ggml_tensor * token_shift = build_rwkv_token_shift_load(rs_inp, ubatch, il); |
27 | |
|
28 | 0 | ggml_tensor * att_shift = |
29 | 0 | ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0); |
30 | 0 | ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], |
31 | 0 | token_shift->nb[2], n_embd * ggml_element_size(token_shift)); |
32 | |
|
33 | 0 | ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il); |
34 | 0 | cb(att_norm, "attn_norm", il); |
35 | |
|
36 | 0 | ggml_tensor * x_prev = ggml_concat( |
37 | 0 | ctx0, att_shift, |
38 | 0 | ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0), 1); |
39 | |
|
40 | 0 | cur = build_rwkv7_time_mix(rs_inp, att_norm, x_prev, v_first, ubatch, il); |
41 | |
|
42 | 0 | ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); |
43 | 0 | cb(ffn_inp, "ffn_inp", il); |
44 | |
|
45 | 0 | ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il); |
46 | 0 | cb(ffn_norm, "ffn_norm", il); |
47 | |
|
48 | 0 | x_prev = ggml_concat( |
49 | 0 | ctx0, ffn_shift, |
50 | 0 | ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0), 1); |
51 | |
|
52 | 0 | token_shift = ggml_concat(ctx0, |
53 | 0 | ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], |
54 | 0 | (n_seq_tokens - 1) * n_embd * ggml_element_size(att_norm)), |
55 | 0 | ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], |
56 | 0 | (n_seq_tokens - 1) * n_embd * ggml_element_size(ffn_norm)), |
57 | 0 | 1); |
58 | 0 | ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il)); |
59 | |
|
60 | 0 | ffn_inp = ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens); |
61 | 0 | ffn_norm = ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens); |
62 | 0 | x_prev = ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens); |
63 | |
|
64 | 0 | if (il == n_layer - 1 && inp_out_ids) { |
65 | 0 | ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids); |
66 | 0 | ffn_norm = ggml_get_rows(ctx0, ffn_norm, inp_out_ids); |
67 | 0 | x_prev = ggml_get_rows(ctx0, x_prev, inp_out_ids); |
68 | 0 | } |
69 | 0 | cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7); |
70 | 0 | cur = ggml_add(ctx0, cur, ffn_inp); |
71 | |
|
72 | 0 | cur = build_cvec(cur, il); |
73 | 0 | cb(cur, "l_out", il); |
74 | | |
75 | | // input for next layer |
76 | 0 | inpL = cur; |
77 | 0 | } |
78 | 0 | cur = inpL; |
79 | 0 | cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1); |
80 | |
|
81 | 0 | cb(cur, "result_norm", -1); |
82 | 0 | res->t_embd = cur; |
83 | |
|
84 | 0 | cur = build_lora_mm(model.output, cur); |
85 | |
|
86 | 0 | cb(cur, "result_output", -1); |
87 | 0 | res->t_logits = cur; |
88 | |
|
89 | 0 | ggml_build_forward_expand(gf, cur); |
90 | 0 | } |