/src/llvm-project/clang/lib/AST/ASTContext.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements the ASTContext interface. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "clang/AST/ASTContext.h" |
14 | | #include "CXXABI.h" |
15 | | #include "Interp/Context.h" |
16 | | #include "clang/AST/APValue.h" |
17 | | #include "clang/AST/ASTConcept.h" |
18 | | #include "clang/AST/ASTMutationListener.h" |
19 | | #include "clang/AST/ASTTypeTraits.h" |
20 | | #include "clang/AST/Attr.h" |
21 | | #include "clang/AST/AttrIterator.h" |
22 | | #include "clang/AST/CharUnits.h" |
23 | | #include "clang/AST/Comment.h" |
24 | | #include "clang/AST/Decl.h" |
25 | | #include "clang/AST/DeclBase.h" |
26 | | #include "clang/AST/DeclCXX.h" |
27 | | #include "clang/AST/DeclContextInternals.h" |
28 | | #include "clang/AST/DeclObjC.h" |
29 | | #include "clang/AST/DeclOpenMP.h" |
30 | | #include "clang/AST/DeclTemplate.h" |
31 | | #include "clang/AST/DeclarationName.h" |
32 | | #include "clang/AST/DependenceFlags.h" |
33 | | #include "clang/AST/Expr.h" |
34 | | #include "clang/AST/ExprCXX.h" |
35 | | #include "clang/AST/ExprConcepts.h" |
36 | | #include "clang/AST/ExternalASTSource.h" |
37 | | #include "clang/AST/Mangle.h" |
38 | | #include "clang/AST/MangleNumberingContext.h" |
39 | | #include "clang/AST/NestedNameSpecifier.h" |
40 | | #include "clang/AST/ParentMapContext.h" |
41 | | #include "clang/AST/RawCommentList.h" |
42 | | #include "clang/AST/RecordLayout.h" |
43 | | #include "clang/AST/Stmt.h" |
44 | | #include "clang/AST/TemplateBase.h" |
45 | | #include "clang/AST/TemplateName.h" |
46 | | #include "clang/AST/Type.h" |
47 | | #include "clang/AST/TypeLoc.h" |
48 | | #include "clang/AST/UnresolvedSet.h" |
49 | | #include "clang/AST/VTableBuilder.h" |
50 | | #include "clang/Basic/AddressSpaces.h" |
51 | | #include "clang/Basic/Builtins.h" |
52 | | #include "clang/Basic/CommentOptions.h" |
53 | | #include "clang/Basic/ExceptionSpecificationType.h" |
54 | | #include "clang/Basic/IdentifierTable.h" |
55 | | #include "clang/Basic/LLVM.h" |
56 | | #include "clang/Basic/LangOptions.h" |
57 | | #include "clang/Basic/Linkage.h" |
58 | | #include "clang/Basic/Module.h" |
59 | | #include "clang/Basic/NoSanitizeList.h" |
60 | | #include "clang/Basic/ObjCRuntime.h" |
61 | | #include "clang/Basic/ProfileList.h" |
62 | | #include "clang/Basic/SourceLocation.h" |
63 | | #include "clang/Basic/SourceManager.h" |
64 | | #include "clang/Basic/Specifiers.h" |
65 | | #include "clang/Basic/TargetCXXABI.h" |
66 | | #include "clang/Basic/TargetInfo.h" |
67 | | #include "clang/Basic/XRayLists.h" |
68 | | #include "llvm/ADT/APFixedPoint.h" |
69 | | #include "llvm/ADT/APInt.h" |
70 | | #include "llvm/ADT/APSInt.h" |
71 | | #include "llvm/ADT/ArrayRef.h" |
72 | | #include "llvm/ADT/DenseMap.h" |
73 | | #include "llvm/ADT/DenseSet.h" |
74 | | #include "llvm/ADT/FoldingSet.h" |
75 | | #include "llvm/ADT/PointerUnion.h" |
76 | | #include "llvm/ADT/STLExtras.h" |
77 | | #include "llvm/ADT/SmallPtrSet.h" |
78 | | #include "llvm/ADT/SmallVector.h" |
79 | | #include "llvm/ADT/StringExtras.h" |
80 | | #include "llvm/ADT/StringRef.h" |
81 | | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
82 | | #include "llvm/Support/Capacity.h" |
83 | | #include "llvm/Support/Casting.h" |
84 | | #include "llvm/Support/Compiler.h" |
85 | | #include "llvm/Support/ErrorHandling.h" |
86 | | #include "llvm/Support/MD5.h" |
87 | | #include "llvm/Support/MathExtras.h" |
88 | | #include "llvm/Support/raw_ostream.h" |
89 | | #include "llvm/TargetParser/Triple.h" |
90 | | #include <algorithm> |
91 | | #include <cassert> |
92 | | #include <cstddef> |
93 | | #include <cstdint> |
94 | | #include <cstdlib> |
95 | | #include <map> |
96 | | #include <memory> |
97 | | #include <optional> |
98 | | #include <string> |
99 | | #include <tuple> |
100 | | #include <utility> |
101 | | |
102 | | using namespace clang; |
103 | | |
104 | | enum FloatingRank { |
105 | | BFloat16Rank, |
106 | | Float16Rank, |
107 | | HalfRank, |
108 | | FloatRank, |
109 | | DoubleRank, |
110 | | LongDoubleRank, |
111 | | Float128Rank, |
112 | | Ibm128Rank |
113 | | }; |
114 | | |
115 | | /// \returns The locations that are relevant when searching for Doc comments |
116 | | /// related to \p D. |
117 | | static SmallVector<SourceLocation, 2> |
118 | 0 | getDeclLocsForCommentSearch(const Decl *D, SourceManager &SourceMgr) { |
119 | 0 | assert(D); |
120 | | |
121 | | // User can not attach documentation to implicit declarations. |
122 | 0 | if (D->isImplicit()) |
123 | 0 | return {}; |
124 | | |
125 | | // User can not attach documentation to implicit instantiations. |
126 | 0 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
127 | 0 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
128 | 0 | return {}; |
129 | 0 | } |
130 | | |
131 | 0 | if (const auto *VD = dyn_cast<VarDecl>(D)) { |
132 | 0 | if (VD->isStaticDataMember() && |
133 | 0 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
134 | 0 | return {}; |
135 | 0 | } |
136 | | |
137 | 0 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) { |
138 | 0 | if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
139 | 0 | return {}; |
140 | 0 | } |
141 | | |
142 | 0 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) { |
143 | 0 | TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); |
144 | 0 | if (TSK == TSK_ImplicitInstantiation || |
145 | 0 | TSK == TSK_Undeclared) |
146 | 0 | return {}; |
147 | 0 | } |
148 | | |
149 | 0 | if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
150 | 0 | if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
151 | 0 | return {}; |
152 | 0 | } |
153 | 0 | if (const auto *TD = dyn_cast<TagDecl>(D)) { |
154 | | // When tag declaration (but not definition!) is part of the |
155 | | // decl-specifier-seq of some other declaration, it doesn't get comment |
156 | 0 | if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) |
157 | 0 | return {}; |
158 | 0 | } |
159 | | // TODO: handle comments for function parameters properly. |
160 | 0 | if (isa<ParmVarDecl>(D)) |
161 | 0 | return {}; |
162 | | |
163 | | // TODO: we could look up template parameter documentation in the template |
164 | | // documentation. |
165 | 0 | if (isa<TemplateTypeParmDecl>(D) || |
166 | 0 | isa<NonTypeTemplateParmDecl>(D) || |
167 | 0 | isa<TemplateTemplateParmDecl>(D)) |
168 | 0 | return {}; |
169 | | |
170 | 0 | SmallVector<SourceLocation, 2> Locations; |
171 | | // Find declaration location. |
172 | | // For Objective-C declarations we generally don't expect to have multiple |
173 | | // declarators, thus use declaration starting location as the "declaration |
174 | | // location". |
175 | | // For all other declarations multiple declarators are used quite frequently, |
176 | | // so we use the location of the identifier as the "declaration location". |
177 | 0 | SourceLocation BaseLocation; |
178 | 0 | if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || |
179 | 0 | isa<ObjCPropertyDecl>(D) || isa<RedeclarableTemplateDecl>(D) || |
180 | 0 | isa<ClassTemplateSpecializationDecl>(D) || |
181 | | // Allow association with Y across {} in `typedef struct X {} Y`. |
182 | 0 | isa<TypedefDecl>(D)) |
183 | 0 | BaseLocation = D->getBeginLoc(); |
184 | 0 | else |
185 | 0 | BaseLocation = D->getLocation(); |
186 | |
|
187 | 0 | if (!D->getLocation().isMacroID()) { |
188 | 0 | Locations.emplace_back(BaseLocation); |
189 | 0 | } else { |
190 | 0 | const auto *DeclCtx = D->getDeclContext(); |
191 | | |
192 | | // When encountering definitions generated from a macro (that are not |
193 | | // contained by another declaration in the macro) we need to try and find |
194 | | // the comment at the location of the expansion but if there is no comment |
195 | | // there we should retry to see if there is a comment inside the macro as |
196 | | // well. To this end we return first BaseLocation to first look at the |
197 | | // expansion site, the second value is the spelling location of the |
198 | | // beginning of the declaration defined inside the macro. |
199 | 0 | if (!(DeclCtx && |
200 | 0 | Decl::castFromDeclContext(DeclCtx)->getLocation().isMacroID())) { |
201 | 0 | Locations.emplace_back(SourceMgr.getExpansionLoc(BaseLocation)); |
202 | 0 | } |
203 | | |
204 | | // We use Decl::getBeginLoc() and not just BaseLocation here to ensure that |
205 | | // we don't refer to the macro argument location at the expansion site (this |
206 | | // can happen if the name's spelling is provided via macro argument), and |
207 | | // always to the declaration itself. |
208 | 0 | Locations.emplace_back(SourceMgr.getSpellingLoc(D->getBeginLoc())); |
209 | 0 | } |
210 | |
|
211 | 0 | return Locations; |
212 | 0 | } |
213 | | |
214 | | RawComment *ASTContext::getRawCommentForDeclNoCacheImpl( |
215 | | const Decl *D, const SourceLocation RepresentativeLocForDecl, |
216 | 0 | const std::map<unsigned, RawComment *> &CommentsInTheFile) const { |
217 | | // If the declaration doesn't map directly to a location in a file, we |
218 | | // can't find the comment. |
219 | 0 | if (RepresentativeLocForDecl.isInvalid() || |
220 | 0 | !RepresentativeLocForDecl.isFileID()) |
221 | 0 | return nullptr; |
222 | | |
223 | | // If there are no comments anywhere, we won't find anything. |
224 | 0 | if (CommentsInTheFile.empty()) |
225 | 0 | return nullptr; |
226 | | |
227 | | // Decompose the location for the declaration and find the beginning of the |
228 | | // file buffer. |
229 | 0 | const std::pair<FileID, unsigned> DeclLocDecomp = |
230 | 0 | SourceMgr.getDecomposedLoc(RepresentativeLocForDecl); |
231 | | |
232 | | // Slow path. |
233 | 0 | auto OffsetCommentBehindDecl = |
234 | 0 | CommentsInTheFile.lower_bound(DeclLocDecomp.second); |
235 | | |
236 | | // First check whether we have a trailing comment. |
237 | 0 | if (OffsetCommentBehindDecl != CommentsInTheFile.end()) { |
238 | 0 | RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second; |
239 | 0 | if ((CommentBehindDecl->isDocumentation() || |
240 | 0 | LangOpts.CommentOpts.ParseAllComments) && |
241 | 0 | CommentBehindDecl->isTrailingComment() && |
242 | 0 | (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || |
243 | 0 | isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { |
244 | | |
245 | | // Check that Doxygen trailing comment comes after the declaration, starts |
246 | | // on the same line and in the same file as the declaration. |
247 | 0 | if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) == |
248 | 0 | Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first, |
249 | 0 | OffsetCommentBehindDecl->first)) { |
250 | 0 | return CommentBehindDecl; |
251 | 0 | } |
252 | 0 | } |
253 | 0 | } |
254 | | |
255 | | // The comment just after the declaration was not a trailing comment. |
256 | | // Let's look at the previous comment. |
257 | 0 | if (OffsetCommentBehindDecl == CommentsInTheFile.begin()) |
258 | 0 | return nullptr; |
259 | | |
260 | 0 | auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl; |
261 | 0 | RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second; |
262 | | |
263 | | // Check that we actually have a non-member Doxygen comment. |
264 | 0 | if (!(CommentBeforeDecl->isDocumentation() || |
265 | 0 | LangOpts.CommentOpts.ParseAllComments) || |
266 | 0 | CommentBeforeDecl->isTrailingComment()) |
267 | 0 | return nullptr; |
268 | | |
269 | | // Decompose the end of the comment. |
270 | 0 | const unsigned CommentEndOffset = |
271 | 0 | Comments.getCommentEndOffset(CommentBeforeDecl); |
272 | | |
273 | | // Get the corresponding buffer. |
274 | 0 | bool Invalid = false; |
275 | 0 | const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, |
276 | 0 | &Invalid).data(); |
277 | 0 | if (Invalid) |
278 | 0 | return nullptr; |
279 | | |
280 | | // Extract text between the comment and declaration. |
281 | 0 | StringRef Text(Buffer + CommentEndOffset, |
282 | 0 | DeclLocDecomp.second - CommentEndOffset); |
283 | | |
284 | | // There should be no other declarations or preprocessor directives between |
285 | | // comment and declaration. |
286 | 0 | if (Text.find_last_of(";{}#@") != StringRef::npos) |
287 | 0 | return nullptr; |
288 | | |
289 | 0 | return CommentBeforeDecl; |
290 | 0 | } |
291 | | |
292 | 0 | RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { |
293 | 0 | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); |
294 | |
|
295 | 0 | for (const auto DeclLoc : DeclLocs) { |
296 | | // If the declaration doesn't map directly to a location in a file, we |
297 | | // can't find the comment. |
298 | 0 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
299 | 0 | continue; |
300 | | |
301 | 0 | if (ExternalSource && !CommentsLoaded) { |
302 | 0 | ExternalSource->ReadComments(); |
303 | 0 | CommentsLoaded = true; |
304 | 0 | } |
305 | |
|
306 | 0 | if (Comments.empty()) |
307 | 0 | continue; |
308 | | |
309 | 0 | const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first; |
310 | 0 | if (!File.isValid()) |
311 | 0 | continue; |
312 | | |
313 | 0 | const auto CommentsInThisFile = Comments.getCommentsInFile(File); |
314 | 0 | if (!CommentsInThisFile || CommentsInThisFile->empty()) |
315 | 0 | continue; |
316 | | |
317 | 0 | if (RawComment *Comment = |
318 | 0 | getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) |
319 | 0 | return Comment; |
320 | 0 | } |
321 | | |
322 | 0 | return nullptr; |
323 | 0 | } |
324 | | |
325 | 943 | void ASTContext::addComment(const RawComment &RC) { |
326 | 943 | assert(LangOpts.RetainCommentsFromSystemHeaders || |
327 | 943 | !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())); |
328 | 0 | Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc); |
329 | 943 | } |
330 | | |
331 | | /// If we have a 'templated' declaration for a template, adjust 'D' to |
332 | | /// refer to the actual template. |
333 | | /// If we have an implicit instantiation, adjust 'D' to refer to template. |
334 | 0 | static const Decl &adjustDeclToTemplate(const Decl &D) { |
335 | 0 | if (const auto *FD = dyn_cast<FunctionDecl>(&D)) { |
336 | | // Is this function declaration part of a function template? |
337 | 0 | if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) |
338 | 0 | return *FTD; |
339 | | |
340 | | // Nothing to do if function is not an implicit instantiation. |
341 | 0 | if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
342 | 0 | return D; |
343 | | |
344 | | // Function is an implicit instantiation of a function template? |
345 | 0 | if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) |
346 | 0 | return *FTD; |
347 | | |
348 | | // Function is instantiated from a member definition of a class template? |
349 | 0 | if (const FunctionDecl *MemberDecl = |
350 | 0 | FD->getInstantiatedFromMemberFunction()) |
351 | 0 | return *MemberDecl; |
352 | | |
353 | 0 | return D; |
354 | 0 | } |
355 | 0 | if (const auto *VD = dyn_cast<VarDecl>(&D)) { |
356 | | // Static data member is instantiated from a member definition of a class |
357 | | // template? |
358 | 0 | if (VD->isStaticDataMember()) |
359 | 0 | if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) |
360 | 0 | return *MemberDecl; |
361 | | |
362 | 0 | return D; |
363 | 0 | } |
364 | 0 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) { |
365 | | // Is this class declaration part of a class template? |
366 | 0 | if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) |
367 | 0 | return *CTD; |
368 | | |
369 | | // Class is an implicit instantiation of a class template or partial |
370 | | // specialization? |
371 | 0 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { |
372 | 0 | if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) |
373 | 0 | return D; |
374 | 0 | llvm::PointerUnion<ClassTemplateDecl *, |
375 | 0 | ClassTemplatePartialSpecializationDecl *> |
376 | 0 | PU = CTSD->getSpecializedTemplateOrPartial(); |
377 | 0 | return PU.is<ClassTemplateDecl *>() |
378 | 0 | ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>()) |
379 | 0 | : *static_cast<const Decl *>( |
380 | 0 | PU.get<ClassTemplatePartialSpecializationDecl *>()); |
381 | 0 | } |
382 | | |
383 | | // Class is instantiated from a member definition of a class template? |
384 | 0 | if (const MemberSpecializationInfo *Info = |
385 | 0 | CRD->getMemberSpecializationInfo()) |
386 | 0 | return *Info->getInstantiatedFrom(); |
387 | | |
388 | 0 | return D; |
389 | 0 | } |
390 | 0 | if (const auto *ED = dyn_cast<EnumDecl>(&D)) { |
391 | | // Enum is instantiated from a member definition of a class template? |
392 | 0 | if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) |
393 | 0 | return *MemberDecl; |
394 | | |
395 | 0 | return D; |
396 | 0 | } |
397 | | // FIXME: Adjust alias templates? |
398 | 0 | return D; |
399 | 0 | } |
400 | | |
401 | | const RawComment *ASTContext::getRawCommentForAnyRedecl( |
402 | | const Decl *D, |
403 | 0 | const Decl **OriginalDecl) const { |
404 | 0 | if (!D) { |
405 | 0 | if (OriginalDecl) |
406 | 0 | OriginalDecl = nullptr; |
407 | 0 | return nullptr; |
408 | 0 | } |
409 | | |
410 | 0 | D = &adjustDeclToTemplate(*D); |
411 | | |
412 | | // Any comment directly attached to D? |
413 | 0 | { |
414 | 0 | auto DeclComment = DeclRawComments.find(D); |
415 | 0 | if (DeclComment != DeclRawComments.end()) { |
416 | 0 | if (OriginalDecl) |
417 | 0 | *OriginalDecl = D; |
418 | 0 | return DeclComment->second; |
419 | 0 | } |
420 | 0 | } |
421 | | |
422 | | // Any comment attached to any redeclaration of D? |
423 | 0 | const Decl *CanonicalD = D->getCanonicalDecl(); |
424 | 0 | if (!CanonicalD) |
425 | 0 | return nullptr; |
426 | | |
427 | 0 | { |
428 | 0 | auto RedeclComment = RedeclChainComments.find(CanonicalD); |
429 | 0 | if (RedeclComment != RedeclChainComments.end()) { |
430 | 0 | if (OriginalDecl) |
431 | 0 | *OriginalDecl = RedeclComment->second; |
432 | 0 | auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second); |
433 | 0 | assert(CommentAtRedecl != DeclRawComments.end() && |
434 | 0 | "This decl is supposed to have comment attached."); |
435 | 0 | return CommentAtRedecl->second; |
436 | 0 | } |
437 | 0 | } |
438 | | |
439 | | // Any redeclarations of D that we haven't checked for comments yet? |
440 | | // We can't use DenseMap::iterator directly since it'd get invalid. |
441 | 0 | auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * { |
442 | 0 | return CommentlessRedeclChains.lookup(CanonicalD); |
443 | 0 | }(); |
444 | |
|
445 | 0 | for (const auto Redecl : D->redecls()) { |
446 | 0 | assert(Redecl); |
447 | | // Skip all redeclarations that have been checked previously. |
448 | 0 | if (LastCheckedRedecl) { |
449 | 0 | if (LastCheckedRedecl == Redecl) { |
450 | 0 | LastCheckedRedecl = nullptr; |
451 | 0 | } |
452 | 0 | continue; |
453 | 0 | } |
454 | 0 | const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl); |
455 | 0 | if (RedeclComment) { |
456 | 0 | cacheRawCommentForDecl(*Redecl, *RedeclComment); |
457 | 0 | if (OriginalDecl) |
458 | 0 | *OriginalDecl = Redecl; |
459 | 0 | return RedeclComment; |
460 | 0 | } |
461 | 0 | CommentlessRedeclChains[CanonicalD] = Redecl; |
462 | 0 | } |
463 | | |
464 | 0 | if (OriginalDecl) |
465 | 0 | *OriginalDecl = nullptr; |
466 | 0 | return nullptr; |
467 | 0 | } |
468 | | |
469 | | void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD, |
470 | 0 | const RawComment &Comment) const { |
471 | 0 | assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments); |
472 | 0 | DeclRawComments.try_emplace(&OriginalD, &Comment); |
473 | 0 | const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl(); |
474 | 0 | RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD); |
475 | 0 | CommentlessRedeclChains.erase(CanonicalDecl); |
476 | 0 | } |
477 | | |
478 | | static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, |
479 | 0 | SmallVectorImpl<const NamedDecl *> &Redeclared) { |
480 | 0 | const DeclContext *DC = ObjCMethod->getDeclContext(); |
481 | 0 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) { |
482 | 0 | const ObjCInterfaceDecl *ID = IMD->getClassInterface(); |
483 | 0 | if (!ID) |
484 | 0 | return; |
485 | | // Add redeclared method here. |
486 | 0 | for (const auto *Ext : ID->known_extensions()) { |
487 | 0 | if (ObjCMethodDecl *RedeclaredMethod = |
488 | 0 | Ext->getMethod(ObjCMethod->getSelector(), |
489 | 0 | ObjCMethod->isInstanceMethod())) |
490 | 0 | Redeclared.push_back(RedeclaredMethod); |
491 | 0 | } |
492 | 0 | } |
493 | 0 | } |
494 | | |
495 | | void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls, |
496 | 0 | const Preprocessor *PP) { |
497 | 0 | if (Comments.empty() || Decls.empty()) |
498 | 0 | return; |
499 | | |
500 | 0 | FileID File; |
501 | 0 | for (Decl *D : Decls) { |
502 | 0 | SourceLocation Loc = D->getLocation(); |
503 | 0 | if (Loc.isValid()) { |
504 | | // See if there are any new comments that are not attached to a decl. |
505 | | // The location doesn't have to be precise - we care only about the file. |
506 | 0 | File = SourceMgr.getDecomposedLoc(Loc).first; |
507 | 0 | break; |
508 | 0 | } |
509 | 0 | } |
510 | |
|
511 | 0 | if (File.isInvalid()) |
512 | 0 | return; |
513 | | |
514 | 0 | auto CommentsInThisFile = Comments.getCommentsInFile(File); |
515 | 0 | if (!CommentsInThisFile || CommentsInThisFile->empty() || |
516 | 0 | CommentsInThisFile->rbegin()->second->isAttached()) |
517 | 0 | return; |
518 | | |
519 | | // There is at least one comment not attached to a decl. |
520 | | // Maybe it should be attached to one of Decls? |
521 | | // |
522 | | // Note that this way we pick up not only comments that precede the |
523 | | // declaration, but also comments that *follow* the declaration -- thanks to |
524 | | // the lookahead in the lexer: we've consumed the semicolon and looked |
525 | | // ahead through comments. |
526 | 0 | for (const Decl *D : Decls) { |
527 | 0 | assert(D); |
528 | 0 | if (D->isInvalidDecl()) |
529 | 0 | continue; |
530 | | |
531 | 0 | D = &adjustDeclToTemplate(*D); |
532 | |
|
533 | 0 | if (DeclRawComments.count(D) > 0) |
534 | 0 | continue; |
535 | | |
536 | 0 | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); |
537 | |
|
538 | 0 | for (const auto DeclLoc : DeclLocs) { |
539 | 0 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
540 | 0 | continue; |
541 | | |
542 | 0 | if (RawComment *const DocComment = getRawCommentForDeclNoCacheImpl( |
543 | 0 | D, DeclLoc, *CommentsInThisFile)) { |
544 | 0 | cacheRawCommentForDecl(*D, *DocComment); |
545 | 0 | comments::FullComment *FC = DocComment->parse(*this, PP, D); |
546 | 0 | ParsedComments[D->getCanonicalDecl()] = FC; |
547 | 0 | break; |
548 | 0 | } |
549 | 0 | } |
550 | 0 | } |
551 | 0 | } |
552 | | |
553 | | comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, |
554 | 0 | const Decl *D) const { |
555 | 0 | auto *ThisDeclInfo = new (*this) comments::DeclInfo; |
556 | 0 | ThisDeclInfo->CommentDecl = D; |
557 | 0 | ThisDeclInfo->IsFilled = false; |
558 | 0 | ThisDeclInfo->fill(); |
559 | 0 | ThisDeclInfo->CommentDecl = FC->getDecl(); |
560 | 0 | if (!ThisDeclInfo->TemplateParameters) |
561 | 0 | ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; |
562 | 0 | comments::FullComment *CFC = |
563 | 0 | new (*this) comments::FullComment(FC->getBlocks(), |
564 | 0 | ThisDeclInfo); |
565 | 0 | return CFC; |
566 | 0 | } |
567 | | |
568 | 0 | comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { |
569 | 0 | const RawComment *RC = getRawCommentForDeclNoCache(D); |
570 | 0 | return RC ? RC->parse(*this, nullptr, D) : nullptr; |
571 | 0 | } |
572 | | |
573 | | comments::FullComment *ASTContext::getCommentForDecl( |
574 | | const Decl *D, |
575 | 0 | const Preprocessor *PP) const { |
576 | 0 | if (!D || D->isInvalidDecl()) |
577 | 0 | return nullptr; |
578 | 0 | D = &adjustDeclToTemplate(*D); |
579 | |
|
580 | 0 | const Decl *Canonical = D->getCanonicalDecl(); |
581 | 0 | llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = |
582 | 0 | ParsedComments.find(Canonical); |
583 | |
|
584 | 0 | if (Pos != ParsedComments.end()) { |
585 | 0 | if (Canonical != D) { |
586 | 0 | comments::FullComment *FC = Pos->second; |
587 | 0 | comments::FullComment *CFC = cloneFullComment(FC, D); |
588 | 0 | return CFC; |
589 | 0 | } |
590 | 0 | return Pos->second; |
591 | 0 | } |
592 | | |
593 | 0 | const Decl *OriginalDecl = nullptr; |
594 | |
|
595 | 0 | const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); |
596 | 0 | if (!RC) { |
597 | 0 | if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { |
598 | 0 | SmallVector<const NamedDecl*, 8> Overridden; |
599 | 0 | const auto *OMD = dyn_cast<ObjCMethodDecl>(D); |
600 | 0 | if (OMD && OMD->isPropertyAccessor()) |
601 | 0 | if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) |
602 | 0 | if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) |
603 | 0 | return cloneFullComment(FC, D); |
604 | 0 | if (OMD) |
605 | 0 | addRedeclaredMethods(OMD, Overridden); |
606 | 0 | getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); |
607 | 0 | for (unsigned i = 0, e = Overridden.size(); i < e; i++) |
608 | 0 | if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) |
609 | 0 | return cloneFullComment(FC, D); |
610 | 0 | } |
611 | 0 | else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
612 | | // Attach any tag type's documentation to its typedef if latter |
613 | | // does not have one of its own. |
614 | 0 | QualType QT = TD->getUnderlyingType(); |
615 | 0 | if (const auto *TT = QT->getAs<TagType>()) |
616 | 0 | if (const Decl *TD = TT->getDecl()) |
617 | 0 | if (comments::FullComment *FC = getCommentForDecl(TD, PP)) |
618 | 0 | return cloneFullComment(FC, D); |
619 | 0 | } |
620 | 0 | else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) { |
621 | 0 | while (IC->getSuperClass()) { |
622 | 0 | IC = IC->getSuperClass(); |
623 | 0 | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) |
624 | 0 | return cloneFullComment(FC, D); |
625 | 0 | } |
626 | 0 | } |
627 | 0 | else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) { |
628 | 0 | if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) |
629 | 0 | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) |
630 | 0 | return cloneFullComment(FC, D); |
631 | 0 | } |
632 | 0 | else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { |
633 | 0 | if (!(RD = RD->getDefinition())) |
634 | 0 | return nullptr; |
635 | | // Check non-virtual bases. |
636 | 0 | for (const auto &I : RD->bases()) { |
637 | 0 | if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) |
638 | 0 | continue; |
639 | 0 | QualType Ty = I.getType(); |
640 | 0 | if (Ty.isNull()) |
641 | 0 | continue; |
642 | 0 | if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { |
643 | 0 | if (!(NonVirtualBase= NonVirtualBase->getDefinition())) |
644 | 0 | continue; |
645 | | |
646 | 0 | if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) |
647 | 0 | return cloneFullComment(FC, D); |
648 | 0 | } |
649 | 0 | } |
650 | | // Check virtual bases. |
651 | 0 | for (const auto &I : RD->vbases()) { |
652 | 0 | if (I.getAccessSpecifier() != AS_public) |
653 | 0 | continue; |
654 | 0 | QualType Ty = I.getType(); |
655 | 0 | if (Ty.isNull()) |
656 | 0 | continue; |
657 | 0 | if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { |
658 | 0 | if (!(VirtualBase= VirtualBase->getDefinition())) |
659 | 0 | continue; |
660 | 0 | if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) |
661 | 0 | return cloneFullComment(FC, D); |
662 | 0 | } |
663 | 0 | } |
664 | 0 | } |
665 | 0 | return nullptr; |
666 | 0 | } |
667 | | |
668 | | // If the RawComment was attached to other redeclaration of this Decl, we |
669 | | // should parse the comment in context of that other Decl. This is important |
670 | | // because comments can contain references to parameter names which can be |
671 | | // different across redeclarations. |
672 | 0 | if (D != OriginalDecl && OriginalDecl) |
673 | 0 | return getCommentForDecl(OriginalDecl, PP); |
674 | | |
675 | 0 | comments::FullComment *FC = RC->parse(*this, PP, D); |
676 | 0 | ParsedComments[Canonical] = FC; |
677 | 0 | return FC; |
678 | 0 | } |
679 | | |
680 | | void |
681 | | ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, |
682 | | const ASTContext &C, |
683 | 0 | TemplateTemplateParmDecl *Parm) { |
684 | 0 | ID.AddInteger(Parm->getDepth()); |
685 | 0 | ID.AddInteger(Parm->getPosition()); |
686 | 0 | ID.AddBoolean(Parm->isParameterPack()); |
687 | |
|
688 | 0 | TemplateParameterList *Params = Parm->getTemplateParameters(); |
689 | 0 | ID.AddInteger(Params->size()); |
690 | 0 | for (TemplateParameterList::const_iterator P = Params->begin(), |
691 | 0 | PEnd = Params->end(); |
692 | 0 | P != PEnd; ++P) { |
693 | 0 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { |
694 | 0 | ID.AddInteger(0); |
695 | 0 | ID.AddBoolean(TTP->isParameterPack()); |
696 | 0 | if (TTP->isExpandedParameterPack()) { |
697 | 0 | ID.AddBoolean(true); |
698 | 0 | ID.AddInteger(TTP->getNumExpansionParameters()); |
699 | 0 | } else |
700 | 0 | ID.AddBoolean(false); |
701 | 0 | continue; |
702 | 0 | } |
703 | | |
704 | 0 | if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
705 | 0 | ID.AddInteger(1); |
706 | 0 | ID.AddBoolean(NTTP->isParameterPack()); |
707 | 0 | ID.AddPointer(C.getUnconstrainedType(C.getCanonicalType(NTTP->getType())) |
708 | 0 | .getAsOpaquePtr()); |
709 | 0 | if (NTTP->isExpandedParameterPack()) { |
710 | 0 | ID.AddBoolean(true); |
711 | 0 | ID.AddInteger(NTTP->getNumExpansionTypes()); |
712 | 0 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
713 | 0 | QualType T = NTTP->getExpansionType(I); |
714 | 0 | ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); |
715 | 0 | } |
716 | 0 | } else |
717 | 0 | ID.AddBoolean(false); |
718 | 0 | continue; |
719 | 0 | } |
720 | | |
721 | 0 | auto *TTP = cast<TemplateTemplateParmDecl>(*P); |
722 | 0 | ID.AddInteger(2); |
723 | 0 | Profile(ID, C, TTP); |
724 | 0 | } |
725 | 0 | } |
726 | | |
727 | | TemplateTemplateParmDecl * |
728 | | ASTContext::getCanonicalTemplateTemplateParmDecl( |
729 | 0 | TemplateTemplateParmDecl *TTP) const { |
730 | | // Check if we already have a canonical template template parameter. |
731 | 0 | llvm::FoldingSetNodeID ID; |
732 | 0 | CanonicalTemplateTemplateParm::Profile(ID, *this, TTP); |
733 | 0 | void *InsertPos = nullptr; |
734 | 0 | CanonicalTemplateTemplateParm *Canonical |
735 | 0 | = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
736 | 0 | if (Canonical) |
737 | 0 | return Canonical->getParam(); |
738 | | |
739 | | // Build a canonical template parameter list. |
740 | 0 | TemplateParameterList *Params = TTP->getTemplateParameters(); |
741 | 0 | SmallVector<NamedDecl *, 4> CanonParams; |
742 | 0 | CanonParams.reserve(Params->size()); |
743 | 0 | for (TemplateParameterList::const_iterator P = Params->begin(), |
744 | 0 | PEnd = Params->end(); |
745 | 0 | P != PEnd; ++P) { |
746 | | // Note that, per C++20 [temp.over.link]/6, when determining whether |
747 | | // template-parameters are equivalent, constraints are ignored. |
748 | 0 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { |
749 | 0 | TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create( |
750 | 0 | *this, getTranslationUnitDecl(), SourceLocation(), SourceLocation(), |
751 | 0 | TTP->getDepth(), TTP->getIndex(), nullptr, false, |
752 | 0 | TTP->isParameterPack(), /*HasTypeConstraint=*/false, |
753 | 0 | TTP->isExpandedParameterPack() |
754 | 0 | ? std::optional<unsigned>(TTP->getNumExpansionParameters()) |
755 | 0 | : std::nullopt); |
756 | 0 | CanonParams.push_back(NewTTP); |
757 | 0 | } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
758 | 0 | QualType T = getUnconstrainedType(getCanonicalType(NTTP->getType())); |
759 | 0 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
760 | 0 | NonTypeTemplateParmDecl *Param; |
761 | 0 | if (NTTP->isExpandedParameterPack()) { |
762 | 0 | SmallVector<QualType, 2> ExpandedTypes; |
763 | 0 | SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; |
764 | 0 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
765 | 0 | ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); |
766 | 0 | ExpandedTInfos.push_back( |
767 | 0 | getTrivialTypeSourceInfo(ExpandedTypes.back())); |
768 | 0 | } |
769 | |
|
770 | 0 | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
771 | 0 | SourceLocation(), |
772 | 0 | SourceLocation(), |
773 | 0 | NTTP->getDepth(), |
774 | 0 | NTTP->getPosition(), nullptr, |
775 | 0 | T, |
776 | 0 | TInfo, |
777 | 0 | ExpandedTypes, |
778 | 0 | ExpandedTInfos); |
779 | 0 | } else { |
780 | 0 | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
781 | 0 | SourceLocation(), |
782 | 0 | SourceLocation(), |
783 | 0 | NTTP->getDepth(), |
784 | 0 | NTTP->getPosition(), nullptr, |
785 | 0 | T, |
786 | 0 | NTTP->isParameterPack(), |
787 | 0 | TInfo); |
788 | 0 | } |
789 | 0 | CanonParams.push_back(Param); |
790 | 0 | } else |
791 | 0 | CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( |
792 | 0 | cast<TemplateTemplateParmDecl>(*P))); |
793 | 0 | } |
794 | |
|
795 | 0 | TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create( |
796 | 0 | *this, getTranslationUnitDecl(), SourceLocation(), TTP->getDepth(), |
797 | 0 | TTP->getPosition(), TTP->isParameterPack(), nullptr, |
798 | 0 | TemplateParameterList::Create(*this, SourceLocation(), SourceLocation(), |
799 | 0 | CanonParams, SourceLocation(), |
800 | 0 | /*RequiresClause=*/nullptr)); |
801 | | |
802 | | // Get the new insert position for the node we care about. |
803 | 0 | Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
804 | 0 | assert(!Canonical && "Shouldn't be in the map!"); |
805 | 0 | (void)Canonical; |
806 | | |
807 | | // Create the canonical template template parameter entry. |
808 | 0 | Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); |
809 | 0 | CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); |
810 | 0 | return CanonTTP; |
811 | 0 | } |
812 | | |
813 | 115 | TargetCXXABI::Kind ASTContext::getCXXABIKind() const { |
814 | 115 | auto Kind = getTargetInfo().getCXXABI().getKind(); |
815 | 115 | return getLangOpts().CXXABI.value_or(Kind); |
816 | 115 | } |
817 | | |
818 | 46 | CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { |
819 | 46 | if (!LangOpts.CPlusPlus) return nullptr; |
820 | | |
821 | 23 | switch (getCXXABIKind()) { |
822 | 0 | case TargetCXXABI::AppleARM64: |
823 | 0 | case TargetCXXABI::Fuchsia: |
824 | 0 | case TargetCXXABI::GenericARM: // Same as Itanium at this level |
825 | 0 | case TargetCXXABI::iOS: |
826 | 0 | case TargetCXXABI::WatchOS: |
827 | 0 | case TargetCXXABI::GenericAArch64: |
828 | 0 | case TargetCXXABI::GenericMIPS: |
829 | 23 | case TargetCXXABI::GenericItanium: |
830 | 23 | case TargetCXXABI::WebAssembly: |
831 | 23 | case TargetCXXABI::XL: |
832 | 23 | return CreateItaniumCXXABI(*this); |
833 | 0 | case TargetCXXABI::Microsoft: |
834 | 0 | return CreateMicrosoftCXXABI(*this); |
835 | 23 | } |
836 | 0 | llvm_unreachable("Invalid CXXABI type!"); |
837 | 0 | } |
838 | | |
839 | 0 | interp::Context &ASTContext::getInterpContext() { |
840 | 0 | if (!InterpContext) { |
841 | 0 | InterpContext.reset(new interp::Context(*this)); |
842 | 0 | } |
843 | 0 | return *InterpContext.get(); |
844 | 0 | } |
845 | | |
846 | 0 | ParentMapContext &ASTContext::getParentMapContext() { |
847 | 0 | if (!ParentMapCtx) |
848 | 0 | ParentMapCtx.reset(new ParentMapContext(*this)); |
849 | 0 | return *ParentMapCtx.get(); |
850 | 0 | } |
851 | | |
852 | | static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, |
853 | 46 | const LangOptions &LangOpts) { |
854 | 46 | switch (LangOpts.getAddressSpaceMapMangling()) { |
855 | 46 | case LangOptions::ASMM_Target: |
856 | 46 | return TI.useAddressSpaceMapMangling(); |
857 | 0 | case LangOptions::ASMM_On: |
858 | 0 | return true; |
859 | 0 | case LangOptions::ASMM_Off: |
860 | 0 | return false; |
861 | 46 | } |
862 | 0 | llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); |
863 | 0 | } |
864 | | |
865 | | ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, |
866 | | IdentifierTable &idents, SelectorTable &sels, |
867 | | Builtin::Context &builtins, TranslationUnitKind TUKind) |
868 | | : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize), |
869 | | DependentSizedArrayTypes(this_()), DependentSizedExtVectorTypes(this_()), |
870 | | DependentAddressSpaceTypes(this_()), DependentVectorTypes(this_()), |
871 | | DependentSizedMatrixTypes(this_()), |
872 | | FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize), |
873 | | DependentTypeOfExprTypes(this_()), DependentDecltypeTypes(this_()), |
874 | | TemplateSpecializationTypes(this_()), |
875 | | DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()), |
876 | | DependentBitIntTypes(this_()), SubstTemplateTemplateParmPacks(this_()), |
877 | | CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts), |
878 | | NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)), |
879 | | XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, |
880 | | LangOpts.XRayNeverInstrumentFiles, |
881 | | LangOpts.XRayAttrListFiles, SM)), |
882 | | ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)), |
883 | | PrintingPolicy(LOpts), Idents(idents), Selectors(sels), |
884 | | BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this), |
885 | | Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), |
886 | 46 | CompCategories(this_()), LastSDM(nullptr, 0) { |
887 | 46 | addTranslationUnitDecl(); |
888 | 46 | } |
889 | | |
890 | 46 | void ASTContext::cleanup() { |
891 | | // Release the DenseMaps associated with DeclContext objects. |
892 | | // FIXME: Is this the ideal solution? |
893 | 46 | ReleaseDeclContextMaps(); |
894 | | |
895 | | // Call all of the deallocation functions on all of their targets. |
896 | 46 | for (auto &Pair : Deallocations) |
897 | 0 | (Pair.first)(Pair.second); |
898 | 46 | Deallocations.clear(); |
899 | | |
900 | | // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed |
901 | | // because they can contain DenseMaps. |
902 | 46 | for (llvm::DenseMap<const ObjCContainerDecl*, |
903 | 46 | const ASTRecordLayout*>::iterator |
904 | 46 | I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) |
905 | | // Increment in loop to prevent using deallocated memory. |
906 | 0 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
907 | 0 | R->Destroy(*this); |
908 | 46 | ObjCLayouts.clear(); |
909 | | |
910 | 46 | for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator |
911 | 92 | I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { |
912 | | // Increment in loop to prevent using deallocated memory. |
913 | 46 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
914 | 46 | R->Destroy(*this); |
915 | 46 | } |
916 | 46 | ASTRecordLayouts.clear(); |
917 | | |
918 | 46 | for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), |
919 | 46 | AEnd = DeclAttrs.end(); |
920 | 138 | A != AEnd; ++A) |
921 | 92 | A->second->~AttrVec(); |
922 | 46 | DeclAttrs.clear(); |
923 | | |
924 | 46 | for (const auto &Value : ModuleInitializers) |
925 | 0 | Value.second->~PerModuleInitializers(); |
926 | 46 | ModuleInitializers.clear(); |
927 | 46 | } |
928 | | |
929 | 46 | ASTContext::~ASTContext() { cleanup(); } |
930 | | |
931 | 0 | void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) { |
932 | 0 | TraversalScope = TopLevelDecls; |
933 | 0 | getParentMapContext().clear(); |
934 | 0 | } |
935 | | |
936 | 0 | void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const { |
937 | 0 | Deallocations.push_back({Callback, Data}); |
938 | 0 | } |
939 | | |
940 | | void |
941 | 0 | ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { |
942 | 0 | ExternalSource = std::move(Source); |
943 | 0 | } |
944 | | |
945 | 0 | void ASTContext::PrintStats() const { |
946 | 0 | llvm::errs() << "\n*** AST Context Stats:\n"; |
947 | 0 | llvm::errs() << " " << Types.size() << " types total.\n"; |
948 | |
|
949 | 0 | unsigned counts[] = { |
950 | 0 | #define TYPE(Name, Parent) 0, |
951 | 0 | #define ABSTRACT_TYPE(Name, Parent) |
952 | 0 | #include "clang/AST/TypeNodes.inc" |
953 | 0 | 0 // Extra |
954 | 0 | }; |
955 | |
|
956 | 0 | for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
957 | 0 | Type *T = Types[i]; |
958 | 0 | counts[(unsigned)T->getTypeClass()]++; |
959 | 0 | } |
960 | |
|
961 | 0 | unsigned Idx = 0; |
962 | 0 | unsigned TotalBytes = 0; |
963 | 0 | #define TYPE(Name, Parent) \ |
964 | 0 | if (counts[Idx]) \ |
965 | 0 | llvm::errs() << " " << counts[Idx] << " " << #Name \ |
966 | 0 | << " types, " << sizeof(Name##Type) << " each " \ |
967 | 0 | << "(" << counts[Idx] * sizeof(Name##Type) \ |
968 | 0 | << " bytes)\n"; \ |
969 | 0 | TotalBytes += counts[Idx] * sizeof(Name##Type); \ |
970 | 0 | ++Idx; |
971 | 0 | #define ABSTRACT_TYPE(Name, Parent) |
972 | 0 | #include "clang/AST/TypeNodes.inc" |
973 | |
|
974 | 0 | llvm::errs() << "Total bytes = " << TotalBytes << "\n"; |
975 | | |
976 | | // Implicit special member functions. |
977 | 0 | llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" |
978 | 0 | << NumImplicitDefaultConstructors |
979 | 0 | << " implicit default constructors created\n"; |
980 | 0 | llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" |
981 | 0 | << NumImplicitCopyConstructors |
982 | 0 | << " implicit copy constructors created\n"; |
983 | 0 | if (getLangOpts().CPlusPlus) |
984 | 0 | llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" |
985 | 0 | << NumImplicitMoveConstructors |
986 | 0 | << " implicit move constructors created\n"; |
987 | 0 | llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" |
988 | 0 | << NumImplicitCopyAssignmentOperators |
989 | 0 | << " implicit copy assignment operators created\n"; |
990 | 0 | if (getLangOpts().CPlusPlus) |
991 | 0 | llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" |
992 | 0 | << NumImplicitMoveAssignmentOperators |
993 | 0 | << " implicit move assignment operators created\n"; |
994 | 0 | llvm::errs() << NumImplicitDestructorsDeclared << "/" |
995 | 0 | << NumImplicitDestructors |
996 | 0 | << " implicit destructors created\n"; |
997 | |
|
998 | 0 | if (ExternalSource) { |
999 | 0 | llvm::errs() << "\n"; |
1000 | 0 | ExternalSource->PrintStats(); |
1001 | 0 | } |
1002 | |
|
1003 | 0 | BumpAlloc.PrintStats(); |
1004 | 0 | } |
1005 | | |
1006 | | void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, |
1007 | 0 | bool NotifyListeners) { |
1008 | 0 | if (NotifyListeners) |
1009 | 0 | if (auto *Listener = getASTMutationListener()) |
1010 | 0 | Listener->RedefinedHiddenDefinition(ND, M); |
1011 | |
|
1012 | 0 | MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M); |
1013 | 0 | } |
1014 | | |
1015 | 0 | void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) { |
1016 | 0 | auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl())); |
1017 | 0 | if (It == MergedDefModules.end()) |
1018 | 0 | return; |
1019 | | |
1020 | 0 | auto &Merged = It->second; |
1021 | 0 | llvm::DenseSet<Module*> Found; |
1022 | 0 | for (Module *&M : Merged) |
1023 | 0 | if (!Found.insert(M).second) |
1024 | 0 | M = nullptr; |
1025 | 0 | llvm::erase(Merged, nullptr); |
1026 | 0 | } |
1027 | | |
1028 | | ArrayRef<Module *> |
1029 | 0 | ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) { |
1030 | 0 | auto MergedIt = |
1031 | 0 | MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl())); |
1032 | 0 | if (MergedIt == MergedDefModules.end()) |
1033 | 0 | return std::nullopt; |
1034 | 0 | return MergedIt->second; |
1035 | 0 | } |
1036 | | |
1037 | 0 | void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { |
1038 | 0 | if (LazyInitializers.empty()) |
1039 | 0 | return; |
1040 | | |
1041 | 0 | auto *Source = Ctx.getExternalSource(); |
1042 | 0 | assert(Source && "lazy initializers but no external source"); |
1043 | | |
1044 | 0 | auto LazyInits = std::move(LazyInitializers); |
1045 | 0 | LazyInitializers.clear(); |
1046 | |
|
1047 | 0 | for (auto ID : LazyInits) |
1048 | 0 | Initializers.push_back(Source->GetExternalDecl(ID)); |
1049 | |
|
1050 | 0 | assert(LazyInitializers.empty() && |
1051 | 0 | "GetExternalDecl for lazy module initializer added more inits"); |
1052 | 0 | } |
1053 | | |
1054 | 0 | void ASTContext::addModuleInitializer(Module *M, Decl *D) { |
1055 | | // One special case: if we add a module initializer that imports another |
1056 | | // module, and that module's only initializer is an ImportDecl, simplify. |
1057 | 0 | if (const auto *ID = dyn_cast<ImportDecl>(D)) { |
1058 | 0 | auto It = ModuleInitializers.find(ID->getImportedModule()); |
1059 | | |
1060 | | // Maybe the ImportDecl does nothing at all. (Common case.) |
1061 | 0 | if (It == ModuleInitializers.end()) |
1062 | 0 | return; |
1063 | | |
1064 | | // Maybe the ImportDecl only imports another ImportDecl. |
1065 | 0 | auto &Imported = *It->second; |
1066 | 0 | if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { |
1067 | 0 | Imported.resolve(*this); |
1068 | 0 | auto *OnlyDecl = Imported.Initializers.front(); |
1069 | 0 | if (isa<ImportDecl>(OnlyDecl)) |
1070 | 0 | D = OnlyDecl; |
1071 | 0 | } |
1072 | 0 | } |
1073 | | |
1074 | 0 | auto *&Inits = ModuleInitializers[M]; |
1075 | 0 | if (!Inits) |
1076 | 0 | Inits = new (*this) PerModuleInitializers; |
1077 | 0 | Inits->Initializers.push_back(D); |
1078 | 0 | } |
1079 | | |
1080 | 0 | void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) { |
1081 | 0 | auto *&Inits = ModuleInitializers[M]; |
1082 | 0 | if (!Inits) |
1083 | 0 | Inits = new (*this) PerModuleInitializers; |
1084 | 0 | Inits->LazyInitializers.insert(Inits->LazyInitializers.end(), |
1085 | 0 | IDs.begin(), IDs.end()); |
1086 | 0 | } |
1087 | | |
1088 | 0 | ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { |
1089 | 0 | auto It = ModuleInitializers.find(M); |
1090 | 0 | if (It == ModuleInitializers.end()) |
1091 | 0 | return std::nullopt; |
1092 | | |
1093 | 0 | auto *Inits = It->second; |
1094 | 0 | Inits->resolve(*this); |
1095 | 0 | return Inits->Initializers; |
1096 | 0 | } |
1097 | | |
1098 | 0 | void ASTContext::setCurrentNamedModule(Module *M) { |
1099 | 0 | assert(M->isNamedModule()); |
1100 | 0 | assert(!CurrentCXXNamedModule && |
1101 | 0 | "We should set named module for ASTContext for only once"); |
1102 | 0 | CurrentCXXNamedModule = M; |
1103 | 0 | } |
1104 | | |
1105 | 291 | ExternCContextDecl *ASTContext::getExternCContextDecl() const { |
1106 | 291 | if (!ExternCContext) |
1107 | 18 | ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); |
1108 | | |
1109 | 291 | return ExternCContext; |
1110 | 291 | } |
1111 | | |
1112 | | BuiltinTemplateDecl * |
1113 | | ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, |
1114 | 0 | const IdentifierInfo *II) const { |
1115 | 0 | auto *BuiltinTemplate = |
1116 | 0 | BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK); |
1117 | 0 | BuiltinTemplate->setImplicit(); |
1118 | 0 | getTranslationUnitDecl()->addDecl(BuiltinTemplate); |
1119 | |
|
1120 | 0 | return BuiltinTemplate; |
1121 | 0 | } |
1122 | | |
1123 | | BuiltinTemplateDecl * |
1124 | 0 | ASTContext::getMakeIntegerSeqDecl() const { |
1125 | 0 | if (!MakeIntegerSeqDecl) |
1126 | 0 | MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq, |
1127 | 0 | getMakeIntegerSeqName()); |
1128 | 0 | return MakeIntegerSeqDecl; |
1129 | 0 | } |
1130 | | |
1131 | | BuiltinTemplateDecl * |
1132 | 0 | ASTContext::getTypePackElementDecl() const { |
1133 | 0 | if (!TypePackElementDecl) |
1134 | 0 | TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element, |
1135 | 0 | getTypePackElementName()); |
1136 | 0 | return TypePackElementDecl; |
1137 | 0 | } |
1138 | | |
1139 | | RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, |
1140 | 92 | RecordDecl::TagKind TK) const { |
1141 | 92 | SourceLocation Loc; |
1142 | 92 | RecordDecl *NewDecl; |
1143 | 92 | if (getLangOpts().CPlusPlus) |
1144 | 46 | NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, |
1145 | 46 | Loc, &Idents.get(Name)); |
1146 | 46 | else |
1147 | 46 | NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, |
1148 | 46 | &Idents.get(Name)); |
1149 | 92 | NewDecl->setImplicit(); |
1150 | 92 | NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( |
1151 | 92 | const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); |
1152 | 92 | return NewDecl; |
1153 | 92 | } |
1154 | | |
1155 | | TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, |
1156 | 299 | StringRef Name) const { |
1157 | 299 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
1158 | 299 | TypedefDecl *NewDecl = TypedefDecl::Create( |
1159 | 299 | const_cast<ASTContext &>(*this), getTranslationUnitDecl(), |
1160 | 299 | SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); |
1161 | 299 | NewDecl->setImplicit(); |
1162 | 299 | return NewDecl; |
1163 | 299 | } |
1164 | | |
1165 | 46 | TypedefDecl *ASTContext::getInt128Decl() const { |
1166 | 46 | if (!Int128Decl) |
1167 | 46 | Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); |
1168 | 46 | return Int128Decl; |
1169 | 46 | } |
1170 | | |
1171 | 46 | TypedefDecl *ASTContext::getUInt128Decl() const { |
1172 | 46 | if (!UInt128Decl) |
1173 | 46 | UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); |
1174 | 46 | return UInt128Decl; |
1175 | 46 | } |
1176 | | |
1177 | 2.80k | void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { |
1178 | 2.80k | auto *Ty = new (*this, alignof(BuiltinType)) BuiltinType(K); |
1179 | 2.80k | R = CanQualType::CreateUnsafe(QualType(Ty, 0)); |
1180 | 2.80k | Types.push_back(Ty); |
1181 | 2.80k | } |
1182 | | |
1183 | | void ASTContext::InitBuiltinTypes(const TargetInfo &Target, |
1184 | 46 | const TargetInfo *AuxTarget) { |
1185 | 46 | assert((!this->Target || this->Target == &Target) && |
1186 | 46 | "Incorrect target reinitialization"); |
1187 | 0 | assert(VoidTy.isNull() && "Context reinitialized?"); |
1188 | | |
1189 | 0 | this->Target = &Target; |
1190 | 46 | this->AuxTarget = AuxTarget; |
1191 | | |
1192 | 46 | ABI.reset(createCXXABI(Target)); |
1193 | 46 | AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); |
1194 | | |
1195 | | // C99 6.2.5p19. |
1196 | 46 | InitBuiltinType(VoidTy, BuiltinType::Void); |
1197 | | |
1198 | | // C99 6.2.5p2. |
1199 | 46 | InitBuiltinType(BoolTy, BuiltinType::Bool); |
1200 | | // C99 6.2.5p3. |
1201 | 46 | if (LangOpts.CharIsSigned) |
1202 | 46 | InitBuiltinType(CharTy, BuiltinType::Char_S); |
1203 | 0 | else |
1204 | 0 | InitBuiltinType(CharTy, BuiltinType::Char_U); |
1205 | | // C99 6.2.5p4. |
1206 | 46 | InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
1207 | 46 | InitBuiltinType(ShortTy, BuiltinType::Short); |
1208 | 46 | InitBuiltinType(IntTy, BuiltinType::Int); |
1209 | 46 | InitBuiltinType(LongTy, BuiltinType::Long); |
1210 | 46 | InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
1211 | | |
1212 | | // C99 6.2.5p6. |
1213 | 46 | InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
1214 | 46 | InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
1215 | 46 | InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
1216 | 46 | InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
1217 | 46 | InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
1218 | | |
1219 | | // C99 6.2.5p10. |
1220 | 46 | InitBuiltinType(FloatTy, BuiltinType::Float); |
1221 | 46 | InitBuiltinType(DoubleTy, BuiltinType::Double); |
1222 | 46 | InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
1223 | | |
1224 | | // GNU extension, __float128 for IEEE quadruple precision |
1225 | 46 | InitBuiltinType(Float128Ty, BuiltinType::Float128); |
1226 | | |
1227 | | // __ibm128 for IBM extended precision |
1228 | 46 | InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128); |
1229 | | |
1230 | | // C11 extension ISO/IEC TS 18661-3 |
1231 | 46 | InitBuiltinType(Float16Ty, BuiltinType::Float16); |
1232 | | |
1233 | | // ISO/IEC JTC1 SC22 WG14 N1169 Extension |
1234 | 46 | InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum); |
1235 | 46 | InitBuiltinType(AccumTy, BuiltinType::Accum); |
1236 | 46 | InitBuiltinType(LongAccumTy, BuiltinType::LongAccum); |
1237 | 46 | InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum); |
1238 | 46 | InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum); |
1239 | 46 | InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum); |
1240 | 46 | InitBuiltinType(ShortFractTy, BuiltinType::ShortFract); |
1241 | 46 | InitBuiltinType(FractTy, BuiltinType::Fract); |
1242 | 46 | InitBuiltinType(LongFractTy, BuiltinType::LongFract); |
1243 | 46 | InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract); |
1244 | 46 | InitBuiltinType(UnsignedFractTy, BuiltinType::UFract); |
1245 | 46 | InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract); |
1246 | 46 | InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum); |
1247 | 46 | InitBuiltinType(SatAccumTy, BuiltinType::SatAccum); |
1248 | 46 | InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum); |
1249 | 46 | InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum); |
1250 | 46 | InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum); |
1251 | 46 | InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum); |
1252 | 46 | InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract); |
1253 | 46 | InitBuiltinType(SatFractTy, BuiltinType::SatFract); |
1254 | 46 | InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract); |
1255 | 46 | InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract); |
1256 | 46 | InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract); |
1257 | 46 | InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract); |
1258 | | |
1259 | | // GNU extension, 128-bit integers. |
1260 | 46 | InitBuiltinType(Int128Ty, BuiltinType::Int128); |
1261 | 46 | InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); |
1262 | | |
1263 | | // C++ 3.9.1p5 |
1264 | 46 | if (TargetInfo::isTypeSigned(Target.getWCharType())) |
1265 | 46 | InitBuiltinType(WCharTy, BuiltinType::WChar_S); |
1266 | 0 | else // -fshort-wchar makes wchar_t be unsigned. |
1267 | 0 | InitBuiltinType(WCharTy, BuiltinType::WChar_U); |
1268 | 46 | if (LangOpts.CPlusPlus && LangOpts.WChar) |
1269 | 23 | WideCharTy = WCharTy; |
1270 | 23 | else { |
1271 | | // C99 (or C++ using -fno-wchar). |
1272 | 23 | WideCharTy = getFromTargetType(Target.getWCharType()); |
1273 | 23 | } |
1274 | | |
1275 | 46 | WIntTy = getFromTargetType(Target.getWIntType()); |
1276 | | |
1277 | | // C++20 (proposed) |
1278 | 46 | InitBuiltinType(Char8Ty, BuiltinType::Char8); |
1279 | | |
1280 | 46 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
1281 | 23 | InitBuiltinType(Char16Ty, BuiltinType::Char16); |
1282 | 23 | else // C99 |
1283 | 23 | Char16Ty = getFromTargetType(Target.getChar16Type()); |
1284 | | |
1285 | 46 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
1286 | 23 | InitBuiltinType(Char32Ty, BuiltinType::Char32); |
1287 | 23 | else // C99 |
1288 | 23 | Char32Ty = getFromTargetType(Target.getChar32Type()); |
1289 | | |
1290 | | // Placeholder type for type-dependent expressions whose type is |
1291 | | // completely unknown. No code should ever check a type against |
1292 | | // DependentTy and users should never see it; however, it is here to |
1293 | | // help diagnose failures to properly check for type-dependent |
1294 | | // expressions. |
1295 | 46 | InitBuiltinType(DependentTy, BuiltinType::Dependent); |
1296 | | |
1297 | | // Placeholder type for functions. |
1298 | 46 | InitBuiltinType(OverloadTy, BuiltinType::Overload); |
1299 | | |
1300 | | // Placeholder type for bound members. |
1301 | 46 | InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); |
1302 | | |
1303 | | // Placeholder type for pseudo-objects. |
1304 | 46 | InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); |
1305 | | |
1306 | | // "any" type; useful for debugger-like clients. |
1307 | 46 | InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); |
1308 | | |
1309 | | // Placeholder type for unbridged ARC casts. |
1310 | 46 | InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); |
1311 | | |
1312 | | // Placeholder type for builtin functions. |
1313 | 46 | InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); |
1314 | | |
1315 | | // Placeholder type for OMP array sections. |
1316 | 46 | if (LangOpts.OpenMP) { |
1317 | 0 | InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection); |
1318 | 0 | InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping); |
1319 | 0 | InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator); |
1320 | 0 | } |
1321 | | // Placeholder type for OpenACC array sections. |
1322 | 46 | if (LangOpts.OpenACC) { |
1323 | | // FIXME: Once we implement OpenACC array sections in Sema, this will either |
1324 | | // be combined with the OpenMP type, or given its own type. In the meantime, |
1325 | | // just use the OpenMP type so that parsing can work. |
1326 | 0 | InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection); |
1327 | 0 | } |
1328 | 46 | if (LangOpts.MatrixTypes) |
1329 | 0 | InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx); |
1330 | | |
1331 | | // Builtin types for 'id', 'Class', and 'SEL'. |
1332 | 46 | InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); |
1333 | 46 | InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); |
1334 | 46 | InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); |
1335 | | |
1336 | 46 | if (LangOpts.OpenCL) { |
1337 | 0 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
1338 | 0 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1339 | 0 | #include "clang/Basic/OpenCLImageTypes.def" |
1340 | |
|
1341 | 0 | InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); |
1342 | 0 | InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); |
1343 | 0 | InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); |
1344 | 0 | InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); |
1345 | 0 | InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); |
1346 | |
|
1347 | 0 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
1348 | 0 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
1349 | 0 | #include "clang/Basic/OpenCLExtensionTypes.def" |
1350 | 0 | } |
1351 | | |
1352 | 46 | if (Target.hasAArch64SVETypes()) { |
1353 | 0 | #define SVE_TYPE(Name, Id, SingletonId) \ |
1354 | 0 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1355 | 0 | #include "clang/Basic/AArch64SVEACLETypes.def" |
1356 | 0 | } |
1357 | | |
1358 | 46 | if (Target.getTriple().isPPC64()) { |
1359 | 0 | #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ |
1360 | 0 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
1361 | 0 | #include "clang/Basic/PPCTypes.def" |
1362 | 0 | #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ |
1363 | 0 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
1364 | 0 | #include "clang/Basic/PPCTypes.def" |
1365 | 0 | } |
1366 | | |
1367 | 46 | if (Target.hasRISCVVTypes()) { |
1368 | 0 | #define RVV_TYPE(Name, Id, SingletonId) \ |
1369 | 0 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1370 | 0 | #include "clang/Basic/RISCVVTypes.def" |
1371 | 0 | } |
1372 | | |
1373 | 46 | if (Target.getTriple().isWasm() && Target.hasFeature("reference-types")) { |
1374 | 0 | #define WASM_TYPE(Name, Id, SingletonId) \ |
1375 | 0 | InitBuiltinType(SingletonId, BuiltinType::Id); |
1376 | 0 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
1377 | 0 | } |
1378 | | |
1379 | | // Builtin type for __objc_yes and __objc_no |
1380 | 46 | ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? |
1381 | 46 | SignedCharTy : BoolTy); |
1382 | | |
1383 | 46 | ObjCConstantStringType = QualType(); |
1384 | | |
1385 | 46 | ObjCSuperType = QualType(); |
1386 | | |
1387 | | // void * type |
1388 | 46 | if (LangOpts.OpenCLGenericAddressSpace) { |
1389 | 0 | auto Q = VoidTy.getQualifiers(); |
1390 | 0 | Q.setAddressSpace(LangAS::opencl_generic); |
1391 | 0 | VoidPtrTy = getPointerType(getCanonicalType( |
1392 | 0 | getQualifiedType(VoidTy.getUnqualifiedType(), Q))); |
1393 | 46 | } else { |
1394 | 46 | VoidPtrTy = getPointerType(VoidTy); |
1395 | 46 | } |
1396 | | |
1397 | | // nullptr type (C++0x 2.14.7) |
1398 | 46 | InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); |
1399 | | |
1400 | | // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 |
1401 | 46 | InitBuiltinType(HalfTy, BuiltinType::Half); |
1402 | | |
1403 | 46 | InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16); |
1404 | | |
1405 | | // Builtin type used to help define __builtin_va_list. |
1406 | 46 | VaListTagDecl = nullptr; |
1407 | | |
1408 | | // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls. |
1409 | 46 | if (LangOpts.MicrosoftExt || LangOpts.Borland) { |
1410 | 0 | MSGuidTagDecl = buildImplicitRecord("_GUID"); |
1411 | 0 | getTranslationUnitDecl()->addDecl(MSGuidTagDecl); |
1412 | 0 | } |
1413 | 46 | } |
1414 | | |
1415 | 71 | DiagnosticsEngine &ASTContext::getDiagnostics() const { |
1416 | 71 | return SourceMgr.getDiagnostics(); |
1417 | 71 | } |
1418 | | |
1419 | 92 | AttrVec& ASTContext::getDeclAttrs(const Decl *D) { |
1420 | 92 | AttrVec *&Result = DeclAttrs[D]; |
1421 | 92 | if (!Result) { |
1422 | 92 | void *Mem = Allocate(sizeof(AttrVec)); |
1423 | 92 | Result = new (Mem) AttrVec; |
1424 | 92 | } |
1425 | | |
1426 | 92 | return *Result; |
1427 | 92 | } |
1428 | | |
1429 | | /// Erase the attributes corresponding to the given declaration. |
1430 | 0 | void ASTContext::eraseDeclAttrs(const Decl *D) { |
1431 | 0 | llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); |
1432 | 0 | if (Pos != DeclAttrs.end()) { |
1433 | 0 | Pos->second->~AttrVec(); |
1434 | 0 | DeclAttrs.erase(Pos); |
1435 | 0 | } |
1436 | 0 | } |
1437 | | |
1438 | | // FIXME: Remove ? |
1439 | | MemberSpecializationInfo * |
1440 | 0 | ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { |
1441 | 0 | assert(Var->isStaticDataMember() && "Not a static data member"); |
1442 | 0 | return getTemplateOrSpecializationInfo(Var) |
1443 | 0 | .dyn_cast<MemberSpecializationInfo *>(); |
1444 | 0 | } |
1445 | | |
1446 | | ASTContext::TemplateOrSpecializationInfo |
1447 | 1.47k | ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { |
1448 | 1.47k | llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = |
1449 | 1.47k | TemplateOrInstantiation.find(Var); |
1450 | 1.47k | if (Pos == TemplateOrInstantiation.end()) |
1451 | 1.47k | return {}; |
1452 | | |
1453 | 0 | return Pos->second; |
1454 | 1.47k | } |
1455 | | |
1456 | | void |
1457 | | ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, |
1458 | | TemplateSpecializationKind TSK, |
1459 | 0 | SourceLocation PointOfInstantiation) { |
1460 | 0 | assert(Inst->isStaticDataMember() && "Not a static data member"); |
1461 | 0 | assert(Tmpl->isStaticDataMember() && "Not a static data member"); |
1462 | 0 | setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( |
1463 | 0 | Tmpl, TSK, PointOfInstantiation)); |
1464 | 0 | } |
1465 | | |
1466 | | void |
1467 | | ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, |
1468 | 0 | TemplateOrSpecializationInfo TSI) { |
1469 | 0 | assert(!TemplateOrInstantiation[Inst] && |
1470 | 0 | "Already noted what the variable was instantiated from"); |
1471 | 0 | TemplateOrInstantiation[Inst] = TSI; |
1472 | 0 | } |
1473 | | |
1474 | | NamedDecl * |
1475 | 0 | ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { |
1476 | 0 | return InstantiatedFromUsingDecl.lookup(UUD); |
1477 | 0 | } |
1478 | | |
1479 | | void |
1480 | 0 | ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { |
1481 | 0 | assert((isa<UsingDecl>(Pattern) || |
1482 | 0 | isa<UnresolvedUsingValueDecl>(Pattern) || |
1483 | 0 | isa<UnresolvedUsingTypenameDecl>(Pattern)) && |
1484 | 0 | "pattern decl is not a using decl"); |
1485 | 0 | assert((isa<UsingDecl>(Inst) || |
1486 | 0 | isa<UnresolvedUsingValueDecl>(Inst) || |
1487 | 0 | isa<UnresolvedUsingTypenameDecl>(Inst)) && |
1488 | 0 | "instantiation did not produce a using decl"); |
1489 | 0 | assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); |
1490 | 0 | InstantiatedFromUsingDecl[Inst] = Pattern; |
1491 | 0 | } |
1492 | | |
1493 | | UsingEnumDecl * |
1494 | 0 | ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) { |
1495 | 0 | return InstantiatedFromUsingEnumDecl.lookup(UUD); |
1496 | 0 | } |
1497 | | |
1498 | | void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst, |
1499 | 0 | UsingEnumDecl *Pattern) { |
1500 | 0 | assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists"); |
1501 | 0 | InstantiatedFromUsingEnumDecl[Inst] = Pattern; |
1502 | 0 | } |
1503 | | |
1504 | | UsingShadowDecl * |
1505 | 0 | ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { |
1506 | 0 | return InstantiatedFromUsingShadowDecl.lookup(Inst); |
1507 | 0 | } |
1508 | | |
1509 | | void |
1510 | | ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, |
1511 | 0 | UsingShadowDecl *Pattern) { |
1512 | 0 | assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); |
1513 | 0 | InstantiatedFromUsingShadowDecl[Inst] = Pattern; |
1514 | 0 | } |
1515 | | |
1516 | 0 | FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { |
1517 | 0 | return InstantiatedFromUnnamedFieldDecl.lookup(Field); |
1518 | 0 | } |
1519 | | |
1520 | | void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, |
1521 | 0 | FieldDecl *Tmpl) { |
1522 | 0 | assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed"); |
1523 | 0 | assert(!Tmpl->getDeclName() && "Template field decl is not unnamed"); |
1524 | 0 | assert(!InstantiatedFromUnnamedFieldDecl[Inst] && |
1525 | 0 | "Already noted what unnamed field was instantiated from"); |
1526 | | |
1527 | 0 | InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; |
1528 | 0 | } |
1529 | | |
1530 | | ASTContext::overridden_cxx_method_iterator |
1531 | 0 | ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { |
1532 | 0 | return overridden_methods(Method).begin(); |
1533 | 0 | } |
1534 | | |
1535 | | ASTContext::overridden_cxx_method_iterator |
1536 | 0 | ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { |
1537 | 0 | return overridden_methods(Method).end(); |
1538 | 0 | } |
1539 | | |
1540 | | unsigned |
1541 | 0 | ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { |
1542 | 0 | auto Range = overridden_methods(Method); |
1543 | 0 | return Range.end() - Range.begin(); |
1544 | 0 | } |
1545 | | |
1546 | | ASTContext::overridden_method_range |
1547 | 0 | ASTContext::overridden_methods(const CXXMethodDecl *Method) const { |
1548 | 0 | llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = |
1549 | 0 | OverriddenMethods.find(Method->getCanonicalDecl()); |
1550 | 0 | if (Pos == OverriddenMethods.end()) |
1551 | 0 | return overridden_method_range(nullptr, nullptr); |
1552 | 0 | return overridden_method_range(Pos->second.begin(), Pos->second.end()); |
1553 | 0 | } |
1554 | | |
1555 | | void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, |
1556 | 0 | const CXXMethodDecl *Overridden) { |
1557 | 0 | assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); |
1558 | 0 | OverriddenMethods[Method].push_back(Overridden); |
1559 | 0 | } |
1560 | | |
1561 | | void ASTContext::getOverriddenMethods( |
1562 | | const NamedDecl *D, |
1563 | 0 | SmallVectorImpl<const NamedDecl *> &Overridden) const { |
1564 | 0 | assert(D); |
1565 | | |
1566 | 0 | if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { |
1567 | 0 | Overridden.append(overridden_methods_begin(CXXMethod), |
1568 | 0 | overridden_methods_end(CXXMethod)); |
1569 | 0 | return; |
1570 | 0 | } |
1571 | | |
1572 | 0 | const auto *Method = dyn_cast<ObjCMethodDecl>(D); |
1573 | 0 | if (!Method) |
1574 | 0 | return; |
1575 | | |
1576 | 0 | SmallVector<const ObjCMethodDecl *, 8> OverDecls; |
1577 | 0 | Method->getOverriddenMethods(OverDecls); |
1578 | 0 | Overridden.append(OverDecls.begin(), OverDecls.end()); |
1579 | 0 | } |
1580 | | |
1581 | 0 | void ASTContext::addedLocalImportDecl(ImportDecl *Import) { |
1582 | 0 | assert(!Import->getNextLocalImport() && |
1583 | 0 | "Import declaration already in the chain"); |
1584 | 0 | assert(!Import->isFromASTFile() && "Non-local import declaration"); |
1585 | 0 | if (!FirstLocalImport) { |
1586 | 0 | FirstLocalImport = Import; |
1587 | 0 | LastLocalImport = Import; |
1588 | 0 | return; |
1589 | 0 | } |
1590 | | |
1591 | 0 | LastLocalImport->setNextLocalImport(Import); |
1592 | 0 | LastLocalImport = Import; |
1593 | 0 | } |
1594 | | |
1595 | | //===----------------------------------------------------------------------===// |
1596 | | // Type Sizing and Analysis |
1597 | | //===----------------------------------------------------------------------===// |
1598 | | |
1599 | | /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified |
1600 | | /// scalar floating point type. |
1601 | 1 | const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { |
1602 | 1 | switch (T->castAs<BuiltinType>()->getKind()) { |
1603 | 0 | default: |
1604 | 0 | llvm_unreachable("Not a floating point type!"); |
1605 | 0 | case BuiltinType::BFloat16: |
1606 | 0 | return Target->getBFloat16Format(); |
1607 | 0 | case BuiltinType::Float16: |
1608 | 0 | return Target->getHalfFormat(); |
1609 | 0 | case BuiltinType::Half: |
1610 | | // For HLSL, when the native half type is disabled, half will be treat as |
1611 | | // float. |
1612 | 0 | if (getLangOpts().HLSL) |
1613 | 0 | if (getLangOpts().NativeHalfType) |
1614 | 0 | return Target->getHalfFormat(); |
1615 | 0 | else |
1616 | 0 | return Target->getFloatFormat(); |
1617 | 0 | else |
1618 | 0 | return Target->getHalfFormat(); |
1619 | 0 | case BuiltinType::Float: return Target->getFloatFormat(); |
1620 | 1 | case BuiltinType::Double: return Target->getDoubleFormat(); |
1621 | 0 | case BuiltinType::Ibm128: |
1622 | 0 | return Target->getIbm128Format(); |
1623 | 0 | case BuiltinType::LongDouble: |
1624 | 0 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) |
1625 | 0 | return AuxTarget->getLongDoubleFormat(); |
1626 | 0 | return Target->getLongDoubleFormat(); |
1627 | 0 | case BuiltinType::Float128: |
1628 | 0 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) |
1629 | 0 | return AuxTarget->getFloat128Format(); |
1630 | 0 | return Target->getFloat128Format(); |
1631 | 1 | } |
1632 | 1 | } |
1633 | | |
1634 | 0 | CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { |
1635 | 0 | unsigned Align = Target->getCharWidth(); |
1636 | |
|
1637 | 0 | const unsigned AlignFromAttr = D->getMaxAlignment(); |
1638 | 0 | if (AlignFromAttr) |
1639 | 0 | Align = AlignFromAttr; |
1640 | | |
1641 | | // __attribute__((aligned)) can increase or decrease alignment |
1642 | | // *except* on a struct or struct member, where it only increases |
1643 | | // alignment unless 'packed' is also specified. |
1644 | | // |
1645 | | // It is an error for alignas to decrease alignment, so we can |
1646 | | // ignore that possibility; Sema should diagnose it. |
1647 | 0 | bool UseAlignAttrOnly; |
1648 | 0 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) |
1649 | 0 | UseAlignAttrOnly = |
1650 | 0 | FD->hasAttr<PackedAttr>() || FD->getParent()->hasAttr<PackedAttr>(); |
1651 | 0 | else |
1652 | 0 | UseAlignAttrOnly = AlignFromAttr != 0; |
1653 | | // If we're using the align attribute only, just ignore everything |
1654 | | // else about the declaration and its type. |
1655 | 0 | if (UseAlignAttrOnly) { |
1656 | | // do nothing |
1657 | 0 | } else if (const auto *VD = dyn_cast<ValueDecl>(D)) { |
1658 | 0 | QualType T = VD->getType(); |
1659 | 0 | if (const auto *RT = T->getAs<ReferenceType>()) { |
1660 | 0 | if (ForAlignof) |
1661 | 0 | T = RT->getPointeeType(); |
1662 | 0 | else |
1663 | 0 | T = getPointerType(RT->getPointeeType()); |
1664 | 0 | } |
1665 | 0 | QualType BaseT = getBaseElementType(T); |
1666 | 0 | if (T->isFunctionType()) |
1667 | 0 | Align = getTypeInfoImpl(T.getTypePtr()).Align; |
1668 | 0 | else if (!BaseT->isIncompleteType()) { |
1669 | | // Adjust alignments of declarations with array type by the |
1670 | | // large-array alignment on the target. |
1671 | 0 | if (const ArrayType *arrayType = getAsArrayType(T)) { |
1672 | 0 | unsigned MinWidth = Target->getLargeArrayMinWidth(); |
1673 | 0 | if (!ForAlignof && MinWidth) { |
1674 | 0 | if (isa<VariableArrayType>(arrayType)) |
1675 | 0 | Align = std::max(Align, Target->getLargeArrayAlign()); |
1676 | 0 | else if (isa<ConstantArrayType>(arrayType) && |
1677 | 0 | MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) |
1678 | 0 | Align = std::max(Align, Target->getLargeArrayAlign()); |
1679 | 0 | } |
1680 | 0 | } |
1681 | 0 | Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); |
1682 | 0 | if (BaseT.getQualifiers().hasUnaligned()) |
1683 | 0 | Align = Target->getCharWidth(); |
1684 | 0 | } |
1685 | | |
1686 | | // Ensure miminum alignment for global variables. |
1687 | 0 | if (const auto *VD = dyn_cast<VarDecl>(D)) |
1688 | 0 | if (VD->hasGlobalStorage() && !ForAlignof) { |
1689 | 0 | uint64_t TypeSize = |
1690 | 0 | !BaseT->isIncompleteType() ? getTypeSize(T.getTypePtr()) : 0; |
1691 | 0 | Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize)); |
1692 | 0 | } |
1693 | | |
1694 | | // Fields can be subject to extra alignment constraints, like if |
1695 | | // the field is packed, the struct is packed, or the struct has a |
1696 | | // a max-field-alignment constraint (#pragma pack). So calculate |
1697 | | // the actual alignment of the field within the struct, and then |
1698 | | // (as we're expected to) constrain that by the alignment of the type. |
1699 | 0 | if (const auto *Field = dyn_cast<FieldDecl>(VD)) { |
1700 | 0 | const RecordDecl *Parent = Field->getParent(); |
1701 | | // We can only produce a sensible answer if the record is valid. |
1702 | 0 | if (!Parent->isInvalidDecl()) { |
1703 | 0 | const ASTRecordLayout &Layout = getASTRecordLayout(Parent); |
1704 | | |
1705 | | // Start with the record's overall alignment. |
1706 | 0 | unsigned FieldAlign = toBits(Layout.getAlignment()); |
1707 | | |
1708 | | // Use the GCD of that and the offset within the record. |
1709 | 0 | uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); |
1710 | 0 | if (Offset > 0) { |
1711 | | // Alignment is always a power of 2, so the GCD will be a power of 2, |
1712 | | // which means we get to do this crazy thing instead of Euclid's. |
1713 | 0 | uint64_t LowBitOfOffset = Offset & (~Offset + 1); |
1714 | 0 | if (LowBitOfOffset < FieldAlign) |
1715 | 0 | FieldAlign = static_cast<unsigned>(LowBitOfOffset); |
1716 | 0 | } |
1717 | |
|
1718 | 0 | Align = std::min(Align, FieldAlign); |
1719 | 0 | } |
1720 | 0 | } |
1721 | 0 | } |
1722 | | |
1723 | | // Some targets have hard limitation on the maximum requestable alignment in |
1724 | | // aligned attribute for static variables. |
1725 | 0 | const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute(); |
1726 | 0 | const auto *VD = dyn_cast<VarDecl>(D); |
1727 | 0 | if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static) |
1728 | 0 | Align = std::min(Align, MaxAlignedAttr); |
1729 | |
|
1730 | 0 | return toCharUnitsFromBits(Align); |
1731 | 0 | } |
1732 | | |
1733 | 0 | CharUnits ASTContext::getExnObjectAlignment() const { |
1734 | 0 | return toCharUnitsFromBits(Target->getExnObjectAlignment()); |
1735 | 0 | } |
1736 | | |
1737 | | // getTypeInfoDataSizeInChars - Return the size of a type, in |
1738 | | // chars. If the type is a record, its data size is returned. This is |
1739 | | // the size of the memcpy that's performed when assigning this type |
1740 | | // using a trivial copy/move assignment operator. |
1741 | 0 | TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const { |
1742 | 0 | TypeInfoChars Info = getTypeInfoInChars(T); |
1743 | | |
1744 | | // In C++, objects can sometimes be allocated into the tail padding |
1745 | | // of a base-class subobject. We decide whether that's possible |
1746 | | // during class layout, so here we can just trust the layout results. |
1747 | 0 | if (getLangOpts().CPlusPlus) { |
1748 | 0 | if (const auto *RT = T->getAs<RecordType>()) { |
1749 | 0 | const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); |
1750 | 0 | Info.Width = layout.getDataSize(); |
1751 | 0 | } |
1752 | 0 | } |
1753 | |
|
1754 | 0 | return Info; |
1755 | 0 | } |
1756 | | |
1757 | | /// getConstantArrayInfoInChars - Performing the computation in CharUnits |
1758 | | /// instead of in bits prevents overflowing the uint64_t for some large arrays. |
1759 | | TypeInfoChars |
1760 | | static getConstantArrayInfoInChars(const ASTContext &Context, |
1761 | 0 | const ConstantArrayType *CAT) { |
1762 | 0 | TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType()); |
1763 | 0 | uint64_t Size = CAT->getSize().getZExtValue(); |
1764 | 0 | assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= |
1765 | 0 | (uint64_t)(-1)/Size) && |
1766 | 0 | "Overflow in array type char size evaluation"); |
1767 | 0 | uint64_t Width = EltInfo.Width.getQuantity() * Size; |
1768 | 0 | unsigned Align = EltInfo.Align.getQuantity(); |
1769 | 0 | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || |
1770 | 0 | Context.getTargetInfo().getPointerWidth(LangAS::Default) == 64) |
1771 | 0 | Width = llvm::alignTo(Width, Align); |
1772 | 0 | return TypeInfoChars(CharUnits::fromQuantity(Width), |
1773 | 0 | CharUnits::fromQuantity(Align), |
1774 | 0 | EltInfo.AlignRequirement); |
1775 | 0 | } |
1776 | | |
1777 | 144 | TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const { |
1778 | 144 | if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) |
1779 | 0 | return getConstantArrayInfoInChars(*this, CAT); |
1780 | 144 | TypeInfo Info = getTypeInfo(T); |
1781 | 144 | return TypeInfoChars(toCharUnitsFromBits(Info.Width), |
1782 | 144 | toCharUnitsFromBits(Info.Align), Info.AlignRequirement); |
1783 | 144 | } |
1784 | | |
1785 | 144 | TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const { |
1786 | 144 | return getTypeInfoInChars(T.getTypePtr()); |
1787 | 144 | } |
1788 | | |
1789 | 5 | bool ASTContext::isPromotableIntegerType(QualType T) const { |
1790 | | // HLSL doesn't promote all small integer types to int, it |
1791 | | // just uses the rank-based promotion rules for all types. |
1792 | 5 | if (getLangOpts().HLSL) |
1793 | 0 | return false; |
1794 | | |
1795 | 5 | if (const auto *BT = T->getAs<BuiltinType>()) |
1796 | 4 | switch (BT->getKind()) { |
1797 | 0 | case BuiltinType::Bool: |
1798 | 0 | case BuiltinType::Char_S: |
1799 | 0 | case BuiltinType::Char_U: |
1800 | 0 | case BuiltinType::SChar: |
1801 | 0 | case BuiltinType::UChar: |
1802 | 0 | case BuiltinType::Short: |
1803 | 0 | case BuiltinType::UShort: |
1804 | 0 | case BuiltinType::WChar_S: |
1805 | 0 | case BuiltinType::WChar_U: |
1806 | 0 | case BuiltinType::Char8: |
1807 | 0 | case BuiltinType::Char16: |
1808 | 0 | case BuiltinType::Char32: |
1809 | 0 | return true; |
1810 | 4 | default: |
1811 | 4 | return false; |
1812 | 4 | } |
1813 | | |
1814 | | // Enumerated types are promotable to their compatible integer types |
1815 | | // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2). |
1816 | 1 | if (const auto *ET = T->getAs<EnumType>()) { |
1817 | 0 | if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() || |
1818 | 0 | ET->getDecl()->isScoped()) |
1819 | 0 | return false; |
1820 | | |
1821 | 0 | return true; |
1822 | 0 | } |
1823 | | |
1824 | 1 | return false; |
1825 | 1 | } |
1826 | | |
1827 | 0 | bool ASTContext::isAlignmentRequired(const Type *T) const { |
1828 | 0 | return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None; |
1829 | 0 | } |
1830 | | |
1831 | 0 | bool ASTContext::isAlignmentRequired(QualType T) const { |
1832 | 0 | return isAlignmentRequired(T.getTypePtr()); |
1833 | 0 | } |
1834 | | |
1835 | | unsigned ASTContext::getTypeAlignIfKnown(QualType T, |
1836 | 0 | bool NeedsPreferredAlignment) const { |
1837 | | // An alignment on a typedef overrides anything else. |
1838 | 0 | if (const auto *TT = T->getAs<TypedefType>()) |
1839 | 0 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
1840 | 0 | return Align; |
1841 | | |
1842 | | // If we have an (array of) complete type, we're done. |
1843 | 0 | T = getBaseElementType(T); |
1844 | 0 | if (!T->isIncompleteType()) |
1845 | 0 | return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T); |
1846 | | |
1847 | | // If we had an array type, its element type might be a typedef |
1848 | | // type with an alignment attribute. |
1849 | 0 | if (const auto *TT = T->getAs<TypedefType>()) |
1850 | 0 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
1851 | 0 | return Align; |
1852 | | |
1853 | | // Otherwise, see if the declaration of the type had an attribute. |
1854 | 0 | if (const auto *TT = T->getAs<TagType>()) |
1855 | 0 | return TT->getDecl()->getMaxAlignment(); |
1856 | | |
1857 | 0 | return 0; |
1858 | 0 | } |
1859 | | |
1860 | 2.35k | TypeInfo ASTContext::getTypeInfo(const Type *T) const { |
1861 | 2.35k | TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); |
1862 | 2.35k | if (I != MemoizedTypeInfo.end()) |
1863 | 2.02k | return I->second; |
1864 | | |
1865 | | // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. |
1866 | 326 | TypeInfo TI = getTypeInfoImpl(T); |
1867 | 326 | MemoizedTypeInfo[T] = TI; |
1868 | 326 | return TI; |
1869 | 2.35k | } |
1870 | | |
1871 | | /// getTypeInfoImpl - Return the size of the specified type, in bits. This |
1872 | | /// method does not work on incomplete types. |
1873 | | /// |
1874 | | /// FIXME: Pointers into different addr spaces could have different sizes and |
1875 | | /// alignment requirements: getPointerInfo should take an AddrSpace, this |
1876 | | /// should take a QualType, &c. |
1877 | 326 | TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { |
1878 | 326 | uint64_t Width = 0; |
1879 | 326 | unsigned Align = 8; |
1880 | 326 | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; |
1881 | 326 | LangAS AS = LangAS::Default; |
1882 | 326 | switch (T->getTypeClass()) { |
1883 | 0 | #define TYPE(Class, Base) |
1884 | 0 | #define ABSTRACT_TYPE(Class, Base) |
1885 | 0 | #define NON_CANONICAL_TYPE(Class, Base) |
1886 | 0 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
1887 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ |
1888 | 0 | case Type::Class: \ |
1889 | 0 | assert(!T->isDependentType() && "should not see dependent types here"); \ |
1890 | 0 | return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); |
1891 | 0 | #include "clang/AST/TypeNodes.inc" |
1892 | 0 | llvm_unreachable("Should not see dependent types"); |
1893 | |
|
1894 | 0 | case Type::FunctionNoProto: |
1895 | 0 | case Type::FunctionProto: |
1896 | | // GCC extension: alignof(function) = 32 bits |
1897 | 0 | Width = 0; |
1898 | 0 | Align = 32; |
1899 | 0 | break; |
1900 | | |
1901 | 0 | case Type::IncompleteArray: |
1902 | 0 | case Type::VariableArray: |
1903 | 0 | case Type::ConstantArray: { |
1904 | | // Model non-constant sized arrays as size zero, but track the alignment. |
1905 | 0 | uint64_t Size = 0; |
1906 | 0 | if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) |
1907 | 0 | Size = CAT->getSize().getZExtValue(); |
1908 | |
|
1909 | 0 | TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType()); |
1910 | 0 | assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && |
1911 | 0 | "Overflow in array type bit size evaluation"); |
1912 | 0 | Width = EltInfo.Width * Size; |
1913 | 0 | Align = EltInfo.Align; |
1914 | 0 | AlignRequirement = EltInfo.AlignRequirement; |
1915 | 0 | if (!getTargetInfo().getCXXABI().isMicrosoft() || |
1916 | 0 | getTargetInfo().getPointerWidth(LangAS::Default) == 64) |
1917 | 0 | Width = llvm::alignTo(Width, Align); |
1918 | 0 | break; |
1919 | 0 | } |
1920 | | |
1921 | 0 | case Type::ExtVector: |
1922 | 0 | case Type::Vector: { |
1923 | 0 | const auto *VT = cast<VectorType>(T); |
1924 | 0 | TypeInfo EltInfo = getTypeInfo(VT->getElementType()); |
1925 | 0 | Width = VT->isExtVectorBoolType() ? VT->getNumElements() |
1926 | 0 | : EltInfo.Width * VT->getNumElements(); |
1927 | | // Enforce at least byte size and alignment. |
1928 | 0 | Width = std::max<unsigned>(8, Width); |
1929 | 0 | Align = std::max<unsigned>(8, Width); |
1930 | | |
1931 | | // If the alignment is not a power of 2, round up to the next power of 2. |
1932 | | // This happens for non-power-of-2 length vectors. |
1933 | 0 | if (Align & (Align-1)) { |
1934 | 0 | Align = llvm::bit_ceil(Align); |
1935 | 0 | Width = llvm::alignTo(Width, Align); |
1936 | 0 | } |
1937 | | // Adjust the alignment based on the target max. |
1938 | 0 | uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); |
1939 | 0 | if (TargetVectorAlign && TargetVectorAlign < Align) |
1940 | 0 | Align = TargetVectorAlign; |
1941 | 0 | if (VT->getVectorKind() == VectorKind::SveFixedLengthData) |
1942 | | // Adjust the alignment for fixed-length SVE vectors. This is important |
1943 | | // for non-power-of-2 vector lengths. |
1944 | 0 | Align = 128; |
1945 | 0 | else if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
1946 | | // Adjust the alignment for fixed-length SVE predicates. |
1947 | 0 | Align = 16; |
1948 | 0 | else if (VT->getVectorKind() == VectorKind::RVVFixedLengthData) |
1949 | | // Adjust the alignment for fixed-length RVV vectors. |
1950 | 0 | Align = std::min<unsigned>(64, Width); |
1951 | 0 | break; |
1952 | 0 | } |
1953 | | |
1954 | 0 | case Type::ConstantMatrix: { |
1955 | 0 | const auto *MT = cast<ConstantMatrixType>(T); |
1956 | 0 | TypeInfo ElementInfo = getTypeInfo(MT->getElementType()); |
1957 | | // The internal layout of a matrix value is implementation defined. |
1958 | | // Initially be ABI compatible with arrays with respect to alignment and |
1959 | | // size. |
1960 | 0 | Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns(); |
1961 | 0 | Align = ElementInfo.Align; |
1962 | 0 | break; |
1963 | 0 | } |
1964 | | |
1965 | 165 | case Type::Builtin: |
1966 | 165 | switch (cast<BuiltinType>(T)->getKind()) { |
1967 | 0 | default: llvm_unreachable("Unknown builtin type!"); |
1968 | 0 | case BuiltinType::Void: |
1969 | | // GCC extension: alignof(void) = 8 bits. |
1970 | 0 | Width = 0; |
1971 | 0 | Align = 8; |
1972 | 0 | break; |
1973 | 0 | case BuiltinType::Bool: |
1974 | 0 | Width = Target->getBoolWidth(); |
1975 | 0 | Align = Target->getBoolAlign(); |
1976 | 0 | break; |
1977 | 46 | case BuiltinType::Char_S: |
1978 | 46 | case BuiltinType::Char_U: |
1979 | 46 | case BuiltinType::UChar: |
1980 | 46 | case BuiltinType::SChar: |
1981 | 46 | case BuiltinType::Char8: |
1982 | 46 | Width = Target->getCharWidth(); |
1983 | 46 | Align = Target->getCharAlign(); |
1984 | 46 | break; |
1985 | 0 | case BuiltinType::WChar_S: |
1986 | 0 | case BuiltinType::WChar_U: |
1987 | 0 | Width = Target->getWCharWidth(); |
1988 | 0 | Align = Target->getWCharAlign(); |
1989 | 0 | break; |
1990 | 0 | case BuiltinType::Char16: |
1991 | 0 | Width = Target->getChar16Width(); |
1992 | 0 | Align = Target->getChar16Align(); |
1993 | 0 | break; |
1994 | 0 | case BuiltinType::Char32: |
1995 | 0 | Width = Target->getChar32Width(); |
1996 | 0 | Align = Target->getChar32Align(); |
1997 | 0 | break; |
1998 | 0 | case BuiltinType::UShort: |
1999 | 23 | case BuiltinType::Short: |
2000 | 23 | Width = Target->getShortWidth(); |
2001 | 23 | Align = Target->getShortAlign(); |
2002 | 23 | break; |
2003 | 0 | case BuiltinType::UInt: |
2004 | 25 | case BuiltinType::Int: |
2005 | 25 | Width = Target->getIntWidth(); |
2006 | 25 | Align = Target->getIntAlign(); |
2007 | 25 | break; |
2008 | 46 | case BuiltinType::ULong: |
2009 | 71 | case BuiltinType::Long: |
2010 | 71 | Width = Target->getLongWidth(); |
2011 | 71 | Align = Target->getLongAlign(); |
2012 | 71 | break; |
2013 | 0 | case BuiltinType::ULongLong: |
2014 | 0 | case BuiltinType::LongLong: |
2015 | 0 | Width = Target->getLongLongWidth(); |
2016 | 0 | Align = Target->getLongLongAlign(); |
2017 | 0 | break; |
2018 | 0 | case BuiltinType::Int128: |
2019 | 0 | case BuiltinType::UInt128: |
2020 | 0 | Width = 128; |
2021 | 0 | Align = Target->getInt128Align(); |
2022 | 0 | break; |
2023 | 0 | case BuiltinType::ShortAccum: |
2024 | 0 | case BuiltinType::UShortAccum: |
2025 | 0 | case BuiltinType::SatShortAccum: |
2026 | 0 | case BuiltinType::SatUShortAccum: |
2027 | 0 | Width = Target->getShortAccumWidth(); |
2028 | 0 | Align = Target->getShortAccumAlign(); |
2029 | 0 | break; |
2030 | 0 | case BuiltinType::Accum: |
2031 | 0 | case BuiltinType::UAccum: |
2032 | 0 | case BuiltinType::SatAccum: |
2033 | 0 | case BuiltinType::SatUAccum: |
2034 | 0 | Width = Target->getAccumWidth(); |
2035 | 0 | Align = Target->getAccumAlign(); |
2036 | 0 | break; |
2037 | 0 | case BuiltinType::LongAccum: |
2038 | 0 | case BuiltinType::ULongAccum: |
2039 | 0 | case BuiltinType::SatLongAccum: |
2040 | 0 | case BuiltinType::SatULongAccum: |
2041 | 0 | Width = Target->getLongAccumWidth(); |
2042 | 0 | Align = Target->getLongAccumAlign(); |
2043 | 0 | break; |
2044 | 0 | case BuiltinType::ShortFract: |
2045 | 0 | case BuiltinType::UShortFract: |
2046 | 0 | case BuiltinType::SatShortFract: |
2047 | 0 | case BuiltinType::SatUShortFract: |
2048 | 0 | Width = Target->getShortFractWidth(); |
2049 | 0 | Align = Target->getShortFractAlign(); |
2050 | 0 | break; |
2051 | 0 | case BuiltinType::Fract: |
2052 | 0 | case BuiltinType::UFract: |
2053 | 0 | case BuiltinType::SatFract: |
2054 | 0 | case BuiltinType::SatUFract: |
2055 | 0 | Width = Target->getFractWidth(); |
2056 | 0 | Align = Target->getFractAlign(); |
2057 | 0 | break; |
2058 | 0 | case BuiltinType::LongFract: |
2059 | 0 | case BuiltinType::ULongFract: |
2060 | 0 | case BuiltinType::SatLongFract: |
2061 | 0 | case BuiltinType::SatULongFract: |
2062 | 0 | Width = Target->getLongFractWidth(); |
2063 | 0 | Align = Target->getLongFractAlign(); |
2064 | 0 | break; |
2065 | 0 | case BuiltinType::BFloat16: |
2066 | 0 | if (Target->hasBFloat16Type()) { |
2067 | 0 | Width = Target->getBFloat16Width(); |
2068 | 0 | Align = Target->getBFloat16Align(); |
2069 | 0 | } else if ((getLangOpts().SYCLIsDevice || |
2070 | 0 | (getLangOpts().OpenMP && |
2071 | 0 | getLangOpts().OpenMPIsTargetDevice)) && |
2072 | 0 | AuxTarget->hasBFloat16Type()) { |
2073 | 0 | Width = AuxTarget->getBFloat16Width(); |
2074 | 0 | Align = AuxTarget->getBFloat16Align(); |
2075 | 0 | } |
2076 | 0 | break; |
2077 | 0 | case BuiltinType::Float16: |
2078 | 0 | case BuiltinType::Half: |
2079 | 0 | if (Target->hasFloat16Type() || !getLangOpts().OpenMP || |
2080 | 0 | !getLangOpts().OpenMPIsTargetDevice) { |
2081 | 0 | Width = Target->getHalfWidth(); |
2082 | 0 | Align = Target->getHalfAlign(); |
2083 | 0 | } else { |
2084 | 0 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
2085 | 0 | "Expected OpenMP device compilation."); |
2086 | 0 | Width = AuxTarget->getHalfWidth(); |
2087 | 0 | Align = AuxTarget->getHalfAlign(); |
2088 | 0 | } |
2089 | 0 | break; |
2090 | 0 | case BuiltinType::Float: |
2091 | 0 | Width = Target->getFloatWidth(); |
2092 | 0 | Align = Target->getFloatAlign(); |
2093 | 0 | break; |
2094 | 0 | case BuiltinType::Double: |
2095 | 0 | Width = Target->getDoubleWidth(); |
2096 | 0 | Align = Target->getDoubleAlign(); |
2097 | 0 | break; |
2098 | 0 | case BuiltinType::Ibm128: |
2099 | 0 | Width = Target->getIbm128Width(); |
2100 | 0 | Align = Target->getIbm128Align(); |
2101 | 0 | break; |
2102 | 0 | case BuiltinType::LongDouble: |
2103 | 0 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
2104 | 0 | (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() || |
2105 | 0 | Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) { |
2106 | 0 | Width = AuxTarget->getLongDoubleWidth(); |
2107 | 0 | Align = AuxTarget->getLongDoubleAlign(); |
2108 | 0 | } else { |
2109 | 0 | Width = Target->getLongDoubleWidth(); |
2110 | 0 | Align = Target->getLongDoubleAlign(); |
2111 | 0 | } |
2112 | 0 | break; |
2113 | 0 | case BuiltinType::Float128: |
2114 | 0 | if (Target->hasFloat128Type() || !getLangOpts().OpenMP || |
2115 | 0 | !getLangOpts().OpenMPIsTargetDevice) { |
2116 | 0 | Width = Target->getFloat128Width(); |
2117 | 0 | Align = Target->getFloat128Align(); |
2118 | 0 | } else { |
2119 | 0 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && |
2120 | 0 | "Expected OpenMP device compilation."); |
2121 | 0 | Width = AuxTarget->getFloat128Width(); |
2122 | 0 | Align = AuxTarget->getFloat128Align(); |
2123 | 0 | } |
2124 | 0 | break; |
2125 | 0 | case BuiltinType::NullPtr: |
2126 | | // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*) |
2127 | 0 | Width = Target->getPointerWidth(LangAS::Default); |
2128 | 0 | Align = Target->getPointerAlign(LangAS::Default); |
2129 | 0 | break; |
2130 | 0 | case BuiltinType::ObjCId: |
2131 | 0 | case BuiltinType::ObjCClass: |
2132 | 0 | case BuiltinType::ObjCSel: |
2133 | 0 | Width = Target->getPointerWidth(LangAS::Default); |
2134 | 0 | Align = Target->getPointerAlign(LangAS::Default); |
2135 | 0 | break; |
2136 | 0 | case BuiltinType::OCLSampler: |
2137 | 0 | case BuiltinType::OCLEvent: |
2138 | 0 | case BuiltinType::OCLClkEvent: |
2139 | 0 | case BuiltinType::OCLQueue: |
2140 | 0 | case BuiltinType::OCLReserveID: |
2141 | 0 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
2142 | 0 | case BuiltinType::Id: |
2143 | 0 | #include "clang/Basic/OpenCLImageTypes.def" |
2144 | 0 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
2145 | 0 | case BuiltinType::Id: |
2146 | 0 | #include "clang/Basic/OpenCLExtensionTypes.def" |
2147 | 0 | AS = Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); |
2148 | 0 | Width = Target->getPointerWidth(AS); |
2149 | 0 | Align = Target->getPointerAlign(AS); |
2150 | 0 | break; |
2151 | | // The SVE types are effectively target-specific. The length of an |
2152 | | // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple |
2153 | | // of 128 bits. There is one predicate bit for each vector byte, so the |
2154 | | // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits. |
2155 | | // |
2156 | | // Because the length is only known at runtime, we use a dummy value |
2157 | | // of 0 for the static length. The alignment values are those defined |
2158 | | // by the Procedure Call Standard for the Arm Architecture. |
2159 | 0 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ |
2160 | 0 | IsSigned, IsFP, IsBF) \ |
2161 | 0 | case BuiltinType::Id: \ |
2162 | 0 | Width = 0; \ |
2163 | 0 | Align = 128; \ |
2164 | 0 | break; |
2165 | 0 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ |
2166 | 0 | case BuiltinType::Id: \ |
2167 | 0 | Width = 0; \ |
2168 | 0 | Align = 16; \ |
2169 | 0 | break; |
2170 | 0 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId) \ |
2171 | 0 | case BuiltinType::Id: \ |
2172 | 0 | Width = 0; \ |
2173 | 0 | Align = 16; \ |
2174 | 0 | break; |
2175 | 0 | #include "clang/Basic/AArch64SVEACLETypes.def" |
2176 | 0 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
2177 | 0 | case BuiltinType::Id: \ |
2178 | 0 | Width = Size; \ |
2179 | 0 | Align = Size; \ |
2180 | 0 | break; |
2181 | 0 | #include "clang/Basic/PPCTypes.def" |
2182 | 0 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned, \ |
2183 | 0 | IsFP, IsBF) \ |
2184 | 0 | case BuiltinType::Id: \ |
2185 | 0 | Width = 0; \ |
2186 | 0 | Align = ElBits; \ |
2187 | 0 | break; |
2188 | 0 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \ |
2189 | 0 | case BuiltinType::Id: \ |
2190 | 0 | Width = 0; \ |
2191 | 0 | Align = 8; \ |
2192 | 0 | break; |
2193 | 0 | #include "clang/Basic/RISCVVTypes.def" |
2194 | 0 | #define WASM_TYPE(Name, Id, SingletonId) \ |
2195 | 0 | case BuiltinType::Id: \ |
2196 | 0 | Width = 0; \ |
2197 | 0 | Align = 8; \ |
2198 | 0 | break; |
2199 | 165 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
2200 | 165 | } |
2201 | 165 | break; |
2202 | 165 | case Type::ObjCObjectPointer: |
2203 | 46 | Width = Target->getPointerWidth(LangAS::Default); |
2204 | 46 | Align = Target->getPointerAlign(LangAS::Default); |
2205 | 46 | break; |
2206 | 0 | case Type::BlockPointer: |
2207 | 0 | AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace(); |
2208 | 0 | Width = Target->getPointerWidth(AS); |
2209 | 0 | Align = Target->getPointerAlign(AS); |
2210 | 0 | break; |
2211 | 0 | case Type::LValueReference: |
2212 | 0 | case Type::RValueReference: |
2213 | | // alignof and sizeof should never enter this code path here, so we go |
2214 | | // the pointer route. |
2215 | 0 | AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace(); |
2216 | 0 | Width = Target->getPointerWidth(AS); |
2217 | 0 | Align = Target->getPointerAlign(AS); |
2218 | 0 | break; |
2219 | 46 | case Type::Pointer: |
2220 | 46 | AS = cast<PointerType>(T)->getPointeeType().getAddressSpace(); |
2221 | 46 | Width = Target->getPointerWidth(AS); |
2222 | 46 | Align = Target->getPointerAlign(AS); |
2223 | 46 | break; |
2224 | 0 | case Type::MemberPointer: { |
2225 | 0 | const auto *MPT = cast<MemberPointerType>(T); |
2226 | 0 | CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); |
2227 | 0 | Width = MPI.Width; |
2228 | 0 | Align = MPI.Align; |
2229 | 0 | break; |
2230 | 0 | } |
2231 | 0 | case Type::Complex: { |
2232 | | // Complex types have the same alignment as their elements, but twice the |
2233 | | // size. |
2234 | 0 | TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); |
2235 | 0 | Width = EltInfo.Width * 2; |
2236 | 0 | Align = EltInfo.Align; |
2237 | 0 | break; |
2238 | 0 | } |
2239 | 0 | case Type::ObjCObject: |
2240 | 0 | return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); |
2241 | 0 | case Type::Adjusted: |
2242 | 0 | case Type::Decayed: |
2243 | 0 | return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); |
2244 | 0 | case Type::ObjCInterface: { |
2245 | 0 | const auto *ObjCI = cast<ObjCInterfaceType>(T); |
2246 | 0 | if (ObjCI->getDecl()->isInvalidDecl()) { |
2247 | 0 | Width = 8; |
2248 | 0 | Align = 8; |
2249 | 0 | break; |
2250 | 0 | } |
2251 | 0 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); |
2252 | 0 | Width = toBits(Layout.getSize()); |
2253 | 0 | Align = toBits(Layout.getAlignment()); |
2254 | 0 | break; |
2255 | 0 | } |
2256 | 0 | case Type::BitInt: { |
2257 | 0 | const auto *EIT = cast<BitIntType>(T); |
2258 | 0 | Align = std::clamp<unsigned>(llvm::PowerOf2Ceil(EIT->getNumBits()), |
2259 | 0 | getCharWidth(), Target->getLongLongAlign()); |
2260 | 0 | Width = llvm::alignTo(EIT->getNumBits(), Align); |
2261 | 0 | break; |
2262 | 0 | } |
2263 | 0 | case Type::Record: |
2264 | 0 | case Type::Enum: { |
2265 | 0 | const auto *TT = cast<TagType>(T); |
2266 | |
|
2267 | 0 | if (TT->getDecl()->isInvalidDecl()) { |
2268 | 0 | Width = 8; |
2269 | 0 | Align = 8; |
2270 | 0 | break; |
2271 | 0 | } |
2272 | | |
2273 | 0 | if (const auto *ET = dyn_cast<EnumType>(TT)) { |
2274 | 0 | const EnumDecl *ED = ET->getDecl(); |
2275 | 0 | TypeInfo Info = |
2276 | 0 | getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); |
2277 | 0 | if (unsigned AttrAlign = ED->getMaxAlignment()) { |
2278 | 0 | Info.Align = AttrAlign; |
2279 | 0 | Info.AlignRequirement = AlignRequirementKind::RequiredByEnum; |
2280 | 0 | } |
2281 | 0 | return Info; |
2282 | 0 | } |
2283 | | |
2284 | 0 | const auto *RT = cast<RecordType>(TT); |
2285 | 0 | const RecordDecl *RD = RT->getDecl(); |
2286 | 0 | const ASTRecordLayout &Layout = getASTRecordLayout(RD); |
2287 | 0 | Width = toBits(Layout.getSize()); |
2288 | 0 | Align = toBits(Layout.getAlignment()); |
2289 | 0 | AlignRequirement = RD->hasAttr<AlignedAttr>() |
2290 | 0 | ? AlignRequirementKind::RequiredByRecord |
2291 | 0 | : AlignRequirementKind::None; |
2292 | 0 | break; |
2293 | 0 | } |
2294 | | |
2295 | 0 | case Type::SubstTemplateTypeParm: |
2296 | 0 | return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> |
2297 | 0 | getReplacementType().getTypePtr()); |
2298 | | |
2299 | 0 | case Type::Auto: |
2300 | 0 | case Type::DeducedTemplateSpecialization: { |
2301 | 0 | const auto *A = cast<DeducedType>(T); |
2302 | 0 | assert(!A->getDeducedType().isNull() && |
2303 | 0 | "cannot request the size of an undeduced or dependent auto type"); |
2304 | 0 | return getTypeInfo(A->getDeducedType().getTypePtr()); |
2305 | 0 | } |
2306 | | |
2307 | 0 | case Type::Paren: |
2308 | 0 | return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); |
2309 | | |
2310 | 0 | case Type::MacroQualified: |
2311 | 0 | return getTypeInfo( |
2312 | 0 | cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr()); |
2313 | | |
2314 | 0 | case Type::ObjCTypeParam: |
2315 | 0 | return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr()); |
2316 | | |
2317 | 0 | case Type::Using: |
2318 | 0 | return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr()); |
2319 | | |
2320 | 69 | case Type::Typedef: { |
2321 | 69 | const auto *TT = cast<TypedefType>(T); |
2322 | 69 | TypeInfo Info = getTypeInfo(TT->desugar().getTypePtr()); |
2323 | | // If the typedef has an aligned attribute on it, it overrides any computed |
2324 | | // alignment we have. This violates the GCC documentation (which says that |
2325 | | // attribute(aligned) can only round up) but matches its implementation. |
2326 | 69 | if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) { |
2327 | 0 | Align = AttrAlign; |
2328 | 0 | AlignRequirement = AlignRequirementKind::RequiredByTypedef; |
2329 | 69 | } else { |
2330 | 69 | Align = Info.Align; |
2331 | 69 | AlignRequirement = Info.AlignRequirement; |
2332 | 69 | } |
2333 | 69 | Width = Info.Width; |
2334 | 69 | break; |
2335 | 0 | } |
2336 | | |
2337 | 0 | case Type::Elaborated: |
2338 | 0 | return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); |
2339 | | |
2340 | 0 | case Type::Attributed: |
2341 | 0 | return getTypeInfo( |
2342 | 0 | cast<AttributedType>(T)->getEquivalentType().getTypePtr()); |
2343 | | |
2344 | 0 | case Type::BTFTagAttributed: |
2345 | 0 | return getTypeInfo( |
2346 | 0 | cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr()); |
2347 | | |
2348 | 0 | case Type::Atomic: { |
2349 | | // Start with the base type information. |
2350 | 0 | TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); |
2351 | 0 | Width = Info.Width; |
2352 | 0 | Align = Info.Align; |
2353 | |
|
2354 | 0 | if (!Width) { |
2355 | | // An otherwise zero-sized type should still generate an |
2356 | | // atomic operation. |
2357 | 0 | Width = Target->getCharWidth(); |
2358 | 0 | assert(Align); |
2359 | 0 | } else if (Width <= Target->getMaxAtomicPromoteWidth()) { |
2360 | | // If the size of the type doesn't exceed the platform's max |
2361 | | // atomic promotion width, make the size and alignment more |
2362 | | // favorable to atomic operations: |
2363 | | |
2364 | | // Round the size up to a power of 2. |
2365 | 0 | Width = llvm::bit_ceil(Width); |
2366 | | |
2367 | | // Set the alignment equal to the size. |
2368 | 0 | Align = static_cast<unsigned>(Width); |
2369 | 0 | } |
2370 | 0 | } |
2371 | 0 | break; |
2372 | | |
2373 | 0 | case Type::Pipe: |
2374 | 0 | Width = Target->getPointerWidth(LangAS::opencl_global); |
2375 | 0 | Align = Target->getPointerAlign(LangAS::opencl_global); |
2376 | 0 | break; |
2377 | 326 | } |
2378 | | |
2379 | 326 | assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); |
2380 | 0 | return TypeInfo(Width, Align, AlignRequirement); |
2381 | 326 | } |
2382 | | |
2383 | 0 | unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { |
2384 | 0 | UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T); |
2385 | 0 | if (I != MemoizedUnadjustedAlign.end()) |
2386 | 0 | return I->second; |
2387 | | |
2388 | 0 | unsigned UnadjustedAlign; |
2389 | 0 | if (const auto *RT = T->getAs<RecordType>()) { |
2390 | 0 | const RecordDecl *RD = RT->getDecl(); |
2391 | 0 | const ASTRecordLayout &Layout = getASTRecordLayout(RD); |
2392 | 0 | UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); |
2393 | 0 | } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) { |
2394 | 0 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); |
2395 | 0 | UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); |
2396 | 0 | } else { |
2397 | 0 | UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType()); |
2398 | 0 | } |
2399 | |
|
2400 | 0 | MemoizedUnadjustedAlign[T] = UnadjustedAlign; |
2401 | 0 | return UnadjustedAlign; |
2402 | 0 | } |
2403 | | |
2404 | 0 | unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { |
2405 | 0 | unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign( |
2406 | 0 | getTargetInfo().getTriple(), Target->getTargetOpts().FeatureMap); |
2407 | 0 | return SimdAlign; |
2408 | 0 | } |
2409 | | |
2410 | | /// toCharUnitsFromBits - Convert a size in bits to a size in characters. |
2411 | 841 | CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { |
2412 | 841 | return CharUnits::fromQuantity(BitSize / getCharWidth()); |
2413 | 841 | } |
2414 | | |
2415 | | /// toBits - Convert a size in characters to a size in characters. |
2416 | 782 | int64_t ASTContext::toBits(CharUnits CharSize) const { |
2417 | 782 | return CharSize.getQuantity() * getCharWidth(); |
2418 | 782 | } |
2419 | | |
2420 | | /// getTypeSizeInChars - Return the size of the specified type, in characters. |
2421 | | /// This method does not work on incomplete types. |
2422 | 52 | CharUnits ASTContext::getTypeSizeInChars(QualType T) const { |
2423 | 52 | return getTypeInfoInChars(T).Width; |
2424 | 52 | } |
2425 | 0 | CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { |
2426 | 0 | return getTypeInfoInChars(T).Width; |
2427 | 0 | } |
2428 | | |
2429 | | /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in |
2430 | | /// characters. This method does not work on incomplete types. |
2431 | 47 | CharUnits ASTContext::getTypeAlignInChars(QualType T) const { |
2432 | 47 | return toCharUnitsFromBits(getTypeAlign(T)); |
2433 | 47 | } |
2434 | 0 | CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { |
2435 | 0 | return toCharUnitsFromBits(getTypeAlign(T)); |
2436 | 0 | } |
2437 | | |
2438 | | /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a |
2439 | | /// type, in characters, before alignment adjustments. This method does |
2440 | | /// not work on incomplete types. |
2441 | 0 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { |
2442 | 0 | return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); |
2443 | 0 | } |
2444 | 0 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { |
2445 | 0 | return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); |
2446 | 0 | } |
2447 | | |
2448 | | /// getPreferredTypeAlign - Return the "preferred" alignment of the specified |
2449 | | /// type for the current target in bits. This can be different than the ABI |
2450 | | /// alignment in cases where it is beneficial for performance or backwards |
2451 | | /// compatibility preserving to overalign a data type. (Note: despite the name, |
2452 | | /// the preferred alignment is ABI-impacting, and not an optimization.) |
2453 | 0 | unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { |
2454 | 0 | TypeInfo TI = getTypeInfo(T); |
2455 | 0 | unsigned ABIAlign = TI.Align; |
2456 | |
|
2457 | 0 | T = T->getBaseElementTypeUnsafe(); |
2458 | | |
2459 | | // The preferred alignment of member pointers is that of a pointer. |
2460 | 0 | if (T->isMemberPointerType()) |
2461 | 0 | return getPreferredTypeAlign(getPointerDiffType().getTypePtr()); |
2462 | | |
2463 | 0 | if (!Target->allowsLargerPreferedTypeAlignment()) |
2464 | 0 | return ABIAlign; |
2465 | | |
2466 | 0 | if (const auto *RT = T->getAs<RecordType>()) { |
2467 | 0 | const RecordDecl *RD = RT->getDecl(); |
2468 | | |
2469 | | // When used as part of a typedef, or together with a 'packed' attribute, |
2470 | | // the 'aligned' attribute can be used to decrease alignment. Note that the |
2471 | | // 'packed' case is already taken into consideration when computing the |
2472 | | // alignment, we only need to handle the typedef case here. |
2473 | 0 | if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef || |
2474 | 0 | RD->isInvalidDecl()) |
2475 | 0 | return ABIAlign; |
2476 | | |
2477 | 0 | unsigned PreferredAlign = static_cast<unsigned>( |
2478 | 0 | toBits(getASTRecordLayout(RD).PreferredAlignment)); |
2479 | 0 | assert(PreferredAlign >= ABIAlign && |
2480 | 0 | "PreferredAlign should be at least as large as ABIAlign."); |
2481 | 0 | return PreferredAlign; |
2482 | 0 | } |
2483 | | |
2484 | | // Double (and, for targets supporting AIX `power` alignment, long double) and |
2485 | | // long long should be naturally aligned (despite requiring less alignment) if |
2486 | | // possible. |
2487 | 0 | if (const auto *CT = T->getAs<ComplexType>()) |
2488 | 0 | T = CT->getElementType().getTypePtr(); |
2489 | 0 | if (const auto *ET = T->getAs<EnumType>()) |
2490 | 0 | T = ET->getDecl()->getIntegerType().getTypePtr(); |
2491 | 0 | if (T->isSpecificBuiltinType(BuiltinType::Double) || |
2492 | 0 | T->isSpecificBuiltinType(BuiltinType::LongLong) || |
2493 | 0 | T->isSpecificBuiltinType(BuiltinType::ULongLong) || |
2494 | 0 | (T->isSpecificBuiltinType(BuiltinType::LongDouble) && |
2495 | 0 | Target->defaultsToAIXPowerAlignment())) |
2496 | | // Don't increase the alignment if an alignment attribute was specified on a |
2497 | | // typedef declaration. |
2498 | 0 | if (!TI.isAlignRequired()) |
2499 | 0 | return std::max(ABIAlign, (unsigned)getTypeSize(T)); |
2500 | | |
2501 | 0 | return ABIAlign; |
2502 | 0 | } |
2503 | | |
2504 | | /// getTargetDefaultAlignForAttributeAligned - Return the default alignment |
2505 | | /// for __attribute__((aligned)) on this target, to be used if no alignment |
2506 | | /// value is specified. |
2507 | 0 | unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { |
2508 | 0 | return getTargetInfo().getDefaultAlignForAttributeAligned(); |
2509 | 0 | } |
2510 | | |
2511 | | /// getAlignOfGlobalVar - Return the alignment in bits that should be given |
2512 | | /// to a global variable of the specified type. |
2513 | 0 | unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { |
2514 | 0 | uint64_t TypeSize = getTypeSize(T.getTypePtr()); |
2515 | 0 | return std::max(getPreferredTypeAlign(T), |
2516 | 0 | getTargetInfo().getMinGlobalAlign(TypeSize)); |
2517 | 0 | } |
2518 | | |
2519 | | /// getAlignOfGlobalVarInChars - Return the alignment in characters that |
2520 | | /// should be given to a global variable of the specified type. |
2521 | 0 | CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { |
2522 | 0 | return toCharUnitsFromBits(getAlignOfGlobalVar(T)); |
2523 | 0 | } |
2524 | | |
2525 | 0 | CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { |
2526 | 0 | CharUnits Offset = CharUnits::Zero(); |
2527 | 0 | const ASTRecordLayout *Layout = &getASTRecordLayout(RD); |
2528 | 0 | while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { |
2529 | 0 | Offset += Layout->getBaseClassOffset(Base); |
2530 | 0 | Layout = &getASTRecordLayout(Base); |
2531 | 0 | } |
2532 | 0 | return Offset; |
2533 | 0 | } |
2534 | | |
2535 | 0 | CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const { |
2536 | 0 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
2537 | 0 | CharUnits ThisAdjustment = CharUnits::Zero(); |
2538 | 0 | ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); |
2539 | 0 | bool DerivedMember = MP.isMemberPointerToDerivedMember(); |
2540 | 0 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext()); |
2541 | 0 | for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
2542 | 0 | const CXXRecordDecl *Base = RD; |
2543 | 0 | const CXXRecordDecl *Derived = Path[I]; |
2544 | 0 | if (DerivedMember) |
2545 | 0 | std::swap(Base, Derived); |
2546 | 0 | ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base); |
2547 | 0 | RD = Path[I]; |
2548 | 0 | } |
2549 | 0 | if (DerivedMember) |
2550 | 0 | ThisAdjustment = -ThisAdjustment; |
2551 | 0 | return ThisAdjustment; |
2552 | 0 | } |
2553 | | |
2554 | | /// DeepCollectObjCIvars - |
2555 | | /// This routine first collects all declared, but not synthesized, ivars in |
2556 | | /// super class and then collects all ivars, including those synthesized for |
2557 | | /// current class. This routine is used for implementation of current class |
2558 | | /// when all ivars, declared and synthesized are known. |
2559 | | void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, |
2560 | | bool leafClass, |
2561 | 0 | SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { |
2562 | 0 | if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) |
2563 | 0 | DeepCollectObjCIvars(SuperClass, false, Ivars); |
2564 | 0 | if (!leafClass) { |
2565 | 0 | llvm::append_range(Ivars, OI->ivars()); |
2566 | 0 | } else { |
2567 | 0 | auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); |
2568 | 0 | for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; |
2569 | 0 | Iv= Iv->getNextIvar()) |
2570 | 0 | Ivars.push_back(Iv); |
2571 | 0 | } |
2572 | 0 | } |
2573 | | |
2574 | | /// CollectInheritedProtocols - Collect all protocols in current class and |
2575 | | /// those inherited by it. |
2576 | | void ASTContext::CollectInheritedProtocols(const Decl *CDecl, |
2577 | 0 | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { |
2578 | 0 | if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { |
2579 | | // We can use protocol_iterator here instead of |
2580 | | // all_referenced_protocol_iterator since we are walking all categories. |
2581 | 0 | for (auto *Proto : OI->all_referenced_protocols()) { |
2582 | 0 | CollectInheritedProtocols(Proto, Protocols); |
2583 | 0 | } |
2584 | | |
2585 | | // Categories of this Interface. |
2586 | 0 | for (const auto *Cat : OI->visible_categories()) |
2587 | 0 | CollectInheritedProtocols(Cat, Protocols); |
2588 | |
|
2589 | 0 | if (ObjCInterfaceDecl *SD = OI->getSuperClass()) |
2590 | 0 | while (SD) { |
2591 | 0 | CollectInheritedProtocols(SD, Protocols); |
2592 | 0 | SD = SD->getSuperClass(); |
2593 | 0 | } |
2594 | 0 | } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { |
2595 | 0 | for (auto *Proto : OC->protocols()) { |
2596 | 0 | CollectInheritedProtocols(Proto, Protocols); |
2597 | 0 | } |
2598 | 0 | } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { |
2599 | | // Insert the protocol. |
2600 | 0 | if (!Protocols.insert( |
2601 | 0 | const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) |
2602 | 0 | return; |
2603 | | |
2604 | 0 | for (auto *Proto : OP->protocols()) |
2605 | 0 | CollectInheritedProtocols(Proto, Protocols); |
2606 | 0 | } |
2607 | 0 | } |
2608 | | |
2609 | | static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, |
2610 | | const RecordDecl *RD, |
2611 | 0 | bool CheckIfTriviallyCopyable) { |
2612 | 0 | assert(RD->isUnion() && "Must be union type"); |
2613 | 0 | CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl()); |
2614 | |
|
2615 | 0 | for (const auto *Field : RD->fields()) { |
2616 | 0 | if (!Context.hasUniqueObjectRepresentations(Field->getType(), |
2617 | 0 | CheckIfTriviallyCopyable)) |
2618 | 0 | return false; |
2619 | 0 | CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType()); |
2620 | 0 | if (FieldSize != UnionSize) |
2621 | 0 | return false; |
2622 | 0 | } |
2623 | 0 | return !RD->field_empty(); |
2624 | 0 | } |
2625 | | |
2626 | | static int64_t getSubobjectOffset(const FieldDecl *Field, |
2627 | | const ASTContext &Context, |
2628 | 0 | const clang::ASTRecordLayout & /*Layout*/) { |
2629 | 0 | return Context.getFieldOffset(Field); |
2630 | 0 | } |
2631 | | |
2632 | | static int64_t getSubobjectOffset(const CXXRecordDecl *RD, |
2633 | | const ASTContext &Context, |
2634 | 0 | const clang::ASTRecordLayout &Layout) { |
2635 | 0 | return Context.toBits(Layout.getBaseClassOffset(RD)); |
2636 | 0 | } |
2637 | | |
2638 | | static std::optional<int64_t> |
2639 | | structHasUniqueObjectRepresentations(const ASTContext &Context, |
2640 | | const RecordDecl *RD, |
2641 | | bool CheckIfTriviallyCopyable); |
2642 | | |
2643 | | static std::optional<int64_t> |
2644 | | getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context, |
2645 | 0 | bool CheckIfTriviallyCopyable) { |
2646 | 0 | if (Field->getType()->isRecordType()) { |
2647 | 0 | const RecordDecl *RD = Field->getType()->getAsRecordDecl(); |
2648 | 0 | if (!RD->isUnion()) |
2649 | 0 | return structHasUniqueObjectRepresentations(Context, RD, |
2650 | 0 | CheckIfTriviallyCopyable); |
2651 | 0 | } |
2652 | | |
2653 | | // A _BitInt type may not be unique if it has padding bits |
2654 | | // but if it is a bitfield the padding bits are not used. |
2655 | 0 | bool IsBitIntType = Field->getType()->isBitIntType(); |
2656 | 0 | if (!Field->getType()->isReferenceType() && !IsBitIntType && |
2657 | 0 | !Context.hasUniqueObjectRepresentations(Field->getType(), |
2658 | 0 | CheckIfTriviallyCopyable)) |
2659 | 0 | return std::nullopt; |
2660 | | |
2661 | 0 | int64_t FieldSizeInBits = |
2662 | 0 | Context.toBits(Context.getTypeSizeInChars(Field->getType())); |
2663 | 0 | if (Field->isBitField()) { |
2664 | | // If we have explicit padding bits, they don't contribute bits |
2665 | | // to the actual object representation, so return 0. |
2666 | 0 | if (Field->isUnnamedBitfield()) |
2667 | 0 | return 0; |
2668 | | |
2669 | 0 | int64_t BitfieldSize = Field->getBitWidthValue(Context); |
2670 | 0 | if (IsBitIntType) { |
2671 | 0 | if ((unsigned)BitfieldSize > |
2672 | 0 | cast<BitIntType>(Field->getType())->getNumBits()) |
2673 | 0 | return std::nullopt; |
2674 | 0 | } else if (BitfieldSize > FieldSizeInBits) { |
2675 | 0 | return std::nullopt; |
2676 | 0 | } |
2677 | 0 | FieldSizeInBits = BitfieldSize; |
2678 | 0 | } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations( |
2679 | 0 | Field->getType(), CheckIfTriviallyCopyable)) { |
2680 | 0 | return std::nullopt; |
2681 | 0 | } |
2682 | 0 | return FieldSizeInBits; |
2683 | 0 | } |
2684 | | |
2685 | | static std::optional<int64_t> |
2686 | | getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context, |
2687 | 0 | bool CheckIfTriviallyCopyable) { |
2688 | 0 | return structHasUniqueObjectRepresentations(Context, RD, |
2689 | 0 | CheckIfTriviallyCopyable); |
2690 | 0 | } |
2691 | | |
2692 | | template <typename RangeT> |
2693 | | static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations( |
2694 | | const RangeT &Subobjects, int64_t CurOffsetInBits, |
2695 | | const ASTContext &Context, const clang::ASTRecordLayout &Layout, |
2696 | 0 | bool CheckIfTriviallyCopyable) { |
2697 | 0 | for (const auto *Subobject : Subobjects) { |
2698 | 0 | std::optional<int64_t> SizeInBits = |
2699 | 0 | getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable); |
2700 | 0 | if (!SizeInBits) |
2701 | 0 | return std::nullopt; |
2702 | 0 | if (*SizeInBits != 0) { |
2703 | 0 | int64_t Offset = getSubobjectOffset(Subobject, Context, Layout); |
2704 | 0 | if (Offset != CurOffsetInBits) |
2705 | 0 | return std::nullopt; |
2706 | 0 | CurOffsetInBits += *SizeInBits; |
2707 | 0 | } |
2708 | 0 | } |
2709 | 0 | return CurOffsetInBits; |
2710 | 0 | } Unexecuted instantiation: ASTContext.cpp:std::__1::optional<long> structSubobjectsHaveUniqueObjectRepresentations<llvm::SmallVector<clang::CXXRecordDecl*, 4u> >(llvm::SmallVector<clang::CXXRecordDecl*, 4u> const&, long, clang::ASTContext const&, clang::ASTRecordLayout const&, bool) Unexecuted instantiation: ASTContext.cpp:std::__1::optional<long> structSubobjectsHaveUniqueObjectRepresentations<llvm::iterator_range<clang::DeclContext::specific_decl_iterator<clang::FieldDecl> > >(llvm::iterator_range<clang::DeclContext::specific_decl_iterator<clang::FieldDecl> > const&, long, clang::ASTContext const&, clang::ASTRecordLayout const&, bool) |
2711 | | |
2712 | | static std::optional<int64_t> |
2713 | | structHasUniqueObjectRepresentations(const ASTContext &Context, |
2714 | | const RecordDecl *RD, |
2715 | 0 | bool CheckIfTriviallyCopyable) { |
2716 | 0 | assert(!RD->isUnion() && "Must be struct/class type"); |
2717 | 0 | const auto &Layout = Context.getASTRecordLayout(RD); |
2718 | |
|
2719 | 0 | int64_t CurOffsetInBits = 0; |
2720 | 0 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) { |
2721 | 0 | if (ClassDecl->isDynamicClass()) |
2722 | 0 | return std::nullopt; |
2723 | | |
2724 | 0 | SmallVector<CXXRecordDecl *, 4> Bases; |
2725 | 0 | for (const auto &Base : ClassDecl->bases()) { |
2726 | | // Empty types can be inherited from, and non-empty types can potentially |
2727 | | // have tail padding, so just make sure there isn't an error. |
2728 | 0 | Bases.emplace_back(Base.getType()->getAsCXXRecordDecl()); |
2729 | 0 | } |
2730 | |
|
2731 | 0 | llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { |
2732 | 0 | return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); |
2733 | 0 | }); |
2734 | |
|
2735 | 0 | std::optional<int64_t> OffsetAfterBases = |
2736 | 0 | structSubobjectsHaveUniqueObjectRepresentations( |
2737 | 0 | Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable); |
2738 | 0 | if (!OffsetAfterBases) |
2739 | 0 | return std::nullopt; |
2740 | 0 | CurOffsetInBits = *OffsetAfterBases; |
2741 | 0 | } |
2742 | | |
2743 | 0 | std::optional<int64_t> OffsetAfterFields = |
2744 | 0 | structSubobjectsHaveUniqueObjectRepresentations( |
2745 | 0 | RD->fields(), CurOffsetInBits, Context, Layout, |
2746 | 0 | CheckIfTriviallyCopyable); |
2747 | 0 | if (!OffsetAfterFields) |
2748 | 0 | return std::nullopt; |
2749 | 0 | CurOffsetInBits = *OffsetAfterFields; |
2750 | |
|
2751 | 0 | return CurOffsetInBits; |
2752 | 0 | } |
2753 | | |
2754 | | bool ASTContext::hasUniqueObjectRepresentations( |
2755 | 0 | QualType Ty, bool CheckIfTriviallyCopyable) const { |
2756 | | // C++17 [meta.unary.prop]: |
2757 | | // The predicate condition for a template specialization |
2758 | | // has_unique_object_representations<T> shall be satisfied if and only if: |
2759 | | // (9.1) - T is trivially copyable, and |
2760 | | // (9.2) - any two objects of type T with the same value have the same |
2761 | | // object representation, where: |
2762 | | // - two objects of array or non-union class type are considered to have |
2763 | | // the same value if their respective sequences of direct subobjects |
2764 | | // have the same values, and |
2765 | | // - two objects of union type are considered to have the same value if |
2766 | | // they have the same active member and the corresponding members have |
2767 | | // the same value. |
2768 | | // The set of scalar types for which this condition holds is |
2769 | | // implementation-defined. [ Note: If a type has padding bits, the condition |
2770 | | // does not hold; otherwise, the condition holds true for unsigned integral |
2771 | | // types. -- end note ] |
2772 | 0 | assert(!Ty.isNull() && "Null QualType sent to unique object rep check"); |
2773 | | |
2774 | | // Arrays are unique only if their element type is unique. |
2775 | 0 | if (Ty->isArrayType()) |
2776 | 0 | return hasUniqueObjectRepresentations(getBaseElementType(Ty), |
2777 | 0 | CheckIfTriviallyCopyable); |
2778 | | |
2779 | | // (9.1) - T is trivially copyable... |
2780 | 0 | if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(*this)) |
2781 | 0 | return false; |
2782 | | |
2783 | | // All integrals and enums are unique. |
2784 | 0 | if (Ty->isIntegralOrEnumerationType()) { |
2785 | | // Except _BitInt types that have padding bits. |
2786 | 0 | if (const auto *BIT = Ty->getAs<BitIntType>()) |
2787 | 0 | return getTypeSize(BIT) == BIT->getNumBits(); |
2788 | | |
2789 | 0 | return true; |
2790 | 0 | } |
2791 | | |
2792 | | // All other pointers are unique. |
2793 | 0 | if (Ty->isPointerType()) |
2794 | 0 | return true; |
2795 | | |
2796 | 0 | if (const auto *MPT = Ty->getAs<MemberPointerType>()) |
2797 | 0 | return !ABI->getMemberPointerInfo(MPT).HasPadding; |
2798 | | |
2799 | 0 | if (Ty->isRecordType()) { |
2800 | 0 | const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl(); |
2801 | |
|
2802 | 0 | if (Record->isInvalidDecl()) |
2803 | 0 | return false; |
2804 | | |
2805 | 0 | if (Record->isUnion()) |
2806 | 0 | return unionHasUniqueObjectRepresentations(*this, Record, |
2807 | 0 | CheckIfTriviallyCopyable); |
2808 | | |
2809 | 0 | std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations( |
2810 | 0 | *this, Record, CheckIfTriviallyCopyable); |
2811 | |
|
2812 | 0 | return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(Ty)); |
2813 | 0 | } |
2814 | | |
2815 | | // FIXME: More cases to handle here (list by rsmith): |
2816 | | // vectors (careful about, eg, vector of 3 foo) |
2817 | | // _Complex int and friends |
2818 | | // _Atomic T |
2819 | | // Obj-C block pointers |
2820 | | // Obj-C object pointers |
2821 | | // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, |
2822 | | // clk_event_t, queue_t, reserve_id_t) |
2823 | | // There're also Obj-C class types and the Obj-C selector type, but I think it |
2824 | | // makes sense for those to return false here. |
2825 | | |
2826 | 0 | return false; |
2827 | 0 | } |
2828 | | |
2829 | 0 | unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { |
2830 | 0 | unsigned count = 0; |
2831 | | // Count ivars declared in class extension. |
2832 | 0 | for (const auto *Ext : OI->known_extensions()) |
2833 | 0 | count += Ext->ivar_size(); |
2834 | | |
2835 | | // Count ivar defined in this class's implementation. This |
2836 | | // includes synthesized ivars. |
2837 | 0 | if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) |
2838 | 0 | count += ImplDecl->ivar_size(); |
2839 | |
|
2840 | 0 | return count; |
2841 | 0 | } |
2842 | | |
2843 | 0 | bool ASTContext::isSentinelNullExpr(const Expr *E) { |
2844 | 0 | if (!E) |
2845 | 0 | return false; |
2846 | | |
2847 | | // nullptr_t is always treated as null. |
2848 | 0 | if (E->getType()->isNullPtrType()) return true; |
2849 | | |
2850 | 0 | if (E->getType()->isAnyPointerType() && |
2851 | 0 | E->IgnoreParenCasts()->isNullPointerConstant(*this, |
2852 | 0 | Expr::NPC_ValueDependentIsNull)) |
2853 | 0 | return true; |
2854 | | |
2855 | | // Unfortunately, __null has type 'int'. |
2856 | 0 | if (isa<GNUNullExpr>(E)) return true; |
2857 | | |
2858 | 0 | return false; |
2859 | 0 | } |
2860 | | |
2861 | | /// Get the implementation of ObjCInterfaceDecl, or nullptr if none |
2862 | | /// exists. |
2863 | 0 | ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { |
2864 | 0 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
2865 | 0 | I = ObjCImpls.find(D); |
2866 | 0 | if (I != ObjCImpls.end()) |
2867 | 0 | return cast<ObjCImplementationDecl>(I->second); |
2868 | 0 | return nullptr; |
2869 | 0 | } |
2870 | | |
2871 | | /// Get the implementation of ObjCCategoryDecl, or nullptr if none |
2872 | | /// exists. |
2873 | 0 | ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { |
2874 | 0 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
2875 | 0 | I = ObjCImpls.find(D); |
2876 | 0 | if (I != ObjCImpls.end()) |
2877 | 0 | return cast<ObjCCategoryImplDecl>(I->second); |
2878 | 0 | return nullptr; |
2879 | 0 | } |
2880 | | |
2881 | | /// Set the implementation of ObjCInterfaceDecl. |
2882 | | void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, |
2883 | 0 | ObjCImplementationDecl *ImplD) { |
2884 | 0 | assert(IFaceD && ImplD && "Passed null params"); |
2885 | 0 | ObjCImpls[IFaceD] = ImplD; |
2886 | 0 | } |
2887 | | |
2888 | | /// Set the implementation of ObjCCategoryDecl. |
2889 | | void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, |
2890 | 0 | ObjCCategoryImplDecl *ImplD) { |
2891 | 0 | assert(CatD && ImplD && "Passed null params"); |
2892 | 0 | ObjCImpls[CatD] = ImplD; |
2893 | 0 | } |
2894 | | |
2895 | | const ObjCMethodDecl * |
2896 | 0 | ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { |
2897 | 0 | return ObjCMethodRedecls.lookup(MD); |
2898 | 0 | } |
2899 | | |
2900 | | void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, |
2901 | 0 | const ObjCMethodDecl *Redecl) { |
2902 | 0 | assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration"); |
2903 | 0 | ObjCMethodRedecls[MD] = Redecl; |
2904 | 0 | } |
2905 | | |
2906 | | const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( |
2907 | 0 | const NamedDecl *ND) const { |
2908 | 0 | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) |
2909 | 0 | return ID; |
2910 | 0 | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) |
2911 | 0 | return CD->getClassInterface(); |
2912 | 0 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext())) |
2913 | 0 | return IMD->getClassInterface(); |
2914 | | |
2915 | 0 | return nullptr; |
2916 | 0 | } |
2917 | | |
2918 | | /// Get the copy initialization expression of VarDecl, or nullptr if |
2919 | | /// none exists. |
2920 | 0 | BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const { |
2921 | 0 | assert(VD && "Passed null params"); |
2922 | 0 | assert(VD->hasAttr<BlocksAttr>() && |
2923 | 0 | "getBlockVarCopyInits - not __block var"); |
2924 | 0 | auto I = BlockVarCopyInits.find(VD); |
2925 | 0 | if (I != BlockVarCopyInits.end()) |
2926 | 0 | return I->second; |
2927 | 0 | return {nullptr, false}; |
2928 | 0 | } |
2929 | | |
2930 | | /// Set the copy initialization expression of a block var decl. |
2931 | | void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr, |
2932 | 0 | bool CanThrow) { |
2933 | 0 | assert(VD && CopyExpr && "Passed null params"); |
2934 | 0 | assert(VD->hasAttr<BlocksAttr>() && |
2935 | 0 | "setBlockVarCopyInits - not __block var"); |
2936 | 0 | BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow); |
2937 | 0 | } |
2938 | | |
2939 | | TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, |
2940 | 5.51k | unsigned DataSize) const { |
2941 | 5.51k | if (!DataSize) |
2942 | 5.51k | DataSize = TypeLoc::getFullDataSizeForType(T); |
2943 | 4 | else |
2944 | 4 | assert(DataSize == TypeLoc::getFullDataSizeForType(T) && |
2945 | 5.51k | "incorrect data size provided to CreateTypeSourceInfo!"); |
2946 | | |
2947 | 0 | auto *TInfo = |
2948 | 5.51k | (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); |
2949 | 5.51k | new (TInfo) TypeSourceInfo(T, DataSize); |
2950 | 5.51k | return TInfo; |
2951 | 5.51k | } |
2952 | | |
2953 | | TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, |
2954 | 449 | SourceLocation L) const { |
2955 | 449 | TypeSourceInfo *DI = CreateTypeSourceInfo(T); |
2956 | 449 | DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); |
2957 | 449 | return DI; |
2958 | 449 | } |
2959 | | |
2960 | | const ASTRecordLayout & |
2961 | 0 | ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { |
2962 | 0 | return getObjCLayout(D, nullptr); |
2963 | 0 | } |
2964 | | |
2965 | | const ASTRecordLayout & |
2966 | | ASTContext::getASTObjCImplementationLayout( |
2967 | 0 | const ObjCImplementationDecl *D) const { |
2968 | 0 | return getObjCLayout(D->getClassInterface(), D); |
2969 | 0 | } |
2970 | | |
2971 | | static auto getCanonicalTemplateArguments(const ASTContext &C, |
2972 | | ArrayRef<TemplateArgument> Args, |
2973 | 0 | bool &AnyNonCanonArgs) { |
2974 | 0 | SmallVector<TemplateArgument, 16> CanonArgs(Args); |
2975 | 0 | for (auto &Arg : CanonArgs) { |
2976 | 0 | TemplateArgument OrigArg = Arg; |
2977 | 0 | Arg = C.getCanonicalTemplateArgument(Arg); |
2978 | 0 | AnyNonCanonArgs |= !Arg.structurallyEquals(OrigArg); |
2979 | 0 | } |
2980 | 0 | return CanonArgs; |
2981 | 0 | } |
2982 | | |
2983 | | //===----------------------------------------------------------------------===// |
2984 | | // Type creation/memoization methods |
2985 | | //===----------------------------------------------------------------------===// |
2986 | | |
2987 | | QualType |
2988 | 0 | ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { |
2989 | 0 | unsigned fastQuals = quals.getFastQualifiers(); |
2990 | 0 | quals.removeFastQualifiers(); |
2991 | | |
2992 | | // Check if we've already instantiated this type. |
2993 | 0 | llvm::FoldingSetNodeID ID; |
2994 | 0 | ExtQuals::Profile(ID, baseType, quals); |
2995 | 0 | void *insertPos = nullptr; |
2996 | 0 | if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { |
2997 | 0 | assert(eq->getQualifiers() == quals); |
2998 | 0 | return QualType(eq, fastQuals); |
2999 | 0 | } |
3000 | | |
3001 | | // If the base type is not canonical, make the appropriate canonical type. |
3002 | 0 | QualType canon; |
3003 | 0 | if (!baseType->isCanonicalUnqualified()) { |
3004 | 0 | SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); |
3005 | 0 | canonSplit.Quals.addConsistentQualifiers(quals); |
3006 | 0 | canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); |
3007 | | |
3008 | | // Re-find the insert position. |
3009 | 0 | (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); |
3010 | 0 | } |
3011 | |
|
3012 | 0 | auto *eq = new (*this, alignof(ExtQuals)) ExtQuals(baseType, canon, quals); |
3013 | 0 | ExtQualNodes.InsertNode(eq, insertPos); |
3014 | 0 | return QualType(eq, fastQuals); |
3015 | 0 | } |
3016 | | |
3017 | | QualType ASTContext::getAddrSpaceQualType(QualType T, |
3018 | 0 | LangAS AddressSpace) const { |
3019 | 0 | QualType CanT = getCanonicalType(T); |
3020 | 0 | if (CanT.getAddressSpace() == AddressSpace) |
3021 | 0 | return T; |
3022 | | |
3023 | | // If we are composing extended qualifiers together, merge together |
3024 | | // into one ExtQuals node. |
3025 | 0 | QualifierCollector Quals; |
3026 | 0 | const Type *TypeNode = Quals.strip(T); |
3027 | | |
3028 | | // If this type already has an address space specified, it cannot get |
3029 | | // another one. |
3030 | 0 | assert(!Quals.hasAddressSpace() && |
3031 | 0 | "Type cannot be in multiple addr spaces!"); |
3032 | 0 | Quals.addAddressSpace(AddressSpace); |
3033 | |
|
3034 | 0 | return getExtQualType(TypeNode, Quals); |
3035 | 0 | } |
3036 | | |
3037 | 0 | QualType ASTContext::removeAddrSpaceQualType(QualType T) const { |
3038 | | // If the type is not qualified with an address space, just return it |
3039 | | // immediately. |
3040 | 0 | if (!T.hasAddressSpace()) |
3041 | 0 | return T; |
3042 | | |
3043 | | // If we are composing extended qualifiers together, merge together |
3044 | | // into one ExtQuals node. |
3045 | 0 | QualifierCollector Quals; |
3046 | 0 | const Type *TypeNode; |
3047 | |
|
3048 | 0 | while (T.hasAddressSpace()) { |
3049 | 0 | TypeNode = Quals.strip(T); |
3050 | | |
3051 | | // If the type no longer has an address space after stripping qualifiers, |
3052 | | // jump out. |
3053 | 0 | if (!QualType(TypeNode, 0).hasAddressSpace()) |
3054 | 0 | break; |
3055 | | |
3056 | | // There might be sugar in the way. Strip it and try again. |
3057 | 0 | T = T.getSingleStepDesugaredType(*this); |
3058 | 0 | } |
3059 | |
|
3060 | 0 | Quals.removeAddressSpace(); |
3061 | | |
3062 | | // Removal of the address space can mean there are no longer any |
3063 | | // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) |
3064 | | // or required. |
3065 | 0 | if (Quals.hasNonFastQualifiers()) |
3066 | 0 | return getExtQualType(TypeNode, Quals); |
3067 | 0 | else |
3068 | 0 | return QualType(TypeNode, Quals.getFastQualifiers()); |
3069 | 0 | } |
3070 | | |
3071 | | QualType ASTContext::getObjCGCQualType(QualType T, |
3072 | 0 | Qualifiers::GC GCAttr) const { |
3073 | 0 | QualType CanT = getCanonicalType(T); |
3074 | 0 | if (CanT.getObjCGCAttr() == GCAttr) |
3075 | 0 | return T; |
3076 | | |
3077 | 0 | if (const auto *ptr = T->getAs<PointerType>()) { |
3078 | 0 | QualType Pointee = ptr->getPointeeType(); |
3079 | 0 | if (Pointee->isAnyPointerType()) { |
3080 | 0 | QualType ResultType = getObjCGCQualType(Pointee, GCAttr); |
3081 | 0 | return getPointerType(ResultType); |
3082 | 0 | } |
3083 | 0 | } |
3084 | | |
3085 | | // If we are composing extended qualifiers together, merge together |
3086 | | // into one ExtQuals node. |
3087 | 0 | QualifierCollector Quals; |
3088 | 0 | const Type *TypeNode = Quals.strip(T); |
3089 | | |
3090 | | // If this type already has an ObjCGC specified, it cannot get |
3091 | | // another one. |
3092 | 0 | assert(!Quals.hasObjCGCAttr() && |
3093 | 0 | "Type cannot have multiple ObjCGCs!"); |
3094 | 0 | Quals.addObjCGCAttr(GCAttr); |
3095 | |
|
3096 | 0 | return getExtQualType(TypeNode, Quals); |
3097 | 0 | } |
3098 | | |
3099 | 0 | QualType ASTContext::removePtrSizeAddrSpace(QualType T) const { |
3100 | 0 | if (const PointerType *Ptr = T->getAs<PointerType>()) { |
3101 | 0 | QualType Pointee = Ptr->getPointeeType(); |
3102 | 0 | if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) { |
3103 | 0 | return getPointerType(removeAddrSpaceQualType(Pointee)); |
3104 | 0 | } |
3105 | 0 | } |
3106 | 0 | return T; |
3107 | 0 | } |
3108 | | |
3109 | | const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, |
3110 | 0 | FunctionType::ExtInfo Info) { |
3111 | 0 | if (T->getExtInfo() == Info) |
3112 | 0 | return T; |
3113 | | |
3114 | 0 | QualType Result; |
3115 | 0 | if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) { |
3116 | 0 | Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); |
3117 | 0 | } else { |
3118 | 0 | const auto *FPT = cast<FunctionProtoType>(T); |
3119 | 0 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
3120 | 0 | EPI.ExtInfo = Info; |
3121 | 0 | Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); |
3122 | 0 | } |
3123 | |
|
3124 | 0 | return cast<FunctionType>(Result.getTypePtr()); |
3125 | 0 | } |
3126 | | |
3127 | | void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, |
3128 | 0 | QualType ResultType) { |
3129 | 0 | FD = FD->getMostRecentDecl(); |
3130 | 0 | while (true) { |
3131 | 0 | const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
3132 | 0 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
3133 | 0 | FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); |
3134 | 0 | if (FunctionDecl *Next = FD->getPreviousDecl()) |
3135 | 0 | FD = Next; |
3136 | 0 | else |
3137 | 0 | break; |
3138 | 0 | } |
3139 | 0 | if (ASTMutationListener *L = getASTMutationListener()) |
3140 | 0 | L->DeducedReturnType(FD, ResultType); |
3141 | 0 | } |
3142 | | |
3143 | | /// Get a function type and produce the equivalent function type with the |
3144 | | /// specified exception specification. Type sugar that can be present on a |
3145 | | /// declaration of a function with an exception specification is permitted |
3146 | | /// and preserved. Other type sugar (for instance, typedefs) is not. |
3147 | | QualType ASTContext::getFunctionTypeWithExceptionSpec( |
3148 | 0 | QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const { |
3149 | | // Might have some parens. |
3150 | 0 | if (const auto *PT = dyn_cast<ParenType>(Orig)) |
3151 | 0 | return getParenType( |
3152 | 0 | getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI)); |
3153 | | |
3154 | | // Might be wrapped in a macro qualified type. |
3155 | 0 | if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig)) |
3156 | 0 | return getMacroQualifiedType( |
3157 | 0 | getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI), |
3158 | 0 | MQT->getMacroIdentifier()); |
3159 | | |
3160 | | // Might have a calling-convention attribute. |
3161 | 0 | if (const auto *AT = dyn_cast<AttributedType>(Orig)) |
3162 | 0 | return getAttributedType( |
3163 | 0 | AT->getAttrKind(), |
3164 | 0 | getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI), |
3165 | 0 | getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI)); |
3166 | | |
3167 | | // Anything else must be a function type. Rebuild it with the new exception |
3168 | | // specification. |
3169 | 0 | const auto *Proto = Orig->castAs<FunctionProtoType>(); |
3170 | 0 | return getFunctionType( |
3171 | 0 | Proto->getReturnType(), Proto->getParamTypes(), |
3172 | 0 | Proto->getExtProtoInfo().withExceptionSpec(ESI)); |
3173 | 0 | } |
3174 | | |
3175 | | bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, |
3176 | 0 | QualType U) const { |
3177 | 0 | return hasSameType(T, U) || |
3178 | 0 | (getLangOpts().CPlusPlus17 && |
3179 | 0 | hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None), |
3180 | 0 | getFunctionTypeWithExceptionSpec(U, EST_None))); |
3181 | 0 | } |
3182 | | |
3183 | 0 | QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) { |
3184 | 0 | if (const auto *Proto = T->getAs<FunctionProtoType>()) { |
3185 | 0 | QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); |
3186 | 0 | SmallVector<QualType, 16> Args(Proto->param_types().size()); |
3187 | 0 | for (unsigned i = 0, n = Args.size(); i != n; ++i) |
3188 | 0 | Args[i] = removePtrSizeAddrSpace(Proto->param_types()[i]); |
3189 | 0 | return getFunctionType(RetTy, Args, Proto->getExtProtoInfo()); |
3190 | 0 | } |
3191 | | |
3192 | 0 | if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) { |
3193 | 0 | QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); |
3194 | 0 | return getFunctionNoProtoType(RetTy, Proto->getExtInfo()); |
3195 | 0 | } |
3196 | | |
3197 | 0 | return T; |
3198 | 0 | } |
3199 | | |
3200 | 0 | bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) { |
3201 | 0 | return hasSameType(T, U) || |
3202 | 0 | hasSameType(getFunctionTypeWithoutPtrSizes(T), |
3203 | 0 | getFunctionTypeWithoutPtrSizes(U)); |
3204 | 0 | } |
3205 | | |
3206 | | void ASTContext::adjustExceptionSpec( |
3207 | | FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, |
3208 | 0 | bool AsWritten) { |
3209 | | // Update the type. |
3210 | 0 | QualType Updated = |
3211 | 0 | getFunctionTypeWithExceptionSpec(FD->getType(), ESI); |
3212 | 0 | FD->setType(Updated); |
3213 | |
|
3214 | 0 | if (!AsWritten) |
3215 | 0 | return; |
3216 | | |
3217 | | // Update the type in the type source information too. |
3218 | 0 | if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { |
3219 | | // If the type and the type-as-written differ, we may need to update |
3220 | | // the type-as-written too. |
3221 | 0 | if (TSInfo->getType() != FD->getType()) |
3222 | 0 | Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI); |
3223 | | |
3224 | | // FIXME: When we get proper type location information for exceptions, |
3225 | | // we'll also have to rebuild the TypeSourceInfo. For now, we just patch |
3226 | | // up the TypeSourceInfo; |
3227 | 0 | assert(TypeLoc::getFullDataSizeForType(Updated) == |
3228 | 0 | TypeLoc::getFullDataSizeForType(TSInfo->getType()) && |
3229 | 0 | "TypeLoc size mismatch from updating exception specification"); |
3230 | 0 | TSInfo->overrideType(Updated); |
3231 | 0 | } |
3232 | 0 | } |
3233 | | |
3234 | | /// getComplexType - Return the uniqued reference to the type for a complex |
3235 | | /// number with the specified element type. |
3236 | 0 | QualType ASTContext::getComplexType(QualType T) const { |
3237 | | // Unique pointers, to guarantee there is only one pointer of a particular |
3238 | | // structure. |
3239 | 0 | llvm::FoldingSetNodeID ID; |
3240 | 0 | ComplexType::Profile(ID, T); |
3241 | |
|
3242 | 0 | void *InsertPos = nullptr; |
3243 | 0 | if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3244 | 0 | return QualType(CT, 0); |
3245 | | |
3246 | | // If the pointee type isn't canonical, this won't be a canonical type either, |
3247 | | // so fill in the canonical type field. |
3248 | 0 | QualType Canonical; |
3249 | 0 | if (!T.isCanonical()) { |
3250 | 0 | Canonical = getComplexType(getCanonicalType(T)); |
3251 | | |
3252 | | // Get the new insert position for the node we care about. |
3253 | 0 | ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
3254 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
3255 | 0 | } |
3256 | 0 | auto *New = new (*this, alignof(ComplexType)) ComplexType(T, Canonical); |
3257 | 0 | Types.push_back(New); |
3258 | 0 | ComplexTypes.InsertNode(New, InsertPos); |
3259 | 0 | return QualType(New, 0); |
3260 | 0 | } |
3261 | | |
3262 | | /// getPointerType - Return the uniqued reference to the type for a pointer to |
3263 | | /// the specified type. |
3264 | 493 | QualType ASTContext::getPointerType(QualType T) const { |
3265 | | // Unique pointers, to guarantee there is only one pointer of a particular |
3266 | | // structure. |
3267 | 493 | llvm::FoldingSetNodeID ID; |
3268 | 493 | PointerType::Profile(ID, T); |
3269 | | |
3270 | 493 | void *InsertPos = nullptr; |
3271 | 493 | if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3272 | 210 | return QualType(PT, 0); |
3273 | | |
3274 | | // If the pointee type isn't canonical, this won't be a canonical type either, |
3275 | | // so fill in the canonical type field. |
3276 | 283 | QualType Canonical; |
3277 | 283 | if (!T.isCanonical()) { |
3278 | 0 | Canonical = getPointerType(getCanonicalType(T)); |
3279 | | |
3280 | | // Get the new insert position for the node we care about. |
3281 | 0 | PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
3282 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
3283 | 0 | } |
3284 | 0 | auto *New = new (*this, alignof(PointerType)) PointerType(T, Canonical); |
3285 | 283 | Types.push_back(New); |
3286 | 283 | PointerTypes.InsertNode(New, InsertPos); |
3287 | 283 | return QualType(New, 0); |
3288 | 493 | } |
3289 | | |
3290 | 0 | QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { |
3291 | 0 | llvm::FoldingSetNodeID ID; |
3292 | 0 | AdjustedType::Profile(ID, Orig, New); |
3293 | 0 | void *InsertPos = nullptr; |
3294 | 0 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3295 | 0 | if (AT) |
3296 | 0 | return QualType(AT, 0); |
3297 | | |
3298 | 0 | QualType Canonical = getCanonicalType(New); |
3299 | | |
3300 | | // Get the new insert position for the node we care about. |
3301 | 0 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3302 | 0 | assert(!AT && "Shouldn't be in the map!"); |
3303 | | |
3304 | 0 | AT = new (*this, alignof(AdjustedType)) |
3305 | 0 | AdjustedType(Type::Adjusted, Orig, New, Canonical); |
3306 | 0 | Types.push_back(AT); |
3307 | 0 | AdjustedTypes.InsertNode(AT, InsertPos); |
3308 | 0 | return QualType(AT, 0); |
3309 | 0 | } |
3310 | | |
3311 | 0 | QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const { |
3312 | 0 | llvm::FoldingSetNodeID ID; |
3313 | 0 | AdjustedType::Profile(ID, Orig, Decayed); |
3314 | 0 | void *InsertPos = nullptr; |
3315 | 0 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3316 | 0 | if (AT) |
3317 | 0 | return QualType(AT, 0); |
3318 | | |
3319 | 0 | QualType Canonical = getCanonicalType(Decayed); |
3320 | | |
3321 | | // Get the new insert position for the node we care about. |
3322 | 0 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
3323 | 0 | assert(!AT && "Shouldn't be in the map!"); |
3324 | | |
3325 | 0 | AT = new (*this, alignof(DecayedType)) DecayedType(Orig, Decayed, Canonical); |
3326 | 0 | Types.push_back(AT); |
3327 | 0 | AdjustedTypes.InsertNode(AT, InsertPos); |
3328 | 0 | return QualType(AT, 0); |
3329 | 0 | } |
3330 | | |
3331 | 0 | QualType ASTContext::getDecayedType(QualType T) const { |
3332 | 0 | assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); |
3333 | | |
3334 | 0 | QualType Decayed; |
3335 | | |
3336 | | // C99 6.7.5.3p7: |
3337 | | // A declaration of a parameter as "array of type" shall be |
3338 | | // adjusted to "qualified pointer to type", where the type |
3339 | | // qualifiers (if any) are those specified within the [ and ] of |
3340 | | // the array type derivation. |
3341 | 0 | if (T->isArrayType()) |
3342 | 0 | Decayed = getArrayDecayedType(T); |
3343 | | |
3344 | | // C99 6.7.5.3p8: |
3345 | | // A declaration of a parameter as "function returning type" |
3346 | | // shall be adjusted to "pointer to function returning type", as |
3347 | | // in 6.3.2.1. |
3348 | 0 | if (T->isFunctionType()) |
3349 | 0 | Decayed = getPointerType(T); |
3350 | |
|
3351 | 0 | return getDecayedType(T, Decayed); |
3352 | 0 | } |
3353 | | |
3354 | | /// getBlockPointerType - Return the uniqued reference to the type for |
3355 | | /// a pointer to the specified block. |
3356 | 1 | QualType ASTContext::getBlockPointerType(QualType T) const { |
3357 | 1 | assert(T->isFunctionType() && "block of function types only"); |
3358 | | // Unique pointers, to guarantee there is only one block of a particular |
3359 | | // structure. |
3360 | 0 | llvm::FoldingSetNodeID ID; |
3361 | 1 | BlockPointerType::Profile(ID, T); |
3362 | | |
3363 | 1 | void *InsertPos = nullptr; |
3364 | 1 | if (BlockPointerType *PT = |
3365 | 1 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3366 | 0 | return QualType(PT, 0); |
3367 | | |
3368 | | // If the block pointee type isn't canonical, this won't be a canonical |
3369 | | // type either so fill in the canonical type field. |
3370 | 1 | QualType Canonical; |
3371 | 1 | if (!T.isCanonical()) { |
3372 | 0 | Canonical = getBlockPointerType(getCanonicalType(T)); |
3373 | | |
3374 | | // Get the new insert position for the node we care about. |
3375 | 0 | BlockPointerType *NewIP = |
3376 | 0 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
3377 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
3378 | 0 | } |
3379 | 0 | auto *New = |
3380 | 1 | new (*this, alignof(BlockPointerType)) BlockPointerType(T, Canonical); |
3381 | 1 | Types.push_back(New); |
3382 | 1 | BlockPointerTypes.InsertNode(New, InsertPos); |
3383 | 1 | return QualType(New, 0); |
3384 | 1 | } |
3385 | | |
3386 | | /// getLValueReferenceType - Return the uniqued reference to the type for an |
3387 | | /// lvalue reference to the specified type. |
3388 | | QualType |
3389 | 57 | ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { |
3390 | 57 | assert((!T->isPlaceholderType() || |
3391 | 57 | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && |
3392 | 57 | "Unresolved placeholder type"); |
3393 | | |
3394 | | // Unique pointers, to guarantee there is only one pointer of a particular |
3395 | | // structure. |
3396 | 0 | llvm::FoldingSetNodeID ID; |
3397 | 57 | ReferenceType::Profile(ID, T, SpelledAsLValue); |
3398 | | |
3399 | 57 | void *InsertPos = nullptr; |
3400 | 57 | if (LValueReferenceType *RT = |
3401 | 57 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3402 | 46 | return QualType(RT, 0); |
3403 | | |
3404 | 11 | const auto *InnerRef = T->getAs<ReferenceType>(); |
3405 | | |
3406 | | // If the referencee type isn't canonical, this won't be a canonical type |
3407 | | // either, so fill in the canonical type field. |
3408 | 11 | QualType Canonical; |
3409 | 11 | if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { |
3410 | 1 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
3411 | 1 | Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); |
3412 | | |
3413 | | // Get the new insert position for the node we care about. |
3414 | 1 | LValueReferenceType *NewIP = |
3415 | 1 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
3416 | 1 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
3417 | 1 | } |
3418 | | |
3419 | 0 | auto *New = new (*this, alignof(LValueReferenceType)) |
3420 | 11 | LValueReferenceType(T, Canonical, SpelledAsLValue); |
3421 | 11 | Types.push_back(New); |
3422 | 11 | LValueReferenceTypes.InsertNode(New, InsertPos); |
3423 | | |
3424 | 11 | return QualType(New, 0); |
3425 | 57 | } |
3426 | | |
3427 | | /// getRValueReferenceType - Return the uniqued reference to the type for an |
3428 | | /// rvalue reference to the specified type. |
3429 | 0 | QualType ASTContext::getRValueReferenceType(QualType T) const { |
3430 | 0 | assert((!T->isPlaceholderType() || |
3431 | 0 | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && |
3432 | 0 | "Unresolved placeholder type"); |
3433 | | |
3434 | | // Unique pointers, to guarantee there is only one pointer of a particular |
3435 | | // structure. |
3436 | 0 | llvm::FoldingSetNodeID ID; |
3437 | 0 | ReferenceType::Profile(ID, T, false); |
3438 | |
|
3439 | 0 | void *InsertPos = nullptr; |
3440 | 0 | if (RValueReferenceType *RT = |
3441 | 0 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3442 | 0 | return QualType(RT, 0); |
3443 | | |
3444 | 0 | const auto *InnerRef = T->getAs<ReferenceType>(); |
3445 | | |
3446 | | // If the referencee type isn't canonical, this won't be a canonical type |
3447 | | // either, so fill in the canonical type field. |
3448 | 0 | QualType Canonical; |
3449 | 0 | if (InnerRef || !T.isCanonical()) { |
3450 | 0 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
3451 | 0 | Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); |
3452 | | |
3453 | | // Get the new insert position for the node we care about. |
3454 | 0 | RValueReferenceType *NewIP = |
3455 | 0 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
3456 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
3457 | 0 | } |
3458 | | |
3459 | 0 | auto *New = new (*this, alignof(RValueReferenceType)) |
3460 | 0 | RValueReferenceType(T, Canonical); |
3461 | 0 | Types.push_back(New); |
3462 | 0 | RValueReferenceTypes.InsertNode(New, InsertPos); |
3463 | 0 | return QualType(New, 0); |
3464 | 0 | } |
3465 | | |
3466 | | /// getMemberPointerType - Return the uniqued reference to the type for a |
3467 | | /// member pointer to the specified type, in the specified class. |
3468 | 0 | QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { |
3469 | | // Unique pointers, to guarantee there is only one pointer of a particular |
3470 | | // structure. |
3471 | 0 | llvm::FoldingSetNodeID ID; |
3472 | 0 | MemberPointerType::Profile(ID, T, Cls); |
3473 | |
|
3474 | 0 | void *InsertPos = nullptr; |
3475 | 0 | if (MemberPointerType *PT = |
3476 | 0 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3477 | 0 | return QualType(PT, 0); |
3478 | | |
3479 | | // If the pointee or class type isn't canonical, this won't be a canonical |
3480 | | // type either, so fill in the canonical type field. |
3481 | 0 | QualType Canonical; |
3482 | 0 | if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { |
3483 | 0 | Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); |
3484 | | |
3485 | | // Get the new insert position for the node we care about. |
3486 | 0 | MemberPointerType *NewIP = |
3487 | 0 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
3488 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
3489 | 0 | } |
3490 | 0 | auto *New = new (*this, alignof(MemberPointerType)) |
3491 | 0 | MemberPointerType(T, Cls, Canonical); |
3492 | 0 | Types.push_back(New); |
3493 | 0 | MemberPointerTypes.InsertNode(New, InsertPos); |
3494 | 0 | return QualType(New, 0); |
3495 | 0 | } |
3496 | | |
3497 | | /// getConstantArrayType - Return the unique reference to the type for an |
3498 | | /// array of the specified element type. |
3499 | | QualType ASTContext::getConstantArrayType(QualType EltTy, |
3500 | | const llvm::APInt &ArySizeIn, |
3501 | | const Expr *SizeExpr, |
3502 | | ArraySizeModifier ASM, |
3503 | 53 | unsigned IndexTypeQuals) const { |
3504 | 53 | assert((EltTy->isDependentType() || |
3505 | 53 | EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && |
3506 | 53 | "Constant array of VLAs is illegal!"); |
3507 | | |
3508 | | // We only need the size as part of the type if it's instantiation-dependent. |
3509 | 53 | if (SizeExpr && !SizeExpr->isInstantiationDependent()) |
3510 | 5 | SizeExpr = nullptr; |
3511 | | |
3512 | | // Convert the array size into a canonical width matching the pointer size for |
3513 | | // the target. |
3514 | 53 | llvm::APInt ArySize(ArySizeIn); |
3515 | 53 | ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth()); |
3516 | | |
3517 | 53 | llvm::FoldingSetNodeID ID; |
3518 | 53 | ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM, |
3519 | 53 | IndexTypeQuals); |
3520 | | |
3521 | 53 | void *InsertPos = nullptr; |
3522 | 53 | if (ConstantArrayType *ATP = |
3523 | 53 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
3524 | 0 | return QualType(ATP, 0); |
3525 | | |
3526 | | // If the element type isn't canonical or has qualifiers, or the array bound |
3527 | | // is instantiation-dependent, this won't be a canonical type either, so fill |
3528 | | // in the canonical type field. |
3529 | 53 | QualType Canon; |
3530 | | // FIXME: Check below should look for qualifiers behind sugar. |
3531 | 53 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) { |
3532 | 1 | SplitQualType canonSplit = getCanonicalType(EltTy).split(); |
3533 | 1 | Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr, |
3534 | 1 | ASM, IndexTypeQuals); |
3535 | 1 | Canon = getQualifiedType(Canon, canonSplit.Quals); |
3536 | | |
3537 | | // Get the new insert position for the node we care about. |
3538 | 1 | ConstantArrayType *NewIP = |
3539 | 1 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
3540 | 1 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
3541 | 1 | } |
3542 | | |
3543 | 0 | void *Mem = Allocate( |
3544 | 53 | ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0), |
3545 | 53 | alignof(ConstantArrayType)); |
3546 | 53 | auto *New = new (Mem) |
3547 | 53 | ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals); |
3548 | 53 | ConstantArrayTypes.InsertNode(New, InsertPos); |
3549 | 53 | Types.push_back(New); |
3550 | 53 | return QualType(New, 0); |
3551 | 53 | } |
3552 | | |
3553 | | /// getVariableArrayDecayedType - Turns the given type, which may be |
3554 | | /// variably-modified, into the corresponding type with all the known |
3555 | | /// sizes replaced with [*]. |
3556 | 0 | QualType ASTContext::getVariableArrayDecayedType(QualType type) const { |
3557 | | // Vastly most common case. |
3558 | 0 | if (!type->isVariablyModifiedType()) return type; |
3559 | | |
3560 | 0 | QualType result; |
3561 | |
|
3562 | 0 | SplitQualType split = type.getSplitDesugaredType(); |
3563 | 0 | const Type *ty = split.Ty; |
3564 | 0 | switch (ty->getTypeClass()) { |
3565 | 0 | #define TYPE(Class, Base) |
3566 | 0 | #define ABSTRACT_TYPE(Class, Base) |
3567 | 0 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
3568 | 0 | #include "clang/AST/TypeNodes.inc" |
3569 | 0 | llvm_unreachable("didn't desugar past all non-canonical types?"); |
3570 | | |
3571 | | // These types should never be variably-modified. |
3572 | 0 | case Type::Builtin: |
3573 | 0 | case Type::Complex: |
3574 | 0 | case Type::Vector: |
3575 | 0 | case Type::DependentVector: |
3576 | 0 | case Type::ExtVector: |
3577 | 0 | case Type::DependentSizedExtVector: |
3578 | 0 | case Type::ConstantMatrix: |
3579 | 0 | case Type::DependentSizedMatrix: |
3580 | 0 | case Type::DependentAddressSpace: |
3581 | 0 | case Type::ObjCObject: |
3582 | 0 | case Type::ObjCInterface: |
3583 | 0 | case Type::ObjCObjectPointer: |
3584 | 0 | case Type::Record: |
3585 | 0 | case Type::Enum: |
3586 | 0 | case Type::UnresolvedUsing: |
3587 | 0 | case Type::TypeOfExpr: |
3588 | 0 | case Type::TypeOf: |
3589 | 0 | case Type::Decltype: |
3590 | 0 | case Type::UnaryTransform: |
3591 | 0 | case Type::DependentName: |
3592 | 0 | case Type::InjectedClassName: |
3593 | 0 | case Type::TemplateSpecialization: |
3594 | 0 | case Type::DependentTemplateSpecialization: |
3595 | 0 | case Type::TemplateTypeParm: |
3596 | 0 | case Type::SubstTemplateTypeParmPack: |
3597 | 0 | case Type::Auto: |
3598 | 0 | case Type::DeducedTemplateSpecialization: |
3599 | 0 | case Type::PackExpansion: |
3600 | 0 | case Type::BitInt: |
3601 | 0 | case Type::DependentBitInt: |
3602 | 0 | llvm_unreachable("type should never be variably-modified"); |
3603 | | |
3604 | | // These types can be variably-modified but should never need to |
3605 | | // further decay. |
3606 | 0 | case Type::FunctionNoProto: |
3607 | 0 | case Type::FunctionProto: |
3608 | 0 | case Type::BlockPointer: |
3609 | 0 | case Type::MemberPointer: |
3610 | 0 | case Type::Pipe: |
3611 | 0 | return type; |
3612 | | |
3613 | | // These types can be variably-modified. All these modifications |
3614 | | // preserve structure except as noted by comments. |
3615 | | // TODO: if we ever care about optimizing VLAs, there are no-op |
3616 | | // optimizations available here. |
3617 | 0 | case Type::Pointer: |
3618 | 0 | result = getPointerType(getVariableArrayDecayedType( |
3619 | 0 | cast<PointerType>(ty)->getPointeeType())); |
3620 | 0 | break; |
3621 | | |
3622 | 0 | case Type::LValueReference: { |
3623 | 0 | const auto *lv = cast<LValueReferenceType>(ty); |
3624 | 0 | result = getLValueReferenceType( |
3625 | 0 | getVariableArrayDecayedType(lv->getPointeeType()), |
3626 | 0 | lv->isSpelledAsLValue()); |
3627 | 0 | break; |
3628 | 0 | } |
3629 | | |
3630 | 0 | case Type::RValueReference: { |
3631 | 0 | const auto *lv = cast<RValueReferenceType>(ty); |
3632 | 0 | result = getRValueReferenceType( |
3633 | 0 | getVariableArrayDecayedType(lv->getPointeeType())); |
3634 | 0 | break; |
3635 | 0 | } |
3636 | | |
3637 | 0 | case Type::Atomic: { |
3638 | 0 | const auto *at = cast<AtomicType>(ty); |
3639 | 0 | result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); |
3640 | 0 | break; |
3641 | 0 | } |
3642 | | |
3643 | 0 | case Type::ConstantArray: { |
3644 | 0 | const auto *cat = cast<ConstantArrayType>(ty); |
3645 | 0 | result = getConstantArrayType( |
3646 | 0 | getVariableArrayDecayedType(cat->getElementType()), |
3647 | 0 | cat->getSize(), |
3648 | 0 | cat->getSizeExpr(), |
3649 | 0 | cat->getSizeModifier(), |
3650 | 0 | cat->getIndexTypeCVRQualifiers()); |
3651 | 0 | break; |
3652 | 0 | } |
3653 | | |
3654 | 0 | case Type::DependentSizedArray: { |
3655 | 0 | const auto *dat = cast<DependentSizedArrayType>(ty); |
3656 | 0 | result = getDependentSizedArrayType( |
3657 | 0 | getVariableArrayDecayedType(dat->getElementType()), |
3658 | 0 | dat->getSizeExpr(), |
3659 | 0 | dat->getSizeModifier(), |
3660 | 0 | dat->getIndexTypeCVRQualifiers(), |
3661 | 0 | dat->getBracketsRange()); |
3662 | 0 | break; |
3663 | 0 | } |
3664 | | |
3665 | | // Turn incomplete types into [*] types. |
3666 | 0 | case Type::IncompleteArray: { |
3667 | 0 | const auto *iat = cast<IncompleteArrayType>(ty); |
3668 | 0 | result = |
3669 | 0 | getVariableArrayType(getVariableArrayDecayedType(iat->getElementType()), |
3670 | 0 | /*size*/ nullptr, ArraySizeModifier::Normal, |
3671 | 0 | iat->getIndexTypeCVRQualifiers(), SourceRange()); |
3672 | 0 | break; |
3673 | 0 | } |
3674 | | |
3675 | | // Turn VLA types into [*] types. |
3676 | 0 | case Type::VariableArray: { |
3677 | 0 | const auto *vat = cast<VariableArrayType>(ty); |
3678 | 0 | result = getVariableArrayType( |
3679 | 0 | getVariableArrayDecayedType(vat->getElementType()), |
3680 | 0 | /*size*/ nullptr, ArraySizeModifier::Star, |
3681 | 0 | vat->getIndexTypeCVRQualifiers(), vat->getBracketsRange()); |
3682 | 0 | break; |
3683 | 0 | } |
3684 | 0 | } |
3685 | | |
3686 | | // Apply the top-level qualifiers from the original. |
3687 | 0 | return getQualifiedType(result, split.Quals); |
3688 | 0 | } |
3689 | | |
3690 | | /// getVariableArrayType - Returns a non-unique reference to the type for a |
3691 | | /// variable array of the specified element type. |
3692 | | QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, |
3693 | | ArraySizeModifier ASM, |
3694 | | unsigned IndexTypeQuals, |
3695 | 2 | SourceRange Brackets) const { |
3696 | | // Since we don't unique expressions, it isn't possible to unique VLA's |
3697 | | // that have an expression provided for their size. |
3698 | 2 | QualType Canon; |
3699 | | |
3700 | | // Be sure to pull qualifiers off the element type. |
3701 | | // FIXME: Check below should look for qualifiers behind sugar. |
3702 | 2 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { |
3703 | 0 | SplitQualType canonSplit = getCanonicalType(EltTy).split(); |
3704 | 0 | Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, |
3705 | 0 | IndexTypeQuals, Brackets); |
3706 | 0 | Canon = getQualifiedType(Canon, canonSplit.Quals); |
3707 | 0 | } |
3708 | | |
3709 | 2 | auto *New = new (*this, alignof(VariableArrayType)) |
3710 | 2 | VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); |
3711 | | |
3712 | 2 | VariableArrayTypes.push_back(New); |
3713 | 2 | Types.push_back(New); |
3714 | 2 | return QualType(New, 0); |
3715 | 2 | } |
3716 | | |
3717 | | /// getDependentSizedArrayType - Returns a non-unique reference to |
3718 | | /// the type for a dependently-sized array of the specified element |
3719 | | /// type. |
3720 | | QualType ASTContext::getDependentSizedArrayType(QualType elementType, |
3721 | | Expr *numElements, |
3722 | | ArraySizeModifier ASM, |
3723 | | unsigned elementTypeQuals, |
3724 | 36 | SourceRange brackets) const { |
3725 | 36 | assert((!numElements || numElements->isTypeDependent() || |
3726 | 36 | numElements->isValueDependent()) && |
3727 | 36 | "Size must be type- or value-dependent!"); |
3728 | | |
3729 | | // Dependently-sized array types that do not have a specified number |
3730 | | // of elements will have their sizes deduced from a dependent |
3731 | | // initializer. We do no canonicalization here at all, which is okay |
3732 | | // because they can't be used in most locations. |
3733 | 36 | if (!numElements) { |
3734 | 0 | auto *newType = new (*this, alignof(DependentSizedArrayType)) |
3735 | 0 | DependentSizedArrayType(elementType, QualType(), numElements, ASM, |
3736 | 0 | elementTypeQuals, brackets); |
3737 | 0 | Types.push_back(newType); |
3738 | 0 | return QualType(newType, 0); |
3739 | 0 | } |
3740 | | |
3741 | | // Otherwise, we actually build a new type every time, but we |
3742 | | // also build a canonical type. |
3743 | | |
3744 | 36 | SplitQualType canonElementType = getCanonicalType(elementType).split(); |
3745 | | |
3746 | 36 | void *insertPos = nullptr; |
3747 | 36 | llvm::FoldingSetNodeID ID; |
3748 | 36 | DependentSizedArrayType::Profile(ID, *this, |
3749 | 36 | QualType(canonElementType.Ty, 0), |
3750 | 36 | ASM, elementTypeQuals, numElements); |
3751 | | |
3752 | | // Look for an existing type with these properties. |
3753 | 36 | DependentSizedArrayType *canonTy = |
3754 | 36 | DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); |
3755 | | |
3756 | | // If we don't have one, build one. |
3757 | 36 | if (!canonTy) { |
3758 | 21 | canonTy = new (*this, alignof(DependentSizedArrayType)) |
3759 | 21 | DependentSizedArrayType(QualType(canonElementType.Ty, 0), QualType(), |
3760 | 21 | numElements, ASM, elementTypeQuals, brackets); |
3761 | 21 | DependentSizedArrayTypes.InsertNode(canonTy, insertPos); |
3762 | 21 | Types.push_back(canonTy); |
3763 | 21 | } |
3764 | | |
3765 | | // Apply qualifiers from the element type to the array. |
3766 | 36 | QualType canon = getQualifiedType(QualType(canonTy,0), |
3767 | 36 | canonElementType.Quals); |
3768 | | |
3769 | | // If we didn't need extra canonicalization for the element type or the size |
3770 | | // expression, then just use that as our result. |
3771 | 36 | if (QualType(canonElementType.Ty, 0) == elementType && |
3772 | 36 | canonTy->getSizeExpr() == numElements) |
3773 | 21 | return canon; |
3774 | | |
3775 | | // Otherwise, we need to build a type which follows the spelling |
3776 | | // of the element type. |
3777 | 15 | auto *sugaredType = new (*this, alignof(DependentSizedArrayType)) |
3778 | 15 | DependentSizedArrayType(elementType, canon, numElements, ASM, |
3779 | 15 | elementTypeQuals, brackets); |
3780 | 15 | Types.push_back(sugaredType); |
3781 | 15 | return QualType(sugaredType, 0); |
3782 | 36 | } |
3783 | | |
3784 | | QualType ASTContext::getIncompleteArrayType(QualType elementType, |
3785 | | ArraySizeModifier ASM, |
3786 | 0 | unsigned elementTypeQuals) const { |
3787 | 0 | llvm::FoldingSetNodeID ID; |
3788 | 0 | IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); |
3789 | |
|
3790 | 0 | void *insertPos = nullptr; |
3791 | 0 | if (IncompleteArrayType *iat = |
3792 | 0 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) |
3793 | 0 | return QualType(iat, 0); |
3794 | | |
3795 | | // If the element type isn't canonical, this won't be a canonical type |
3796 | | // either, so fill in the canonical type field. We also have to pull |
3797 | | // qualifiers off the element type. |
3798 | 0 | QualType canon; |
3799 | | |
3800 | | // FIXME: Check below should look for qualifiers behind sugar. |
3801 | 0 | if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { |
3802 | 0 | SplitQualType canonSplit = getCanonicalType(elementType).split(); |
3803 | 0 | canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), |
3804 | 0 | ASM, elementTypeQuals); |
3805 | 0 | canon = getQualifiedType(canon, canonSplit.Quals); |
3806 | | |
3807 | | // Get the new insert position for the node we care about. |
3808 | 0 | IncompleteArrayType *existing = |
3809 | 0 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); |
3810 | 0 | assert(!existing && "Shouldn't be in the map!"); (void) existing; |
3811 | 0 | } |
3812 | | |
3813 | 0 | auto *newType = new (*this, alignof(IncompleteArrayType)) |
3814 | 0 | IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); |
3815 | |
|
3816 | 0 | IncompleteArrayTypes.InsertNode(newType, insertPos); |
3817 | 0 | Types.push_back(newType); |
3818 | 0 | return QualType(newType, 0); |
3819 | 0 | } |
3820 | | |
3821 | | ASTContext::BuiltinVectorTypeInfo |
3822 | 0 | ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const { |
3823 | 0 | #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS) \ |
3824 | 0 | {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \ |
3825 | 0 | NUMVECTORS}; |
3826 | |
|
3827 | 0 | #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS) \ |
3828 | 0 | {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; |
3829 | |
|
3830 | 0 | switch (Ty->getKind()) { |
3831 | 0 | default: |
3832 | 0 | llvm_unreachable("Unsupported builtin vector type"); |
3833 | 0 | case BuiltinType::SveInt8: |
3834 | 0 | return SVE_INT_ELTTY(8, 16, true, 1); |
3835 | 0 | case BuiltinType::SveUint8: |
3836 | 0 | return SVE_INT_ELTTY(8, 16, false, 1); |
3837 | 0 | case BuiltinType::SveInt8x2: |
3838 | 0 | return SVE_INT_ELTTY(8, 16, true, 2); |
3839 | 0 | case BuiltinType::SveUint8x2: |
3840 | 0 | return SVE_INT_ELTTY(8, 16, false, 2); |
3841 | 0 | case BuiltinType::SveInt8x3: |
3842 | 0 | return SVE_INT_ELTTY(8, 16, true, 3); |
3843 | 0 | case BuiltinType::SveUint8x3: |
3844 | 0 | return SVE_INT_ELTTY(8, 16, false, 3); |
3845 | 0 | case BuiltinType::SveInt8x4: |
3846 | 0 | return SVE_INT_ELTTY(8, 16, true, 4); |
3847 | 0 | case BuiltinType::SveUint8x4: |
3848 | 0 | return SVE_INT_ELTTY(8, 16, false, 4); |
3849 | 0 | case BuiltinType::SveInt16: |
3850 | 0 | return SVE_INT_ELTTY(16, 8, true, 1); |
3851 | 0 | case BuiltinType::SveUint16: |
3852 | 0 | return SVE_INT_ELTTY(16, 8, false, 1); |
3853 | 0 | case BuiltinType::SveInt16x2: |
3854 | 0 | return SVE_INT_ELTTY(16, 8, true, 2); |
3855 | 0 | case BuiltinType::SveUint16x2: |
3856 | 0 | return SVE_INT_ELTTY(16, 8, false, 2); |
3857 | 0 | case BuiltinType::SveInt16x3: |
3858 | 0 | return SVE_INT_ELTTY(16, 8, true, 3); |
3859 | 0 | case BuiltinType::SveUint16x3: |
3860 | 0 | return SVE_INT_ELTTY(16, 8, false, 3); |
3861 | 0 | case BuiltinType::SveInt16x4: |
3862 | 0 | return SVE_INT_ELTTY(16, 8, true, 4); |
3863 | 0 | case BuiltinType::SveUint16x4: |
3864 | 0 | return SVE_INT_ELTTY(16, 8, false, 4); |
3865 | 0 | case BuiltinType::SveInt32: |
3866 | 0 | return SVE_INT_ELTTY(32, 4, true, 1); |
3867 | 0 | case BuiltinType::SveUint32: |
3868 | 0 | return SVE_INT_ELTTY(32, 4, false, 1); |
3869 | 0 | case BuiltinType::SveInt32x2: |
3870 | 0 | return SVE_INT_ELTTY(32, 4, true, 2); |
3871 | 0 | case BuiltinType::SveUint32x2: |
3872 | 0 | return SVE_INT_ELTTY(32, 4, false, 2); |
3873 | 0 | case BuiltinType::SveInt32x3: |
3874 | 0 | return SVE_INT_ELTTY(32, 4, true, 3); |
3875 | 0 | case BuiltinType::SveUint32x3: |
3876 | 0 | return SVE_INT_ELTTY(32, 4, false, 3); |
3877 | 0 | case BuiltinType::SveInt32x4: |
3878 | 0 | return SVE_INT_ELTTY(32, 4, true, 4); |
3879 | 0 | case BuiltinType::SveUint32x4: |
3880 | 0 | return SVE_INT_ELTTY(32, 4, false, 4); |
3881 | 0 | case BuiltinType::SveInt64: |
3882 | 0 | return SVE_INT_ELTTY(64, 2, true, 1); |
3883 | 0 | case BuiltinType::SveUint64: |
3884 | 0 | return SVE_INT_ELTTY(64, 2, false, 1); |
3885 | 0 | case BuiltinType::SveInt64x2: |
3886 | 0 | return SVE_INT_ELTTY(64, 2, true, 2); |
3887 | 0 | case BuiltinType::SveUint64x2: |
3888 | 0 | return SVE_INT_ELTTY(64, 2, false, 2); |
3889 | 0 | case BuiltinType::SveInt64x3: |
3890 | 0 | return SVE_INT_ELTTY(64, 2, true, 3); |
3891 | 0 | case BuiltinType::SveUint64x3: |
3892 | 0 | return SVE_INT_ELTTY(64, 2, false, 3); |
3893 | 0 | case BuiltinType::SveInt64x4: |
3894 | 0 | return SVE_INT_ELTTY(64, 2, true, 4); |
3895 | 0 | case BuiltinType::SveUint64x4: |
3896 | 0 | return SVE_INT_ELTTY(64, 2, false, 4); |
3897 | 0 | case BuiltinType::SveBool: |
3898 | 0 | return SVE_ELTTY(BoolTy, 16, 1); |
3899 | 0 | case BuiltinType::SveBoolx2: |
3900 | 0 | return SVE_ELTTY(BoolTy, 16, 2); |
3901 | 0 | case BuiltinType::SveBoolx4: |
3902 | 0 | return SVE_ELTTY(BoolTy, 16, 4); |
3903 | 0 | case BuiltinType::SveFloat16: |
3904 | 0 | return SVE_ELTTY(HalfTy, 8, 1); |
3905 | 0 | case BuiltinType::SveFloat16x2: |
3906 | 0 | return SVE_ELTTY(HalfTy, 8, 2); |
3907 | 0 | case BuiltinType::SveFloat16x3: |
3908 | 0 | return SVE_ELTTY(HalfTy, 8, 3); |
3909 | 0 | case BuiltinType::SveFloat16x4: |
3910 | 0 | return SVE_ELTTY(HalfTy, 8, 4); |
3911 | 0 | case BuiltinType::SveFloat32: |
3912 | 0 | return SVE_ELTTY(FloatTy, 4, 1); |
3913 | 0 | case BuiltinType::SveFloat32x2: |
3914 | 0 | return SVE_ELTTY(FloatTy, 4, 2); |
3915 | 0 | case BuiltinType::SveFloat32x3: |
3916 | 0 | return SVE_ELTTY(FloatTy, 4, 3); |
3917 | 0 | case BuiltinType::SveFloat32x4: |
3918 | 0 | return SVE_ELTTY(FloatTy, 4, 4); |
3919 | 0 | case BuiltinType::SveFloat64: |
3920 | 0 | return SVE_ELTTY(DoubleTy, 2, 1); |
3921 | 0 | case BuiltinType::SveFloat64x2: |
3922 | 0 | return SVE_ELTTY(DoubleTy, 2, 2); |
3923 | 0 | case BuiltinType::SveFloat64x3: |
3924 | 0 | return SVE_ELTTY(DoubleTy, 2, 3); |
3925 | 0 | case BuiltinType::SveFloat64x4: |
3926 | 0 | return SVE_ELTTY(DoubleTy, 2, 4); |
3927 | 0 | case BuiltinType::SveBFloat16: |
3928 | 0 | return SVE_ELTTY(BFloat16Ty, 8, 1); |
3929 | 0 | case BuiltinType::SveBFloat16x2: |
3930 | 0 | return SVE_ELTTY(BFloat16Ty, 8, 2); |
3931 | 0 | case BuiltinType::SveBFloat16x3: |
3932 | 0 | return SVE_ELTTY(BFloat16Ty, 8, 3); |
3933 | 0 | case BuiltinType::SveBFloat16x4: |
3934 | 0 | return SVE_ELTTY(BFloat16Ty, 8, 4); |
3935 | 0 | #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF, \ |
3936 | 0 | IsSigned) \ |
3937 | 0 | case BuiltinType::Id: \ |
3938 | 0 | return {getIntTypeForBitwidth(ElBits, IsSigned), \ |
3939 | 0 | llvm::ElementCount::getScalable(NumEls), NF}; |
3940 | 0 | #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ |
3941 | 0 | case BuiltinType::Id: \ |
3942 | 0 | return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy), \ |
3943 | 0 | llvm::ElementCount::getScalable(NumEls), NF}; |
3944 | 0 | #define RVV_VECTOR_TYPE_BFLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ |
3945 | 0 | case BuiltinType::Id: \ |
3946 | 0 | return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF}; |
3947 | 0 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
3948 | 0 | case BuiltinType::Id: \ |
3949 | 0 | return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1}; |
3950 | 0 | #include "clang/Basic/RISCVVTypes.def" |
3951 | 0 | } |
3952 | 0 | } |
3953 | | |
3954 | | /// getExternrefType - Return a WebAssembly externref type, which represents an |
3955 | | /// opaque reference to a host value. |
3956 | 0 | QualType ASTContext::getWebAssemblyExternrefType() const { |
3957 | 0 | if (Target->getTriple().isWasm() && Target->hasFeature("reference-types")) { |
3958 | 0 | #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \ |
3959 | 0 | if (BuiltinType::Id == BuiltinType::WasmExternRef) \ |
3960 | 0 | return SingletonId; |
3961 | 0 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
3962 | 0 | } |
3963 | 0 | llvm_unreachable( |
3964 | 0 | "shouldn't try to generate type externref outside WebAssembly target"); |
3965 | 0 | } |
3966 | | |
3967 | | /// getScalableVectorType - Return the unique reference to a scalable vector |
3968 | | /// type of the specified element type and size. VectorType must be a built-in |
3969 | | /// type. |
3970 | | QualType ASTContext::getScalableVectorType(QualType EltTy, unsigned NumElts, |
3971 | 0 | unsigned NumFields) const { |
3972 | 0 | if (Target->hasAArch64SVETypes()) { |
3973 | 0 | uint64_t EltTySize = getTypeSize(EltTy); |
3974 | 0 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ |
3975 | 0 | IsSigned, IsFP, IsBF) \ |
3976 | 0 | if (!EltTy->isBooleanType() && \ |
3977 | 0 | ((EltTy->hasIntegerRepresentation() && \ |
3978 | 0 | EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ |
3979 | 0 | (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ |
3980 | 0 | IsFP && !IsBF) || \ |
3981 | 0 | (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ |
3982 | 0 | IsBF && !IsFP)) && \ |
3983 | 0 | EltTySize == ElBits && NumElts == NumEls) { \ |
3984 | 0 | return SingletonId; \ |
3985 | 0 | } |
3986 | 0 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ |
3987 | 0 | if (EltTy->isBooleanType() && NumElts == NumEls) \ |
3988 | 0 | return SingletonId; |
3989 | 0 | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingleTonId) |
3990 | 0 | #include "clang/Basic/AArch64SVEACLETypes.def" |
3991 | 0 | } else if (Target->hasRISCVVTypes()) { |
3992 | 0 | uint64_t EltTySize = getTypeSize(EltTy); |
3993 | 0 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \ |
3994 | 0 | IsFP, IsBF) \ |
3995 | 0 | if (!EltTy->isBooleanType() && \ |
3996 | 0 | ((EltTy->hasIntegerRepresentation() && \ |
3997 | 0 | EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ |
3998 | 0 | (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ |
3999 | 0 | IsFP && !IsBF) || \ |
4000 | 0 | (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ |
4001 | 0 | IsBF && !IsFP)) && \ |
4002 | 0 | EltTySize == ElBits && NumElts == NumEls && NumFields == NF) \ |
4003 | 0 | return SingletonId; |
4004 | 0 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
4005 | 0 | if (EltTy->isBooleanType() && NumElts == NumEls) \ |
4006 | 0 | return SingletonId; |
4007 | 0 | #include "clang/Basic/RISCVVTypes.def" |
4008 | 0 | } |
4009 | 0 | return QualType(); |
4010 | 0 | } |
4011 | | |
4012 | | /// getVectorType - Return the unique reference to a vector type of |
4013 | | /// the specified element type and size. VectorType must be a built-in type. |
4014 | | QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, |
4015 | 0 | VectorKind VecKind) const { |
4016 | 0 | assert(vecType->isBuiltinType() || |
4017 | 0 | (vecType->isBitIntType() && |
4018 | | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
4019 | 0 | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) && |
4020 | 0 | vecType->castAs<BitIntType>()->getNumBits() >= 8)); |
4021 | | |
4022 | | // Check if we've already instantiated a vector of this type. |
4023 | 0 | llvm::FoldingSetNodeID ID; |
4024 | 0 | VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); |
4025 | |
|
4026 | 0 | void *InsertPos = nullptr; |
4027 | 0 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4028 | 0 | return QualType(VTP, 0); |
4029 | | |
4030 | | // If the element type isn't canonical, this won't be a canonical type either, |
4031 | | // so fill in the canonical type field. |
4032 | 0 | QualType Canonical; |
4033 | 0 | if (!vecType.isCanonical()) { |
4034 | 0 | Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); |
4035 | | |
4036 | | // Get the new insert position for the node we care about. |
4037 | 0 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4038 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
4039 | 0 | } |
4040 | 0 | auto *New = new (*this, alignof(VectorType)) |
4041 | 0 | VectorType(vecType, NumElts, Canonical, VecKind); |
4042 | 0 | VectorTypes.InsertNode(New, InsertPos); |
4043 | 0 | Types.push_back(New); |
4044 | 0 | return QualType(New, 0); |
4045 | 0 | } |
4046 | | |
4047 | | QualType ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, |
4048 | | SourceLocation AttrLoc, |
4049 | 0 | VectorKind VecKind) const { |
4050 | 0 | llvm::FoldingSetNodeID ID; |
4051 | 0 | DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr, |
4052 | 0 | VecKind); |
4053 | 0 | void *InsertPos = nullptr; |
4054 | 0 | DependentVectorType *Canon = |
4055 | 0 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4056 | 0 | DependentVectorType *New; |
4057 | |
|
4058 | 0 | if (Canon) { |
4059 | 0 | New = new (*this, alignof(DependentVectorType)) DependentVectorType( |
4060 | 0 | VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); |
4061 | 0 | } else { |
4062 | 0 | QualType CanonVecTy = getCanonicalType(VecType); |
4063 | 0 | if (CanonVecTy == VecType) { |
4064 | 0 | New = new (*this, alignof(DependentVectorType)) |
4065 | 0 | DependentVectorType(VecType, QualType(), SizeExpr, AttrLoc, VecKind); |
4066 | |
|
4067 | 0 | DependentVectorType *CanonCheck = |
4068 | 0 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4069 | 0 | assert(!CanonCheck && |
4070 | 0 | "Dependent-sized vector_size canonical type broken"); |
4071 | 0 | (void)CanonCheck; |
4072 | 0 | DependentVectorTypes.InsertNode(New, InsertPos); |
4073 | 0 | } else { |
4074 | 0 | QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr, |
4075 | 0 | SourceLocation(), VecKind); |
4076 | 0 | New = new (*this, alignof(DependentVectorType)) |
4077 | 0 | DependentVectorType(VecType, CanonTy, SizeExpr, AttrLoc, VecKind); |
4078 | 0 | } |
4079 | 0 | } |
4080 | | |
4081 | 0 | Types.push_back(New); |
4082 | 0 | return QualType(New, 0); |
4083 | 0 | } |
4084 | | |
4085 | | /// getExtVectorType - Return the unique reference to an extended vector type of |
4086 | | /// the specified element type and size. VectorType must be a built-in type. |
4087 | | QualType ASTContext::getExtVectorType(QualType vecType, |
4088 | 0 | unsigned NumElts) const { |
4089 | 0 | assert(vecType->isBuiltinType() || vecType->isDependentType() || |
4090 | 0 | (vecType->isBitIntType() && |
4091 | | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
4092 | 0 | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()) && |
4093 | 0 | vecType->castAs<BitIntType>()->getNumBits() >= 8)); |
4094 | | |
4095 | | // Check if we've already instantiated a vector of this type. |
4096 | 0 | llvm::FoldingSetNodeID ID; |
4097 | 0 | VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, |
4098 | 0 | VectorKind::Generic); |
4099 | 0 | void *InsertPos = nullptr; |
4100 | 0 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4101 | 0 | return QualType(VTP, 0); |
4102 | | |
4103 | | // If the element type isn't canonical, this won't be a canonical type either, |
4104 | | // so fill in the canonical type field. |
4105 | 0 | QualType Canonical; |
4106 | 0 | if (!vecType.isCanonical()) { |
4107 | 0 | Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); |
4108 | | |
4109 | | // Get the new insert position for the node we care about. |
4110 | 0 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4111 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
4112 | 0 | } |
4113 | 0 | auto *New = new (*this, alignof(ExtVectorType)) |
4114 | 0 | ExtVectorType(vecType, NumElts, Canonical); |
4115 | 0 | VectorTypes.InsertNode(New, InsertPos); |
4116 | 0 | Types.push_back(New); |
4117 | 0 | return QualType(New, 0); |
4118 | 0 | } |
4119 | | |
4120 | | QualType |
4121 | | ASTContext::getDependentSizedExtVectorType(QualType vecType, |
4122 | | Expr *SizeExpr, |
4123 | 0 | SourceLocation AttrLoc) const { |
4124 | 0 | llvm::FoldingSetNodeID ID; |
4125 | 0 | DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), |
4126 | 0 | SizeExpr); |
4127 | |
|
4128 | 0 | void *InsertPos = nullptr; |
4129 | 0 | DependentSizedExtVectorType *Canon |
4130 | 0 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4131 | 0 | DependentSizedExtVectorType *New; |
4132 | 0 | if (Canon) { |
4133 | | // We already have a canonical version of this array type; use it as |
4134 | | // the canonical type for a newly-built type. |
4135 | 0 | New = new (*this, alignof(DependentSizedExtVectorType)) |
4136 | 0 | DependentSizedExtVectorType(vecType, QualType(Canon, 0), SizeExpr, |
4137 | 0 | AttrLoc); |
4138 | 0 | } else { |
4139 | 0 | QualType CanonVecTy = getCanonicalType(vecType); |
4140 | 0 | if (CanonVecTy == vecType) { |
4141 | 0 | New = new (*this, alignof(DependentSizedExtVectorType)) |
4142 | 0 | DependentSizedExtVectorType(vecType, QualType(), SizeExpr, AttrLoc); |
4143 | |
|
4144 | 0 | DependentSizedExtVectorType *CanonCheck |
4145 | 0 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
4146 | 0 | assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); |
4147 | 0 | (void)CanonCheck; |
4148 | 0 | DependentSizedExtVectorTypes.InsertNode(New, InsertPos); |
4149 | 0 | } else { |
4150 | 0 | QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, |
4151 | 0 | SourceLocation()); |
4152 | 0 | New = new (*this, alignof(DependentSizedExtVectorType)) |
4153 | 0 | DependentSizedExtVectorType(vecType, CanonExtTy, SizeExpr, AttrLoc); |
4154 | 0 | } |
4155 | 0 | } |
4156 | | |
4157 | 0 | Types.push_back(New); |
4158 | 0 | return QualType(New, 0); |
4159 | 0 | } |
4160 | | |
4161 | | QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows, |
4162 | 0 | unsigned NumColumns) const { |
4163 | 0 | llvm::FoldingSetNodeID ID; |
4164 | 0 | ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns, |
4165 | 0 | Type::ConstantMatrix); |
4166 | |
|
4167 | 0 | assert(MatrixType::isValidElementType(ElementTy) && |
4168 | 0 | "need a valid element type"); |
4169 | 0 | assert(ConstantMatrixType::isDimensionValid(NumRows) && |
4170 | 0 | ConstantMatrixType::isDimensionValid(NumColumns) && |
4171 | 0 | "need valid matrix dimensions"); |
4172 | 0 | void *InsertPos = nullptr; |
4173 | 0 | if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4174 | 0 | return QualType(MTP, 0); |
4175 | | |
4176 | 0 | QualType Canonical; |
4177 | 0 | if (!ElementTy.isCanonical()) { |
4178 | 0 | Canonical = |
4179 | 0 | getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns); |
4180 | |
|
4181 | 0 | ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
4182 | 0 | assert(!NewIP && "Matrix type shouldn't already exist in the map"); |
4183 | 0 | (void)NewIP; |
4184 | 0 | } |
4185 | | |
4186 | 0 | auto *New = new (*this, alignof(ConstantMatrixType)) |
4187 | 0 | ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical); |
4188 | 0 | MatrixTypes.InsertNode(New, InsertPos); |
4189 | 0 | Types.push_back(New); |
4190 | 0 | return QualType(New, 0); |
4191 | 0 | } |
4192 | | |
4193 | | QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy, |
4194 | | Expr *RowExpr, |
4195 | | Expr *ColumnExpr, |
4196 | 0 | SourceLocation AttrLoc) const { |
4197 | 0 | QualType CanonElementTy = getCanonicalType(ElementTy); |
4198 | 0 | llvm::FoldingSetNodeID ID; |
4199 | 0 | DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr, |
4200 | 0 | ColumnExpr); |
4201 | |
|
4202 | 0 | void *InsertPos = nullptr; |
4203 | 0 | DependentSizedMatrixType *Canon = |
4204 | 0 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
4205 | |
|
4206 | 0 | if (!Canon) { |
4207 | 0 | Canon = new (*this, alignof(DependentSizedMatrixType)) |
4208 | 0 | DependentSizedMatrixType(CanonElementTy, QualType(), RowExpr, |
4209 | 0 | ColumnExpr, AttrLoc); |
4210 | 0 | #ifndef NDEBUG |
4211 | 0 | DependentSizedMatrixType *CanonCheck = |
4212 | 0 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
4213 | 0 | assert(!CanonCheck && "Dependent-sized matrix canonical type broken"); |
4214 | 0 | #endif |
4215 | 0 | DependentSizedMatrixTypes.InsertNode(Canon, InsertPos); |
4216 | 0 | Types.push_back(Canon); |
4217 | 0 | } |
4218 | | |
4219 | | // Already have a canonical version of the matrix type |
4220 | | // |
4221 | | // If it exactly matches the requested type, use it directly. |
4222 | 0 | if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr && |
4223 | 0 | Canon->getRowExpr() == ColumnExpr) |
4224 | 0 | return QualType(Canon, 0); |
4225 | | |
4226 | | // Use Canon as the canonical type for newly-built type. |
4227 | 0 | DependentSizedMatrixType *New = new (*this, alignof(DependentSizedMatrixType)) |
4228 | 0 | DependentSizedMatrixType(ElementTy, QualType(Canon, 0), RowExpr, |
4229 | 0 | ColumnExpr, AttrLoc); |
4230 | 0 | Types.push_back(New); |
4231 | 0 | return QualType(New, 0); |
4232 | 0 | } |
4233 | | |
4234 | | QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, |
4235 | | Expr *AddrSpaceExpr, |
4236 | 0 | SourceLocation AttrLoc) const { |
4237 | 0 | assert(AddrSpaceExpr->isInstantiationDependent()); |
4238 | | |
4239 | 0 | QualType canonPointeeType = getCanonicalType(PointeeType); |
4240 | |
|
4241 | 0 | void *insertPos = nullptr; |
4242 | 0 | llvm::FoldingSetNodeID ID; |
4243 | 0 | DependentAddressSpaceType::Profile(ID, *this, canonPointeeType, |
4244 | 0 | AddrSpaceExpr); |
4245 | |
|
4246 | 0 | DependentAddressSpaceType *canonTy = |
4247 | 0 | DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos); |
4248 | |
|
4249 | 0 | if (!canonTy) { |
4250 | 0 | canonTy = new (*this, alignof(DependentAddressSpaceType)) |
4251 | 0 | DependentAddressSpaceType(canonPointeeType, QualType(), AddrSpaceExpr, |
4252 | 0 | AttrLoc); |
4253 | 0 | DependentAddressSpaceTypes.InsertNode(canonTy, insertPos); |
4254 | 0 | Types.push_back(canonTy); |
4255 | 0 | } |
4256 | |
|
4257 | 0 | if (canonPointeeType == PointeeType && |
4258 | 0 | canonTy->getAddrSpaceExpr() == AddrSpaceExpr) |
4259 | 0 | return QualType(canonTy, 0); |
4260 | | |
4261 | 0 | auto *sugaredType = new (*this, alignof(DependentAddressSpaceType)) |
4262 | 0 | DependentAddressSpaceType(PointeeType, QualType(canonTy, 0), |
4263 | 0 | AddrSpaceExpr, AttrLoc); |
4264 | 0 | Types.push_back(sugaredType); |
4265 | 0 | return QualType(sugaredType, 0); |
4266 | 0 | } |
4267 | | |
4268 | | /// Determine whether \p T is canonical as the result type of a function. |
4269 | 20 | static bool isCanonicalResultType(QualType T) { |
4270 | 20 | return T.isCanonical() && |
4271 | 20 | (T.getObjCLifetime() == Qualifiers::OCL_None || |
4272 | 20 | T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); |
4273 | 20 | } |
4274 | | |
4275 | | /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. |
4276 | | QualType |
4277 | | ASTContext::getFunctionNoProtoType(QualType ResultTy, |
4278 | 11 | const FunctionType::ExtInfo &Info) const { |
4279 | | // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter |
4280 | | // functionality creates a function without a prototype regardless of |
4281 | | // language mode (so it makes them even in C++). Once the rewriter has been |
4282 | | // fixed, this assertion can be enabled again. |
4283 | | //assert(!LangOpts.requiresStrictPrototypes() && |
4284 | | // "strict prototypes are disabled"); |
4285 | | |
4286 | | // Unique functions, to guarantee there is only one function of a particular |
4287 | | // structure. |
4288 | 11 | llvm::FoldingSetNodeID ID; |
4289 | 11 | FunctionNoProtoType::Profile(ID, ResultTy, Info); |
4290 | | |
4291 | 11 | void *InsertPos = nullptr; |
4292 | 11 | if (FunctionNoProtoType *FT = |
4293 | 11 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4294 | 3 | return QualType(FT, 0); |
4295 | | |
4296 | 8 | QualType Canonical; |
4297 | 8 | if (!isCanonicalResultType(ResultTy)) { |
4298 | 0 | Canonical = |
4299 | 0 | getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info); |
4300 | | |
4301 | | // Get the new insert position for the node we care about. |
4302 | 0 | FunctionNoProtoType *NewIP = |
4303 | 0 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
4304 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
4305 | 0 | } |
4306 | | |
4307 | 0 | auto *New = new (*this, alignof(FunctionNoProtoType)) |
4308 | 8 | FunctionNoProtoType(ResultTy, Canonical, Info); |
4309 | 8 | Types.push_back(New); |
4310 | 8 | FunctionNoProtoTypes.InsertNode(New, InsertPos); |
4311 | 8 | return QualType(New, 0); |
4312 | 11 | } |
4313 | | |
4314 | | CanQualType |
4315 | 0 | ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { |
4316 | 0 | CanQualType CanResultType = getCanonicalType(ResultType); |
4317 | | |
4318 | | // Canonical result types do not have ARC lifetime qualifiers. |
4319 | 0 | if (CanResultType.getQualifiers().hasObjCLifetime()) { |
4320 | 0 | Qualifiers Qs = CanResultType.getQualifiers(); |
4321 | 0 | Qs.removeObjCLifetime(); |
4322 | 0 | return CanQualType::CreateUnsafe( |
4323 | 0 | getQualifiedType(CanResultType.getUnqualifiedType(), Qs)); |
4324 | 0 | } |
4325 | | |
4326 | 0 | return CanResultType; |
4327 | 0 | } |
4328 | | |
4329 | | static bool isCanonicalExceptionSpecification( |
4330 | 12 | const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { |
4331 | 12 | if (ESI.Type == EST_None) |
4332 | 12 | return true; |
4333 | 0 | if (!NoexceptInType) |
4334 | 0 | return false; |
4335 | | |
4336 | | // C++17 onwards: exception specification is part of the type, as a simple |
4337 | | // boolean "can this function type throw". |
4338 | 0 | if (ESI.Type == EST_BasicNoexcept) |
4339 | 0 | return true; |
4340 | | |
4341 | | // A noexcept(expr) specification is (possibly) canonical if expr is |
4342 | | // value-dependent. |
4343 | 0 | if (ESI.Type == EST_DependentNoexcept) |
4344 | 0 | return true; |
4345 | | |
4346 | | // A dynamic exception specification is canonical if it only contains pack |
4347 | | // expansions (so we can't tell whether it's non-throwing) and all its |
4348 | | // contained types are canonical. |
4349 | 0 | if (ESI.Type == EST_Dynamic) { |
4350 | 0 | bool AnyPackExpansions = false; |
4351 | 0 | for (QualType ET : ESI.Exceptions) { |
4352 | 0 | if (!ET.isCanonical()) |
4353 | 0 | return false; |
4354 | 0 | if (ET->getAs<PackExpansionType>()) |
4355 | 0 | AnyPackExpansions = true; |
4356 | 0 | } |
4357 | 0 | return AnyPackExpansions; |
4358 | 0 | } |
4359 | | |
4360 | 0 | return false; |
4361 | 0 | } |
4362 | | |
4363 | | QualType ASTContext::getFunctionTypeInternal( |
4364 | | QualType ResultTy, ArrayRef<QualType> ArgArray, |
4365 | 14 | const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { |
4366 | 14 | size_t NumArgs = ArgArray.size(); |
4367 | | |
4368 | | // Unique functions, to guarantee there is only one function of a particular |
4369 | | // structure. |
4370 | 14 | llvm::FoldingSetNodeID ID; |
4371 | 14 | FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, |
4372 | 14 | *this, true); |
4373 | | |
4374 | 14 | QualType Canonical; |
4375 | 14 | bool Unique = false; |
4376 | | |
4377 | 14 | void *InsertPos = nullptr; |
4378 | 14 | if (FunctionProtoType *FPT = |
4379 | 14 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
4380 | 2 | QualType Existing = QualType(FPT, 0); |
4381 | | |
4382 | | // If we find a pre-existing equivalent FunctionProtoType, we can just reuse |
4383 | | // it so long as our exception specification doesn't contain a dependent |
4384 | | // noexcept expression, or we're just looking for a canonical type. |
4385 | | // Otherwise, we're going to need to create a type |
4386 | | // sugar node to hold the concrete expression. |
4387 | 2 | if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) || |
4388 | 2 | EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) |
4389 | 2 | return Existing; |
4390 | | |
4391 | | // We need a new type sugar node for this one, to hold the new noexcept |
4392 | | // expression. We do no canonicalization here, but that's OK since we don't |
4393 | | // expect to see the same noexcept expression much more than once. |
4394 | 0 | Canonical = getCanonicalType(Existing); |
4395 | 0 | Unique = true; |
4396 | 0 | } |
4397 | | |
4398 | 12 | bool NoexceptInType = getLangOpts().CPlusPlus17; |
4399 | 12 | bool IsCanonicalExceptionSpec = |
4400 | 12 | isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType); |
4401 | | |
4402 | | // Determine whether the type being created is already canonical or not. |
4403 | 12 | bool isCanonical = !Unique && IsCanonicalExceptionSpec && |
4404 | 12 | isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn; |
4405 | 19 | for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
4406 | 7 | if (!ArgArray[i].isCanonicalAsParam()) |
4407 | 0 | isCanonical = false; |
4408 | | |
4409 | 12 | if (OnlyWantCanonical) |
4410 | 0 | assert(isCanonical && |
4411 | 12 | "given non-canonical parameters constructing canonical type"); |
4412 | | |
4413 | | // If this type isn't canonical, get the canonical version of it if we don't |
4414 | | // already have it. The exception spec is only partially part of the |
4415 | | // canonical type, and only in C++17 onwards. |
4416 | 12 | if (!isCanonical && Canonical.isNull()) { |
4417 | 0 | SmallVector<QualType, 16> CanonicalArgs; |
4418 | 0 | CanonicalArgs.reserve(NumArgs); |
4419 | 0 | for (unsigned i = 0; i != NumArgs; ++i) |
4420 | 0 | CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); |
4421 | |
|
4422 | 0 | llvm::SmallVector<QualType, 8> ExceptionTypeStorage; |
4423 | 0 | FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; |
4424 | 0 | CanonicalEPI.HasTrailingReturn = false; |
4425 | |
|
4426 | 0 | if (IsCanonicalExceptionSpec) { |
4427 | | // Exception spec is already OK. |
4428 | 0 | } else if (NoexceptInType) { |
4429 | 0 | switch (EPI.ExceptionSpec.Type) { |
4430 | 0 | case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: |
4431 | | // We don't know yet. It shouldn't matter what we pick here; no-one |
4432 | | // should ever look at this. |
4433 | 0 | [[fallthrough]]; |
4434 | 0 | case EST_None: case EST_MSAny: case EST_NoexceptFalse: |
4435 | 0 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
4436 | 0 | break; |
4437 | | |
4438 | | // A dynamic exception specification is almost always "not noexcept", |
4439 | | // with the exception that a pack expansion might expand to no types. |
4440 | 0 | case EST_Dynamic: { |
4441 | 0 | bool AnyPacks = false; |
4442 | 0 | for (QualType ET : EPI.ExceptionSpec.Exceptions) { |
4443 | 0 | if (ET->getAs<PackExpansionType>()) |
4444 | 0 | AnyPacks = true; |
4445 | 0 | ExceptionTypeStorage.push_back(getCanonicalType(ET)); |
4446 | 0 | } |
4447 | 0 | if (!AnyPacks) |
4448 | 0 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
4449 | 0 | else { |
4450 | 0 | CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; |
4451 | 0 | CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; |
4452 | 0 | } |
4453 | 0 | break; |
4454 | 0 | } |
4455 | | |
4456 | 0 | case EST_DynamicNone: |
4457 | 0 | case EST_BasicNoexcept: |
4458 | 0 | case EST_NoexceptTrue: |
4459 | 0 | case EST_NoThrow: |
4460 | 0 | CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; |
4461 | 0 | break; |
4462 | | |
4463 | 0 | case EST_DependentNoexcept: |
4464 | 0 | llvm_unreachable("dependent noexcept is already canonical"); |
4465 | 0 | } |
4466 | 0 | } else { |
4467 | 0 | CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); |
4468 | 0 | } |
4469 | | |
4470 | | // Adjust the canonical function result type. |
4471 | 0 | CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy); |
4472 | 0 | Canonical = |
4473 | 0 | getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true); |
4474 | | |
4475 | | // Get the new insert position for the node we care about. |
4476 | 0 | FunctionProtoType *NewIP = |
4477 | 0 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
4478 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
4479 | 0 | } |
4480 | | |
4481 | | // Compute the needed size to hold this FunctionProtoType and the |
4482 | | // various trailing objects. |
4483 | 12 | auto ESH = FunctionProtoType::getExceptionSpecSize( |
4484 | 12 | EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size()); |
4485 | 12 | size_t Size = FunctionProtoType::totalSizeToAlloc< |
4486 | 12 | QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields, |
4487 | 12 | FunctionType::ExceptionType, Expr *, FunctionDecl *, |
4488 | 12 | FunctionProtoType::ExtParameterInfo, Qualifiers>( |
4489 | 12 | NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(), |
4490 | 12 | ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr, |
4491 | 12 | EPI.ExtParameterInfos ? NumArgs : 0, |
4492 | 12 | EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0); |
4493 | | |
4494 | 12 | auto *FTP = (FunctionProtoType *)Allocate(Size, alignof(FunctionProtoType)); |
4495 | 12 | FunctionProtoType::ExtProtoInfo newEPI = EPI; |
4496 | 12 | new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); |
4497 | 12 | Types.push_back(FTP); |
4498 | 12 | if (!Unique) |
4499 | 12 | FunctionProtoTypes.InsertNode(FTP, InsertPos); |
4500 | 12 | return QualType(FTP, 0); |
4501 | 12 | } |
4502 | | |
4503 | 0 | QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { |
4504 | 0 | llvm::FoldingSetNodeID ID; |
4505 | 0 | PipeType::Profile(ID, T, ReadOnly); |
4506 | |
|
4507 | 0 | void *InsertPos = nullptr; |
4508 | 0 | if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4509 | 0 | return QualType(PT, 0); |
4510 | | |
4511 | | // If the pipe element type isn't canonical, this won't be a canonical type |
4512 | | // either, so fill in the canonical type field. |
4513 | 0 | QualType Canonical; |
4514 | 0 | if (!T.isCanonical()) { |
4515 | 0 | Canonical = getPipeType(getCanonicalType(T), ReadOnly); |
4516 | | |
4517 | | // Get the new insert position for the node we care about. |
4518 | 0 | PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); |
4519 | 0 | assert(!NewIP && "Shouldn't be in the map!"); |
4520 | 0 | (void)NewIP; |
4521 | 0 | } |
4522 | 0 | auto *New = new (*this, alignof(PipeType)) PipeType(T, Canonical, ReadOnly); |
4523 | 0 | Types.push_back(New); |
4524 | 0 | PipeTypes.InsertNode(New, InsertPos); |
4525 | 0 | return QualType(New, 0); |
4526 | 0 | } |
4527 | | |
4528 | 1 | QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { |
4529 | | // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. |
4530 | 1 | return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant) |
4531 | 1 | : Ty; |
4532 | 1 | } |
4533 | | |
4534 | 0 | QualType ASTContext::getReadPipeType(QualType T) const { |
4535 | 0 | return getPipeType(T, true); |
4536 | 0 | } |
4537 | | |
4538 | 0 | QualType ASTContext::getWritePipeType(QualType T) const { |
4539 | 0 | return getPipeType(T, false); |
4540 | 0 | } |
4541 | | |
4542 | 0 | QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const { |
4543 | 0 | llvm::FoldingSetNodeID ID; |
4544 | 0 | BitIntType::Profile(ID, IsUnsigned, NumBits); |
4545 | |
|
4546 | 0 | void *InsertPos = nullptr; |
4547 | 0 | if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4548 | 0 | return QualType(EIT, 0); |
4549 | | |
4550 | 0 | auto *New = new (*this, alignof(BitIntType)) BitIntType(IsUnsigned, NumBits); |
4551 | 0 | BitIntTypes.InsertNode(New, InsertPos); |
4552 | 0 | Types.push_back(New); |
4553 | 0 | return QualType(New, 0); |
4554 | 0 | } |
4555 | | |
4556 | | QualType ASTContext::getDependentBitIntType(bool IsUnsigned, |
4557 | 0 | Expr *NumBitsExpr) const { |
4558 | 0 | assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent"); |
4559 | 0 | llvm::FoldingSetNodeID ID; |
4560 | 0 | DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr); |
4561 | |
|
4562 | 0 | void *InsertPos = nullptr; |
4563 | 0 | if (DependentBitIntType *Existing = |
4564 | 0 | DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4565 | 0 | return QualType(Existing, 0); |
4566 | | |
4567 | 0 | auto *New = new (*this, alignof(DependentBitIntType)) |
4568 | 0 | DependentBitIntType(IsUnsigned, NumBitsExpr); |
4569 | 0 | DependentBitIntTypes.InsertNode(New, InsertPos); |
4570 | |
|
4571 | 0 | Types.push_back(New); |
4572 | 0 | return QualType(New, 0); |
4573 | 0 | } |
4574 | | |
4575 | | #ifndef NDEBUG |
4576 | 138 | static bool NeedsInjectedClassNameType(const RecordDecl *D) { |
4577 | 138 | if (!isa<CXXRecordDecl>(D)) return false; |
4578 | 46 | const auto *RD = cast<CXXRecordDecl>(D); |
4579 | 46 | if (isa<ClassTemplatePartialSpecializationDecl>(RD)) |
4580 | 0 | return true; |
4581 | 46 | if (RD->getDescribedClassTemplate() && |
4582 | 46 | !isa<ClassTemplateSpecializationDecl>(RD)) |
4583 | 0 | return true; |
4584 | 46 | return false; |
4585 | 46 | } |
4586 | | #endif |
4587 | | |
4588 | | /// getInjectedClassNameType - Return the unique reference to the |
4589 | | /// injected class name type for the specified templated declaration. |
4590 | | QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, |
4591 | 0 | QualType TST) const { |
4592 | 0 | assert(NeedsInjectedClassNameType(Decl)); |
4593 | 0 | if (Decl->TypeForDecl) { |
4594 | 0 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
4595 | 0 | } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { |
4596 | 0 | assert(PrevDecl->TypeForDecl && "previous declaration has no type"); |
4597 | 0 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
4598 | 0 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl)); |
4599 | 0 | } else { |
4600 | 0 | Type *newType = new (*this, alignof(InjectedClassNameType)) |
4601 | 0 | InjectedClassNameType(Decl, TST); |
4602 | 0 | Decl->TypeForDecl = newType; |
4603 | 0 | Types.push_back(newType); |
4604 | 0 | } |
4605 | 0 | return QualType(Decl->TypeForDecl, 0); |
4606 | 0 | } |
4607 | | |
4608 | | /// getTypeDeclType - Return the unique reference to the type for the |
4609 | | /// specified type declaration. |
4610 | 207 | QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { |
4611 | 207 | assert(Decl && "Passed null for Decl param"); |
4612 | 0 | assert(!Decl->TypeForDecl && "TypeForDecl present in slow case"); |
4613 | | |
4614 | 207 | if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl)) |
4615 | 69 | return getTypedefType(Typedef); |
4616 | | |
4617 | 138 | assert(!isa<TemplateTypeParmDecl>(Decl) && |
4618 | 138 | "Template type parameter types are always available."); |
4619 | | |
4620 | 138 | if (const auto *Record = dyn_cast<RecordDecl>(Decl)) { |
4621 | 138 | assert(Record->isFirstDecl() && "struct/union has previous declaration"); |
4622 | 0 | assert(!NeedsInjectedClassNameType(Record)); |
4623 | 0 | return getRecordType(Record); |
4624 | 138 | } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) { |
4625 | 0 | assert(Enum->isFirstDecl() && "enum has previous declaration"); |
4626 | 0 | return getEnumType(Enum); |
4627 | 0 | } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { |
4628 | 0 | return getUnresolvedUsingType(Using); |
4629 | 0 | } else |
4630 | 0 | llvm_unreachable("TypeDecl without a type?"); |
4631 | | |
4632 | 0 | return QualType(Decl->TypeForDecl, 0); |
4633 | 138 | } |
4634 | | |
4635 | | /// getTypedefType - Return the unique reference to the type for the |
4636 | | /// specified typedef name decl. |
4637 | | QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl, |
4638 | 69 | QualType Underlying) const { |
4639 | 69 | if (!Decl->TypeForDecl) { |
4640 | 69 | if (Underlying.isNull()) |
4641 | 69 | Underlying = Decl->getUnderlyingType(); |
4642 | 69 | auto *NewType = new (*this, alignof(TypedefType)) TypedefType( |
4643 | 69 | Type::Typedef, Decl, QualType(), getCanonicalType(Underlying)); |
4644 | 69 | Decl->TypeForDecl = NewType; |
4645 | 69 | Types.push_back(NewType); |
4646 | 69 | return QualType(NewType, 0); |
4647 | 69 | } |
4648 | 0 | if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying) |
4649 | 0 | return QualType(Decl->TypeForDecl, 0); |
4650 | 0 | assert(hasSameType(Decl->getUnderlyingType(), Underlying)); |
4651 | | |
4652 | 0 | llvm::FoldingSetNodeID ID; |
4653 | 0 | TypedefType::Profile(ID, Decl, Underlying); |
4654 | |
|
4655 | 0 | void *InsertPos = nullptr; |
4656 | 0 | if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
4657 | 0 | assert(!T->typeMatchesDecl() && |
4658 | 0 | "non-divergent case should be handled with TypeDecl"); |
4659 | 0 | return QualType(T, 0); |
4660 | 0 | } |
4661 | | |
4662 | 0 | void *Mem = Allocate(TypedefType::totalSizeToAlloc<QualType>(true), |
4663 | 0 | alignof(TypedefType)); |
4664 | 0 | auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying, |
4665 | 0 | getCanonicalType(Underlying)); |
4666 | 0 | TypedefTypes.InsertNode(NewType, InsertPos); |
4667 | 0 | Types.push_back(NewType); |
4668 | 0 | return QualType(NewType, 0); |
4669 | 0 | } |
4670 | | |
4671 | | QualType ASTContext::getUsingType(const UsingShadowDecl *Found, |
4672 | 0 | QualType Underlying) const { |
4673 | 0 | llvm::FoldingSetNodeID ID; |
4674 | 0 | UsingType::Profile(ID, Found, Underlying); |
4675 | |
|
4676 | 0 | void *InsertPos = nullptr; |
4677 | 0 | if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4678 | 0 | return QualType(T, 0); |
4679 | | |
4680 | 0 | const Type *TypeForDecl = |
4681 | 0 | cast<TypeDecl>(Found->getTargetDecl())->getTypeForDecl(); |
4682 | |
|
4683 | 0 | assert(!Underlying.hasLocalQualifiers()); |
4684 | 0 | QualType Canon = Underlying->getCanonicalTypeInternal(); |
4685 | 0 | assert(TypeForDecl->getCanonicalTypeInternal() == Canon); |
4686 | | |
4687 | 0 | if (Underlying.getTypePtr() == TypeForDecl) |
4688 | 0 | Underlying = QualType(); |
4689 | 0 | void *Mem = |
4690 | 0 | Allocate(UsingType::totalSizeToAlloc<QualType>(!Underlying.isNull()), |
4691 | 0 | alignof(UsingType)); |
4692 | 0 | UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon); |
4693 | 0 | Types.push_back(NewType); |
4694 | 0 | UsingTypes.InsertNode(NewType, InsertPos); |
4695 | 0 | return QualType(NewType, 0); |
4696 | 0 | } |
4697 | | |
4698 | 184 | QualType ASTContext::getRecordType(const RecordDecl *Decl) const { |
4699 | 184 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
4700 | | |
4701 | 138 | if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) |
4702 | 0 | if (PrevDecl->TypeForDecl) |
4703 | 0 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
4704 | | |
4705 | 138 | auto *newType = new (*this, alignof(RecordType)) RecordType(Decl); |
4706 | 138 | Decl->TypeForDecl = newType; |
4707 | 138 | Types.push_back(newType); |
4708 | 138 | return QualType(newType, 0); |
4709 | 138 | } |
4710 | | |
4711 | 0 | QualType ASTContext::getEnumType(const EnumDecl *Decl) const { |
4712 | 0 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
4713 | | |
4714 | 0 | if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) |
4715 | 0 | if (PrevDecl->TypeForDecl) |
4716 | 0 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
4717 | | |
4718 | 0 | auto *newType = new (*this, alignof(EnumType)) EnumType(Decl); |
4719 | 0 | Decl->TypeForDecl = newType; |
4720 | 0 | Types.push_back(newType); |
4721 | 0 | return QualType(newType, 0); |
4722 | 0 | } |
4723 | | |
4724 | | QualType ASTContext::getUnresolvedUsingType( |
4725 | 0 | const UnresolvedUsingTypenameDecl *Decl) const { |
4726 | 0 | if (Decl->TypeForDecl) |
4727 | 0 | return QualType(Decl->TypeForDecl, 0); |
4728 | | |
4729 | 0 | if (const UnresolvedUsingTypenameDecl *CanonicalDecl = |
4730 | 0 | Decl->getCanonicalDecl()) |
4731 | 0 | if (CanonicalDecl->TypeForDecl) |
4732 | 0 | return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0); |
4733 | | |
4734 | 0 | Type *newType = |
4735 | 0 | new (*this, alignof(UnresolvedUsingType)) UnresolvedUsingType(Decl); |
4736 | 0 | Decl->TypeForDecl = newType; |
4737 | 0 | Types.push_back(newType); |
4738 | 0 | return QualType(newType, 0); |
4739 | 0 | } |
4740 | | |
4741 | | QualType ASTContext::getAttributedType(attr::Kind attrKind, |
4742 | | QualType modifiedType, |
4743 | 0 | QualType equivalentType) const { |
4744 | 0 | llvm::FoldingSetNodeID id; |
4745 | 0 | AttributedType::Profile(id, attrKind, modifiedType, equivalentType); |
4746 | |
|
4747 | 0 | void *insertPos = nullptr; |
4748 | 0 | AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); |
4749 | 0 | if (type) return QualType(type, 0); |
4750 | | |
4751 | 0 | QualType canon = getCanonicalType(equivalentType); |
4752 | 0 | type = new (*this, alignof(AttributedType)) |
4753 | 0 | AttributedType(canon, attrKind, modifiedType, equivalentType); |
4754 | |
|
4755 | 0 | Types.push_back(type); |
4756 | 0 | AttributedTypes.InsertNode(type, insertPos); |
4757 | |
|
4758 | 0 | return QualType(type, 0); |
4759 | 0 | } |
4760 | | |
4761 | | QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr, |
4762 | 0 | QualType Wrapped) { |
4763 | 0 | llvm::FoldingSetNodeID ID; |
4764 | 0 | BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr); |
4765 | |
|
4766 | 0 | void *InsertPos = nullptr; |
4767 | 0 | BTFTagAttributedType *Ty = |
4768 | 0 | BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); |
4769 | 0 | if (Ty) |
4770 | 0 | return QualType(Ty, 0); |
4771 | | |
4772 | 0 | QualType Canon = getCanonicalType(Wrapped); |
4773 | 0 | Ty = new (*this, alignof(BTFTagAttributedType)) |
4774 | 0 | BTFTagAttributedType(Canon, Wrapped, BTFAttr); |
4775 | |
|
4776 | 0 | Types.push_back(Ty); |
4777 | 0 | BTFTagAttributedTypes.InsertNode(Ty, InsertPos); |
4778 | |
|
4779 | 0 | return QualType(Ty, 0); |
4780 | 0 | } |
4781 | | |
4782 | | /// Retrieve a substitution-result type. |
4783 | | QualType ASTContext::getSubstTemplateTypeParmType( |
4784 | | QualType Replacement, Decl *AssociatedDecl, unsigned Index, |
4785 | 0 | std::optional<unsigned> PackIndex) const { |
4786 | 0 | llvm::FoldingSetNodeID ID; |
4787 | 0 | SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index, |
4788 | 0 | PackIndex); |
4789 | 0 | void *InsertPos = nullptr; |
4790 | 0 | SubstTemplateTypeParmType *SubstParm = |
4791 | 0 | SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
4792 | |
|
4793 | 0 | if (!SubstParm) { |
4794 | 0 | void *Mem = Allocate(SubstTemplateTypeParmType::totalSizeToAlloc<QualType>( |
4795 | 0 | !Replacement.isCanonical()), |
4796 | 0 | alignof(SubstTemplateTypeParmType)); |
4797 | 0 | SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl, |
4798 | 0 | Index, PackIndex); |
4799 | 0 | Types.push_back(SubstParm); |
4800 | 0 | SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); |
4801 | 0 | } |
4802 | |
|
4803 | 0 | return QualType(SubstParm, 0); |
4804 | 0 | } |
4805 | | |
4806 | | /// Retrieve a |
4807 | | QualType |
4808 | | ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl, |
4809 | | unsigned Index, bool Final, |
4810 | 0 | const TemplateArgument &ArgPack) { |
4811 | 0 | #ifndef NDEBUG |
4812 | 0 | for (const auto &P : ArgPack.pack_elements()) |
4813 | 0 | assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type"); |
4814 | 0 | #endif |
4815 | |
|
4816 | 0 | llvm::FoldingSetNodeID ID; |
4817 | 0 | SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final, |
4818 | 0 | ArgPack); |
4819 | 0 | void *InsertPos = nullptr; |
4820 | 0 | if (SubstTemplateTypeParmPackType *SubstParm = |
4821 | 0 | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) |
4822 | 0 | return QualType(SubstParm, 0); |
4823 | | |
4824 | 0 | QualType Canon; |
4825 | 0 | { |
4826 | 0 | TemplateArgument CanonArgPack = getCanonicalTemplateArgument(ArgPack); |
4827 | 0 | if (!AssociatedDecl->isCanonicalDecl() || |
4828 | 0 | !CanonArgPack.structurallyEquals(ArgPack)) { |
4829 | 0 | Canon = getSubstTemplateTypeParmPackType( |
4830 | 0 | AssociatedDecl->getCanonicalDecl(), Index, Final, CanonArgPack); |
4831 | 0 | [[maybe_unused]] const auto *Nothing = |
4832 | 0 | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); |
4833 | 0 | assert(!Nothing); |
4834 | 0 | } |
4835 | 0 | } |
4836 | | |
4837 | 0 | auto *SubstParm = new (*this, alignof(SubstTemplateTypeParmPackType)) |
4838 | 0 | SubstTemplateTypeParmPackType(Canon, AssociatedDecl, Index, Final, |
4839 | 0 | ArgPack); |
4840 | 0 | Types.push_back(SubstParm); |
4841 | 0 | SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos); |
4842 | 0 | return QualType(SubstParm, 0); |
4843 | 0 | } |
4844 | | |
4845 | | /// Retrieve the template type parameter type for a template |
4846 | | /// parameter or parameter pack with the given depth, index, and (optionally) |
4847 | | /// name. |
4848 | | QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, |
4849 | | bool ParameterPack, |
4850 | 0 | TemplateTypeParmDecl *TTPDecl) const { |
4851 | 0 | llvm::FoldingSetNodeID ID; |
4852 | 0 | TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); |
4853 | 0 | void *InsertPos = nullptr; |
4854 | 0 | TemplateTypeParmType *TypeParm |
4855 | 0 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
4856 | |
|
4857 | 0 | if (TypeParm) |
4858 | 0 | return QualType(TypeParm, 0); |
4859 | | |
4860 | 0 | if (TTPDecl) { |
4861 | 0 | QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); |
4862 | 0 | TypeParm = new (*this, alignof(TemplateTypeParmType)) |
4863 | 0 | TemplateTypeParmType(TTPDecl, Canon); |
4864 | |
|
4865 | 0 | TemplateTypeParmType *TypeCheck |
4866 | 0 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
4867 | 0 | assert(!TypeCheck && "Template type parameter canonical type broken"); |
4868 | 0 | (void)TypeCheck; |
4869 | 0 | } else |
4870 | 0 | TypeParm = new (*this, alignof(TemplateTypeParmType)) |
4871 | 0 | TemplateTypeParmType(Depth, Index, ParameterPack); |
4872 | | |
4873 | 0 | Types.push_back(TypeParm); |
4874 | 0 | TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); |
4875 | |
|
4876 | 0 | return QualType(TypeParm, 0); |
4877 | 0 | } |
4878 | | |
4879 | | TypeSourceInfo * |
4880 | | ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, |
4881 | | SourceLocation NameLoc, |
4882 | | const TemplateArgumentListInfo &Args, |
4883 | 0 | QualType Underlying) const { |
4884 | 0 | assert(!Name.getAsDependentTemplateName() && |
4885 | 0 | "No dependent template names here!"); |
4886 | 0 | QualType TST = |
4887 | 0 | getTemplateSpecializationType(Name, Args.arguments(), Underlying); |
4888 | |
|
4889 | 0 | TypeSourceInfo *DI = CreateTypeSourceInfo(TST); |
4890 | 0 | TemplateSpecializationTypeLoc TL = |
4891 | 0 | DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); |
4892 | 0 | TL.setTemplateKeywordLoc(SourceLocation()); |
4893 | 0 | TL.setTemplateNameLoc(NameLoc); |
4894 | 0 | TL.setLAngleLoc(Args.getLAngleLoc()); |
4895 | 0 | TL.setRAngleLoc(Args.getRAngleLoc()); |
4896 | 0 | for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) |
4897 | 0 | TL.setArgLocInfo(i, Args[i].getLocInfo()); |
4898 | 0 | return DI; |
4899 | 0 | } |
4900 | | |
4901 | | QualType |
4902 | | ASTContext::getTemplateSpecializationType(TemplateName Template, |
4903 | | ArrayRef<TemplateArgumentLoc> Args, |
4904 | 0 | QualType Underlying) const { |
4905 | 0 | assert(!Template.getAsDependentTemplateName() && |
4906 | 0 | "No dependent template names here!"); |
4907 | | |
4908 | 0 | SmallVector<TemplateArgument, 4> ArgVec; |
4909 | 0 | ArgVec.reserve(Args.size()); |
4910 | 0 | for (const TemplateArgumentLoc &Arg : Args) |
4911 | 0 | ArgVec.push_back(Arg.getArgument()); |
4912 | |
|
4913 | 0 | return getTemplateSpecializationType(Template, ArgVec, Underlying); |
4914 | 0 | } |
4915 | | |
4916 | | #ifndef NDEBUG |
4917 | 0 | static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { |
4918 | 0 | for (const TemplateArgument &Arg : Args) |
4919 | 0 | if (Arg.isPackExpansion()) |
4920 | 0 | return true; |
4921 | | |
4922 | 0 | return true; |
4923 | 0 | } |
4924 | | #endif |
4925 | | |
4926 | | QualType |
4927 | | ASTContext::getTemplateSpecializationType(TemplateName Template, |
4928 | | ArrayRef<TemplateArgument> Args, |
4929 | 0 | QualType Underlying) const { |
4930 | 0 | assert(!Template.getAsDependentTemplateName() && |
4931 | 0 | "No dependent template names here!"); |
4932 | | // Look through qualified template names. |
4933 | 0 | if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
4934 | 0 | Template = QTN->getUnderlyingTemplate(); |
4935 | |
|
4936 | 0 | const auto *TD = Template.getAsTemplateDecl(); |
4937 | 0 | bool IsTypeAlias = TD && TD->isTypeAlias(); |
4938 | 0 | QualType CanonType; |
4939 | 0 | if (!Underlying.isNull()) |
4940 | 0 | CanonType = getCanonicalType(Underlying); |
4941 | 0 | else { |
4942 | | // We can get here with an alias template when the specialization contains |
4943 | | // a pack expansion that does not match up with a parameter pack. |
4944 | 0 | assert((!IsTypeAlias || hasAnyPackExpansions(Args)) && |
4945 | 0 | "Caller must compute aliased type"); |
4946 | 0 | IsTypeAlias = false; |
4947 | 0 | CanonType = getCanonicalTemplateSpecializationType(Template, Args); |
4948 | 0 | } |
4949 | | |
4950 | | // Allocate the (non-canonical) template specialization type, but don't |
4951 | | // try to unique it: these types typically have location information that |
4952 | | // we don't unique and don't want to lose. |
4953 | 0 | void *Mem = Allocate(sizeof(TemplateSpecializationType) + |
4954 | 0 | sizeof(TemplateArgument) * Args.size() + |
4955 | 0 | (IsTypeAlias ? sizeof(QualType) : 0), |
4956 | 0 | alignof(TemplateSpecializationType)); |
4957 | 0 | auto *Spec |
4958 | 0 | = new (Mem) TemplateSpecializationType(Template, Args, CanonType, |
4959 | 0 | IsTypeAlias ? Underlying : QualType()); |
4960 | |
|
4961 | 0 | Types.push_back(Spec); |
4962 | 0 | return QualType(Spec, 0); |
4963 | 0 | } |
4964 | | |
4965 | | QualType ASTContext::getCanonicalTemplateSpecializationType( |
4966 | 0 | TemplateName Template, ArrayRef<TemplateArgument> Args) const { |
4967 | 0 | assert(!Template.getAsDependentTemplateName() && |
4968 | 0 | "No dependent template names here!"); |
4969 | | |
4970 | | // Look through qualified template names. |
4971 | 0 | if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
4972 | 0 | Template = TemplateName(QTN->getUnderlyingTemplate()); |
4973 | | |
4974 | | // Build the canonical template specialization type. |
4975 | 0 | TemplateName CanonTemplate = getCanonicalTemplateName(Template); |
4976 | 0 | bool AnyNonCanonArgs = false; |
4977 | 0 | auto CanonArgs = |
4978 | 0 | ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs); |
4979 | | |
4980 | | // Determine whether this canonical template specialization type already |
4981 | | // exists. |
4982 | 0 | llvm::FoldingSetNodeID ID; |
4983 | 0 | TemplateSpecializationType::Profile(ID, CanonTemplate, |
4984 | 0 | CanonArgs, *this); |
4985 | |
|
4986 | 0 | void *InsertPos = nullptr; |
4987 | 0 | TemplateSpecializationType *Spec |
4988 | 0 | = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
4989 | |
|
4990 | 0 | if (!Spec) { |
4991 | | // Allocate a new canonical template specialization type. |
4992 | 0 | void *Mem = Allocate((sizeof(TemplateSpecializationType) + |
4993 | 0 | sizeof(TemplateArgument) * CanonArgs.size()), |
4994 | 0 | alignof(TemplateSpecializationType)); |
4995 | 0 | Spec = new (Mem) TemplateSpecializationType(CanonTemplate, |
4996 | 0 | CanonArgs, |
4997 | 0 | QualType(), QualType()); |
4998 | 0 | Types.push_back(Spec); |
4999 | 0 | TemplateSpecializationTypes.InsertNode(Spec, InsertPos); |
5000 | 0 | } |
5001 | |
|
5002 | 0 | assert(Spec->isDependentType() && |
5003 | 0 | "Non-dependent template-id type must have a canonical type"); |
5004 | 0 | return QualType(Spec, 0); |
5005 | 0 | } |
5006 | | |
5007 | | QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, |
5008 | | NestedNameSpecifier *NNS, |
5009 | | QualType NamedType, |
5010 | 0 | TagDecl *OwnedTagDecl) const { |
5011 | 0 | llvm::FoldingSetNodeID ID; |
5012 | 0 | ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl); |
5013 | |
|
5014 | 0 | void *InsertPos = nullptr; |
5015 | 0 | ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
5016 | 0 | if (T) |
5017 | 0 | return QualType(T, 0); |
5018 | | |
5019 | 0 | QualType Canon = NamedType; |
5020 | 0 | if (!Canon.isCanonical()) { |
5021 | 0 | Canon = getCanonicalType(NamedType); |
5022 | 0 | ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
5023 | 0 | assert(!CheckT && "Elaborated canonical type broken"); |
5024 | 0 | (void)CheckT; |
5025 | 0 | } |
5026 | | |
5027 | 0 | void *Mem = |
5028 | 0 | Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl), |
5029 | 0 | alignof(ElaboratedType)); |
5030 | 0 | T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl); |
5031 | |
|
5032 | 0 | Types.push_back(T); |
5033 | 0 | ElaboratedTypes.InsertNode(T, InsertPos); |
5034 | 0 | return QualType(T, 0); |
5035 | 0 | } |
5036 | | |
5037 | | QualType |
5038 | 87 | ASTContext::getParenType(QualType InnerType) const { |
5039 | 87 | llvm::FoldingSetNodeID ID; |
5040 | 87 | ParenType::Profile(ID, InnerType); |
5041 | | |
5042 | 87 | void *InsertPos = nullptr; |
5043 | 87 | ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
5044 | 87 | if (T) |
5045 | 55 | return QualType(T, 0); |
5046 | | |
5047 | 32 | QualType Canon = InnerType; |
5048 | 32 | if (!Canon.isCanonical()) { |
5049 | 3 | Canon = getCanonicalType(InnerType); |
5050 | 3 | ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
5051 | 3 | assert(!CheckT && "Paren canonical type broken"); |
5052 | 0 | (void)CheckT; |
5053 | 3 | } |
5054 | | |
5055 | 0 | T = new (*this, alignof(ParenType)) ParenType(InnerType, Canon); |
5056 | 32 | Types.push_back(T); |
5057 | 32 | ParenTypes.InsertNode(T, InsertPos); |
5058 | 32 | return QualType(T, 0); |
5059 | 87 | } |
5060 | | |
5061 | | QualType |
5062 | | ASTContext::getMacroQualifiedType(QualType UnderlyingTy, |
5063 | 0 | const IdentifierInfo *MacroII) const { |
5064 | 0 | QualType Canon = UnderlyingTy; |
5065 | 0 | if (!Canon.isCanonical()) |
5066 | 0 | Canon = getCanonicalType(UnderlyingTy); |
5067 | |
|
5068 | 0 | auto *newType = new (*this, alignof(MacroQualifiedType)) |
5069 | 0 | MacroQualifiedType(UnderlyingTy, Canon, MacroII); |
5070 | 0 | Types.push_back(newType); |
5071 | 0 | return QualType(newType, 0); |
5072 | 0 | } |
5073 | | |
5074 | | QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, |
5075 | | NestedNameSpecifier *NNS, |
5076 | | const IdentifierInfo *Name, |
5077 | 0 | QualType Canon) const { |
5078 | 0 | if (Canon.isNull()) { |
5079 | 0 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
5080 | 0 | if (CanonNNS != NNS) |
5081 | 0 | Canon = getDependentNameType(Keyword, CanonNNS, Name); |
5082 | 0 | } |
5083 | |
|
5084 | 0 | llvm::FoldingSetNodeID ID; |
5085 | 0 | DependentNameType::Profile(ID, Keyword, NNS, Name); |
5086 | |
|
5087 | 0 | void *InsertPos = nullptr; |
5088 | 0 | DependentNameType *T |
5089 | 0 | = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); |
5090 | 0 | if (T) |
5091 | 0 | return QualType(T, 0); |
5092 | | |
5093 | 0 | T = new (*this, alignof(DependentNameType)) |
5094 | 0 | DependentNameType(Keyword, NNS, Name, Canon); |
5095 | 0 | Types.push_back(T); |
5096 | 0 | DependentNameTypes.InsertNode(T, InsertPos); |
5097 | 0 | return QualType(T, 0); |
5098 | 0 | } |
5099 | | |
5100 | | QualType ASTContext::getDependentTemplateSpecializationType( |
5101 | | ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS, |
5102 | 0 | const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const { |
5103 | | // TODO: avoid this copy |
5104 | 0 | SmallVector<TemplateArgument, 16> ArgCopy; |
5105 | 0 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
5106 | 0 | ArgCopy.push_back(Args[I].getArgument()); |
5107 | 0 | return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy); |
5108 | 0 | } |
5109 | | |
5110 | | QualType |
5111 | | ASTContext::getDependentTemplateSpecializationType( |
5112 | | ElaboratedTypeKeyword Keyword, |
5113 | | NestedNameSpecifier *NNS, |
5114 | | const IdentifierInfo *Name, |
5115 | 0 | ArrayRef<TemplateArgument> Args) const { |
5116 | 0 | assert((!NNS || NNS->isDependent()) && |
5117 | 0 | "nested-name-specifier must be dependent"); |
5118 | | |
5119 | 0 | llvm::FoldingSetNodeID ID; |
5120 | 0 | DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, |
5121 | 0 | Name, Args); |
5122 | |
|
5123 | 0 | void *InsertPos = nullptr; |
5124 | 0 | DependentTemplateSpecializationType *T |
5125 | 0 | = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
5126 | 0 | if (T) |
5127 | 0 | return QualType(T, 0); |
5128 | | |
5129 | 0 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
5130 | |
|
5131 | 0 | ElaboratedTypeKeyword CanonKeyword = Keyword; |
5132 | 0 | if (Keyword == ElaboratedTypeKeyword::None) |
5133 | 0 | CanonKeyword = ElaboratedTypeKeyword::Typename; |
5134 | |
|
5135 | 0 | bool AnyNonCanonArgs = false; |
5136 | 0 | auto CanonArgs = |
5137 | 0 | ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs); |
5138 | |
|
5139 | 0 | QualType Canon; |
5140 | 0 | if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { |
5141 | 0 | Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, |
5142 | 0 | Name, |
5143 | 0 | CanonArgs); |
5144 | | |
5145 | | // Find the insert position again. |
5146 | 0 | [[maybe_unused]] auto *Nothing = |
5147 | 0 | DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
5148 | 0 | assert(!Nothing && "canonical type broken"); |
5149 | 0 | } |
5150 | | |
5151 | 0 | void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + |
5152 | 0 | sizeof(TemplateArgument) * Args.size()), |
5153 | 0 | alignof(DependentTemplateSpecializationType)); |
5154 | 0 | T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, |
5155 | 0 | Name, Args, Canon); |
5156 | 0 | Types.push_back(T); |
5157 | 0 | DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); |
5158 | 0 | return QualType(T, 0); |
5159 | 0 | } |
5160 | | |
5161 | 0 | TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) { |
5162 | 0 | TemplateArgument Arg; |
5163 | 0 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { |
5164 | 0 | QualType ArgType = getTypeDeclType(TTP); |
5165 | 0 | if (TTP->isParameterPack()) |
5166 | 0 | ArgType = getPackExpansionType(ArgType, std::nullopt); |
5167 | |
|
5168 | 0 | Arg = TemplateArgument(ArgType); |
5169 | 0 | } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
5170 | 0 | QualType T = |
5171 | 0 | NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this); |
5172 | | // For class NTTPs, ensure we include the 'const' so the type matches that |
5173 | | // of a real template argument. |
5174 | | // FIXME: It would be more faithful to model this as something like an |
5175 | | // lvalue-to-rvalue conversion applied to a const-qualified lvalue. |
5176 | 0 | if (T->isRecordType()) |
5177 | 0 | T.addConst(); |
5178 | 0 | Expr *E = new (*this) DeclRefExpr( |
5179 | 0 | *this, NTTP, /*RefersToEnclosingVariableOrCapture*/ false, T, |
5180 | 0 | Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation()); |
5181 | |
|
5182 | 0 | if (NTTP->isParameterPack()) |
5183 | 0 | E = new (*this) |
5184 | 0 | PackExpansionExpr(DependentTy, E, NTTP->getLocation(), std::nullopt); |
5185 | 0 | Arg = TemplateArgument(E); |
5186 | 0 | } else { |
5187 | 0 | auto *TTP = cast<TemplateTemplateParmDecl>(Param); |
5188 | 0 | if (TTP->isParameterPack()) |
5189 | 0 | Arg = TemplateArgument(TemplateName(TTP), std::optional<unsigned>()); |
5190 | 0 | else |
5191 | 0 | Arg = TemplateArgument(TemplateName(TTP)); |
5192 | 0 | } |
5193 | |
|
5194 | 0 | if (Param->isTemplateParameterPack()) |
5195 | 0 | Arg = TemplateArgument::CreatePackCopy(*this, Arg); |
5196 | |
|
5197 | 0 | return Arg; |
5198 | 0 | } |
5199 | | |
5200 | | void |
5201 | | ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params, |
5202 | 0 | SmallVectorImpl<TemplateArgument> &Args) { |
5203 | 0 | Args.reserve(Args.size() + Params->size()); |
5204 | |
|
5205 | 0 | for (NamedDecl *Param : *Params) |
5206 | 0 | Args.push_back(getInjectedTemplateArg(Param)); |
5207 | 0 | } |
5208 | | |
5209 | | QualType ASTContext::getPackExpansionType(QualType Pattern, |
5210 | | std::optional<unsigned> NumExpansions, |
5211 | 0 | bool ExpectPackInType) { |
5212 | 0 | assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && |
5213 | 0 | "Pack expansions must expand one or more parameter packs"); |
5214 | | |
5215 | 0 | llvm::FoldingSetNodeID ID; |
5216 | 0 | PackExpansionType::Profile(ID, Pattern, NumExpansions); |
5217 | |
|
5218 | 0 | void *InsertPos = nullptr; |
5219 | 0 | PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
5220 | 0 | if (T) |
5221 | 0 | return QualType(T, 0); |
5222 | | |
5223 | 0 | QualType Canon; |
5224 | 0 | if (!Pattern.isCanonical()) { |
5225 | 0 | Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions, |
5226 | 0 | /*ExpectPackInType=*/false); |
5227 | | |
5228 | | // Find the insert position again, in case we inserted an element into |
5229 | | // PackExpansionTypes and invalidated our insert position. |
5230 | 0 | PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
5231 | 0 | } |
5232 | |
|
5233 | 0 | T = new (*this, alignof(PackExpansionType)) |
5234 | 0 | PackExpansionType(Pattern, Canon, NumExpansions); |
5235 | 0 | Types.push_back(T); |
5236 | 0 | PackExpansionTypes.InsertNode(T, InsertPos); |
5237 | 0 | return QualType(T, 0); |
5238 | 0 | } |
5239 | | |
5240 | | /// CmpProtocolNames - Comparison predicate for sorting protocols |
5241 | | /// alphabetically. |
5242 | | static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, |
5243 | 0 | ObjCProtocolDecl *const *RHS) { |
5244 | 0 | return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); |
5245 | 0 | } |
5246 | | |
5247 | 46 | static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { |
5248 | 46 | if (Protocols.empty()) return true; |
5249 | | |
5250 | 0 | if (Protocols[0]->getCanonicalDecl() != Protocols[0]) |
5251 | 0 | return false; |
5252 | | |
5253 | 0 | for (unsigned i = 1; i != Protocols.size(); ++i) |
5254 | 0 | if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || |
5255 | 0 | Protocols[i]->getCanonicalDecl() != Protocols[i]) |
5256 | 0 | return false; |
5257 | 0 | return true; |
5258 | 0 | } |
5259 | | |
5260 | | static void |
5261 | 0 | SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { |
5262 | | // Sort protocols, keyed by name. |
5263 | 0 | llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames); |
5264 | | |
5265 | | // Canonicalize. |
5266 | 0 | for (ObjCProtocolDecl *&P : Protocols) |
5267 | 0 | P = P->getCanonicalDecl(); |
5268 | | |
5269 | | // Remove duplicates. |
5270 | 0 | auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end()); |
5271 | 0 | Protocols.erase(ProtocolsEnd, Protocols.end()); |
5272 | 0 | } |
5273 | | |
5274 | | QualType ASTContext::getObjCObjectType(QualType BaseType, |
5275 | | ObjCProtocolDecl * const *Protocols, |
5276 | 46 | unsigned NumProtocols) const { |
5277 | 46 | return getObjCObjectType(BaseType, {}, |
5278 | 46 | llvm::ArrayRef(Protocols, NumProtocols), |
5279 | 46 | /*isKindOf=*/false); |
5280 | 46 | } |
5281 | | |
5282 | | QualType ASTContext::getObjCObjectType( |
5283 | | QualType baseType, |
5284 | | ArrayRef<QualType> typeArgs, |
5285 | | ArrayRef<ObjCProtocolDecl *> protocols, |
5286 | 126 | bool isKindOf) const { |
5287 | | // If the base type is an interface and there aren't any protocols or |
5288 | | // type arguments to add, then the interface type will do just fine. |
5289 | 126 | if (typeArgs.empty() && protocols.empty() && !isKindOf && |
5290 | 126 | isa<ObjCInterfaceType>(baseType)) |
5291 | 0 | return baseType; |
5292 | | |
5293 | | // Look in the folding set for an existing type. |
5294 | 126 | llvm::FoldingSetNodeID ID; |
5295 | 126 | ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf); |
5296 | 126 | void *InsertPos = nullptr; |
5297 | 126 | if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5298 | 80 | return QualType(QT, 0); |
5299 | | |
5300 | | // Determine the type arguments to be used for canonicalization, |
5301 | | // which may be explicitly specified here or written on the base |
5302 | | // type. |
5303 | 46 | ArrayRef<QualType> effectiveTypeArgs = typeArgs; |
5304 | 46 | if (effectiveTypeArgs.empty()) { |
5305 | 46 | if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) |
5306 | 0 | effectiveTypeArgs = baseObject->getTypeArgs(); |
5307 | 46 | } |
5308 | | |
5309 | | // Build the canonical type, which has the canonical base type and a |
5310 | | // sorted-and-uniqued list of protocols and the type arguments |
5311 | | // canonicalized. |
5312 | 46 | QualType canonical; |
5313 | 46 | bool typeArgsAreCanonical = llvm::all_of( |
5314 | 46 | effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); }); |
5315 | 46 | bool protocolsSorted = areSortedAndUniqued(protocols); |
5316 | 46 | if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { |
5317 | | // Determine the canonical type arguments. |
5318 | 0 | ArrayRef<QualType> canonTypeArgs; |
5319 | 0 | SmallVector<QualType, 4> canonTypeArgsVec; |
5320 | 0 | if (!typeArgsAreCanonical) { |
5321 | 0 | canonTypeArgsVec.reserve(effectiveTypeArgs.size()); |
5322 | 0 | for (auto typeArg : effectiveTypeArgs) |
5323 | 0 | canonTypeArgsVec.push_back(getCanonicalType(typeArg)); |
5324 | 0 | canonTypeArgs = canonTypeArgsVec; |
5325 | 0 | } else { |
5326 | 0 | canonTypeArgs = effectiveTypeArgs; |
5327 | 0 | } |
5328 | |
|
5329 | 0 | ArrayRef<ObjCProtocolDecl *> canonProtocols; |
5330 | 0 | SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; |
5331 | 0 | if (!protocolsSorted) { |
5332 | 0 | canonProtocolsVec.append(protocols.begin(), protocols.end()); |
5333 | 0 | SortAndUniqueProtocols(canonProtocolsVec); |
5334 | 0 | canonProtocols = canonProtocolsVec; |
5335 | 0 | } else { |
5336 | 0 | canonProtocols = protocols; |
5337 | 0 | } |
5338 | |
|
5339 | 0 | canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs, |
5340 | 0 | canonProtocols, isKindOf); |
5341 | | |
5342 | | // Regenerate InsertPos. |
5343 | 0 | ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); |
5344 | 0 | } |
5345 | | |
5346 | 46 | unsigned size = sizeof(ObjCObjectTypeImpl); |
5347 | 46 | size += typeArgs.size() * sizeof(QualType); |
5348 | 46 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
5349 | 46 | void *mem = Allocate(size, alignof(ObjCObjectTypeImpl)); |
5350 | 46 | auto *T = |
5351 | 46 | new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, |
5352 | 46 | isKindOf); |
5353 | | |
5354 | 46 | Types.push_back(T); |
5355 | 46 | ObjCObjectTypes.InsertNode(T, InsertPos); |
5356 | 46 | return QualType(T, 0); |
5357 | 126 | } |
5358 | | |
5359 | | /// Apply Objective-C protocol qualifiers to the given type. |
5360 | | /// If this is for the canonical type of a type parameter, we can apply |
5361 | | /// protocol qualifiers on the ObjCObjectPointerType. |
5362 | | QualType |
5363 | | ASTContext::applyObjCProtocolQualifiers(QualType type, |
5364 | | ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, |
5365 | 0 | bool allowOnPointerType) const { |
5366 | 0 | hasError = false; |
5367 | |
|
5368 | 0 | if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) { |
5369 | 0 | return getObjCTypeParamType(objT->getDecl(), protocols); |
5370 | 0 | } |
5371 | | |
5372 | | // Apply protocol qualifiers to ObjCObjectPointerType. |
5373 | 0 | if (allowOnPointerType) { |
5374 | 0 | if (const auto *objPtr = |
5375 | 0 | dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) { |
5376 | 0 | const ObjCObjectType *objT = objPtr->getObjectType(); |
5377 | | // Merge protocol lists and construct ObjCObjectType. |
5378 | 0 | SmallVector<ObjCProtocolDecl*, 8> protocolsVec; |
5379 | 0 | protocolsVec.append(objT->qual_begin(), |
5380 | 0 | objT->qual_end()); |
5381 | 0 | protocolsVec.append(protocols.begin(), protocols.end()); |
5382 | 0 | ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; |
5383 | 0 | type = getObjCObjectType( |
5384 | 0 | objT->getBaseType(), |
5385 | 0 | objT->getTypeArgsAsWritten(), |
5386 | 0 | protocols, |
5387 | 0 | objT->isKindOfTypeAsWritten()); |
5388 | 0 | return getObjCObjectPointerType(type); |
5389 | 0 | } |
5390 | 0 | } |
5391 | | |
5392 | | // Apply protocol qualifiers to ObjCObjectType. |
5393 | 0 | if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){ |
5394 | | // FIXME: Check for protocols to which the class type is already |
5395 | | // known to conform. |
5396 | |
|
5397 | 0 | return getObjCObjectType(objT->getBaseType(), |
5398 | 0 | objT->getTypeArgsAsWritten(), |
5399 | 0 | protocols, |
5400 | 0 | objT->isKindOfTypeAsWritten()); |
5401 | 0 | } |
5402 | | |
5403 | | // If the canonical type is ObjCObjectType, ... |
5404 | 0 | if (type->isObjCObjectType()) { |
5405 | | // Silently overwrite any existing protocol qualifiers. |
5406 | | // TODO: determine whether that's the right thing to do. |
5407 | | |
5408 | | // FIXME: Check for protocols to which the class type is already |
5409 | | // known to conform. |
5410 | 0 | return getObjCObjectType(type, {}, protocols, false); |
5411 | 0 | } |
5412 | | |
5413 | | // id<protocol-list> |
5414 | 0 | if (type->isObjCIdType()) { |
5415 | 0 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
5416 | 0 | type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols, |
5417 | 0 | objPtr->isKindOfType()); |
5418 | 0 | return getObjCObjectPointerType(type); |
5419 | 0 | } |
5420 | | |
5421 | | // Class<protocol-list> |
5422 | 0 | if (type->isObjCClassType()) { |
5423 | 0 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
5424 | 0 | type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols, |
5425 | 0 | objPtr->isKindOfType()); |
5426 | 0 | return getObjCObjectPointerType(type); |
5427 | 0 | } |
5428 | | |
5429 | 0 | hasError = true; |
5430 | 0 | return type; |
5431 | 0 | } |
5432 | | |
5433 | | QualType |
5434 | | ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, |
5435 | 0 | ArrayRef<ObjCProtocolDecl *> protocols) const { |
5436 | | // Look in the folding set for an existing type. |
5437 | 0 | llvm::FoldingSetNodeID ID; |
5438 | 0 | ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols); |
5439 | 0 | void *InsertPos = nullptr; |
5440 | 0 | if (ObjCTypeParamType *TypeParam = |
5441 | 0 | ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5442 | 0 | return QualType(TypeParam, 0); |
5443 | | |
5444 | | // We canonicalize to the underlying type. |
5445 | 0 | QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); |
5446 | 0 | if (!protocols.empty()) { |
5447 | | // Apply the protocol qualifers. |
5448 | 0 | bool hasError; |
5449 | 0 | Canonical = getCanonicalType(applyObjCProtocolQualifiers( |
5450 | 0 | Canonical, protocols, hasError, true /*allowOnPointerType*/)); |
5451 | 0 | assert(!hasError && "Error when apply protocol qualifier to bound type"); |
5452 | 0 | } |
5453 | | |
5454 | 0 | unsigned size = sizeof(ObjCTypeParamType); |
5455 | 0 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
5456 | 0 | void *mem = Allocate(size, alignof(ObjCTypeParamType)); |
5457 | 0 | auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); |
5458 | |
|
5459 | 0 | Types.push_back(newType); |
5460 | 0 | ObjCTypeParamTypes.InsertNode(newType, InsertPos); |
5461 | 0 | return QualType(newType, 0); |
5462 | 0 | } |
5463 | | |
5464 | | void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, |
5465 | 0 | ObjCTypeParamDecl *New) const { |
5466 | 0 | New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType())); |
5467 | | // Update TypeForDecl after updating TypeSourceInfo. |
5468 | 0 | auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl()); |
5469 | 0 | SmallVector<ObjCProtocolDecl *, 8> protocols; |
5470 | 0 | protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end()); |
5471 | 0 | QualType UpdatedTy = getObjCTypeParamType(New, protocols); |
5472 | 0 | New->setTypeForDecl(UpdatedTy.getTypePtr()); |
5473 | 0 | } |
5474 | | |
5475 | | /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's |
5476 | | /// protocol list adopt all protocols in QT's qualified-id protocol |
5477 | | /// list. |
5478 | | bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, |
5479 | 0 | ObjCInterfaceDecl *IC) { |
5480 | 0 | if (!QT->isObjCQualifiedIdType()) |
5481 | 0 | return false; |
5482 | | |
5483 | 0 | if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { |
5484 | | // If both the right and left sides have qualifiers. |
5485 | 0 | for (auto *Proto : OPT->quals()) { |
5486 | 0 | if (!IC->ClassImplementsProtocol(Proto, false)) |
5487 | 0 | return false; |
5488 | 0 | } |
5489 | 0 | return true; |
5490 | 0 | } |
5491 | 0 | return false; |
5492 | 0 | } |
5493 | | |
5494 | | /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in |
5495 | | /// QT's qualified-id protocol list adopt all protocols in IDecl's list |
5496 | | /// of protocols. |
5497 | | bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, |
5498 | 0 | ObjCInterfaceDecl *IDecl) { |
5499 | 0 | if (!QT->isObjCQualifiedIdType()) |
5500 | 0 | return false; |
5501 | 0 | const auto *OPT = QT->getAs<ObjCObjectPointerType>(); |
5502 | 0 | if (!OPT) |
5503 | 0 | return false; |
5504 | 0 | if (!IDecl->hasDefinition()) |
5505 | 0 | return false; |
5506 | 0 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; |
5507 | 0 | CollectInheritedProtocols(IDecl, InheritedProtocols); |
5508 | 0 | if (InheritedProtocols.empty()) |
5509 | 0 | return false; |
5510 | | // Check that if every protocol in list of id<plist> conforms to a protocol |
5511 | | // of IDecl's, then bridge casting is ok. |
5512 | 0 | bool Conforms = false; |
5513 | 0 | for (auto *Proto : OPT->quals()) { |
5514 | 0 | Conforms = false; |
5515 | 0 | for (auto *PI : InheritedProtocols) { |
5516 | 0 | if (ProtocolCompatibleWithProtocol(Proto, PI)) { |
5517 | 0 | Conforms = true; |
5518 | 0 | break; |
5519 | 0 | } |
5520 | 0 | } |
5521 | 0 | if (!Conforms) |
5522 | 0 | break; |
5523 | 0 | } |
5524 | 0 | if (Conforms) |
5525 | 0 | return true; |
5526 | | |
5527 | 0 | for (auto *PI : InheritedProtocols) { |
5528 | | // If both the right and left sides have qualifiers. |
5529 | 0 | bool Adopts = false; |
5530 | 0 | for (auto *Proto : OPT->quals()) { |
5531 | | // return 'true' if 'PI' is in the inheritance hierarchy of Proto |
5532 | 0 | if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) |
5533 | 0 | break; |
5534 | 0 | } |
5535 | 0 | if (!Adopts) |
5536 | 0 | return false; |
5537 | 0 | } |
5538 | 0 | return true; |
5539 | 0 | } |
5540 | | |
5541 | | /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for |
5542 | | /// the given object type. |
5543 | 126 | QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { |
5544 | 126 | llvm::FoldingSetNodeID ID; |
5545 | 126 | ObjCObjectPointerType::Profile(ID, ObjectT); |
5546 | | |
5547 | 126 | void *InsertPos = nullptr; |
5548 | 126 | if (ObjCObjectPointerType *QT = |
5549 | 126 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5550 | 80 | return QualType(QT, 0); |
5551 | | |
5552 | | // Find the canonical object type. |
5553 | 46 | QualType Canonical; |
5554 | 46 | if (!ObjectT.isCanonical()) { |
5555 | 0 | Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); |
5556 | | |
5557 | | // Regenerate InsertPos. |
5558 | 0 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
5559 | 0 | } |
5560 | | |
5561 | | // No match. |
5562 | 46 | void *Mem = |
5563 | 46 | Allocate(sizeof(ObjCObjectPointerType), alignof(ObjCObjectPointerType)); |
5564 | 46 | auto *QType = |
5565 | 46 | new (Mem) ObjCObjectPointerType(Canonical, ObjectT); |
5566 | | |
5567 | 46 | Types.push_back(QType); |
5568 | 46 | ObjCObjectPointerTypes.InsertNode(QType, InsertPos); |
5569 | 46 | return QualType(QType, 0); |
5570 | 126 | } |
5571 | | |
5572 | | /// getObjCInterfaceType - Return the unique reference to the type for the |
5573 | | /// specified ObjC interface decl. The list of protocols is optional. |
5574 | | QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, |
5575 | 23 | ObjCInterfaceDecl *PrevDecl) const { |
5576 | 23 | if (Decl->TypeForDecl) |
5577 | 0 | return QualType(Decl->TypeForDecl, 0); |
5578 | | |
5579 | 23 | if (PrevDecl) { |
5580 | 0 | assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); |
5581 | 0 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
5582 | 0 | return QualType(PrevDecl->TypeForDecl, 0); |
5583 | 0 | } |
5584 | | |
5585 | | // Prefer the definition, if there is one. |
5586 | 23 | if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) |
5587 | 0 | Decl = Def; |
5588 | | |
5589 | 23 | void *Mem = Allocate(sizeof(ObjCInterfaceType), alignof(ObjCInterfaceType)); |
5590 | 23 | auto *T = new (Mem) ObjCInterfaceType(Decl); |
5591 | 23 | Decl->TypeForDecl = T; |
5592 | 23 | Types.push_back(T); |
5593 | 23 | return QualType(T, 0); |
5594 | 23 | } |
5595 | | |
5596 | | /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique |
5597 | | /// TypeOfExprType AST's (since expression's are never shared). For example, |
5598 | | /// multiple declarations that refer to "typeof(x)" all contain different |
5599 | | /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
5600 | | /// on canonical type's (which are always unique). |
5601 | 0 | QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const { |
5602 | 0 | TypeOfExprType *toe; |
5603 | 0 | if (tofExpr->isTypeDependent()) { |
5604 | 0 | llvm::FoldingSetNodeID ID; |
5605 | 0 | DependentTypeOfExprType::Profile(ID, *this, tofExpr, |
5606 | 0 | Kind == TypeOfKind::Unqualified); |
5607 | |
|
5608 | 0 | void *InsertPos = nullptr; |
5609 | 0 | DependentTypeOfExprType *Canon = |
5610 | 0 | DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); |
5611 | 0 | if (Canon) { |
5612 | | // We already have a "canonical" version of an identical, dependent |
5613 | | // typeof(expr) type. Use that as our canonical type. |
5614 | 0 | toe = new (*this, alignof(TypeOfExprType)) |
5615 | 0 | TypeOfExprType(tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0)); |
5616 | 0 | } else { |
5617 | | // Build a new, canonical typeof(expr) type. |
5618 | 0 | Canon = new (*this, alignof(DependentTypeOfExprType)) |
5619 | 0 | DependentTypeOfExprType(tofExpr, Kind); |
5620 | 0 | DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); |
5621 | 0 | toe = Canon; |
5622 | 0 | } |
5623 | 0 | } else { |
5624 | 0 | QualType Canonical = getCanonicalType(tofExpr->getType()); |
5625 | 0 | toe = new (*this, alignof(TypeOfExprType)) |
5626 | 0 | TypeOfExprType(tofExpr, Kind, Canonical); |
5627 | 0 | } |
5628 | 0 | Types.push_back(toe); |
5629 | 0 | return QualType(toe, 0); |
5630 | 0 | } |
5631 | | |
5632 | | /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
5633 | | /// TypeOfType nodes. The only motivation to unique these nodes would be |
5634 | | /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
5635 | | /// an issue. This doesn't affect the type checker, since it operates |
5636 | | /// on canonical types (which are always unique). |
5637 | 0 | QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const { |
5638 | 0 | QualType Canonical = getCanonicalType(tofType); |
5639 | 0 | auto *tot = |
5640 | 0 | new (*this, alignof(TypeOfType)) TypeOfType(tofType, Canonical, Kind); |
5641 | 0 | Types.push_back(tot); |
5642 | 0 | return QualType(tot, 0); |
5643 | 0 | } |
5644 | | |
5645 | | /// getReferenceQualifiedType - Given an expr, will return the type for |
5646 | | /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions |
5647 | | /// and class member access into account. |
5648 | 0 | QualType ASTContext::getReferenceQualifiedType(const Expr *E) const { |
5649 | | // C++11 [dcl.type.simple]p4: |
5650 | | // [...] |
5651 | 0 | QualType T = E->getType(); |
5652 | 0 | switch (E->getValueKind()) { |
5653 | | // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the |
5654 | | // type of e; |
5655 | 0 | case VK_XValue: |
5656 | 0 | return getRValueReferenceType(T); |
5657 | | // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the |
5658 | | // type of e; |
5659 | 0 | case VK_LValue: |
5660 | 0 | return getLValueReferenceType(T); |
5661 | | // - otherwise, decltype(e) is the type of e. |
5662 | 0 | case VK_PRValue: |
5663 | 0 | return T; |
5664 | 0 | } |
5665 | 0 | llvm_unreachable("Unknown value kind"); |
5666 | 0 | } |
5667 | | |
5668 | | /// Unlike many "get<Type>" functions, we don't unique DecltypeType |
5669 | | /// nodes. This would never be helpful, since each such type has its own |
5670 | | /// expression, and would not give a significant memory saving, since there |
5671 | | /// is an Expr tree under each such type. |
5672 | 0 | QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { |
5673 | 0 | DecltypeType *dt; |
5674 | | |
5675 | | // C++11 [temp.type]p2: |
5676 | | // If an expression e involves a template parameter, decltype(e) denotes a |
5677 | | // unique dependent type. Two such decltype-specifiers refer to the same |
5678 | | // type only if their expressions are equivalent (14.5.6.1). |
5679 | 0 | if (e->isInstantiationDependent()) { |
5680 | 0 | llvm::FoldingSetNodeID ID; |
5681 | 0 | DependentDecltypeType::Profile(ID, *this, e); |
5682 | |
|
5683 | 0 | void *InsertPos = nullptr; |
5684 | 0 | DependentDecltypeType *Canon |
5685 | 0 | = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); |
5686 | 0 | if (!Canon) { |
5687 | | // Build a new, canonical decltype(expr) type. |
5688 | 0 | Canon = new (*this, alignof(DependentDecltypeType)) |
5689 | 0 | DependentDecltypeType(e, DependentTy); |
5690 | 0 | DependentDecltypeTypes.InsertNode(Canon, InsertPos); |
5691 | 0 | } |
5692 | 0 | dt = new (*this, alignof(DecltypeType)) |
5693 | 0 | DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); |
5694 | 0 | } else { |
5695 | 0 | dt = new (*this, alignof(DecltypeType)) |
5696 | 0 | DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); |
5697 | 0 | } |
5698 | 0 | Types.push_back(dt); |
5699 | 0 | return QualType(dt, 0); |
5700 | 0 | } |
5701 | | |
5702 | | /// getUnaryTransformationType - We don't unique these, since the memory |
5703 | | /// savings are minimal and these are rare. |
5704 | | QualType ASTContext::getUnaryTransformType(QualType BaseType, |
5705 | | QualType UnderlyingType, |
5706 | | UnaryTransformType::UTTKind Kind) |
5707 | 0 | const { |
5708 | 0 | UnaryTransformType *ut = nullptr; |
5709 | |
|
5710 | 0 | if (BaseType->isDependentType()) { |
5711 | | // Look in the folding set for an existing type. |
5712 | 0 | llvm::FoldingSetNodeID ID; |
5713 | 0 | DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind); |
5714 | |
|
5715 | 0 | void *InsertPos = nullptr; |
5716 | 0 | DependentUnaryTransformType *Canon |
5717 | 0 | = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); |
5718 | |
|
5719 | 0 | if (!Canon) { |
5720 | | // Build a new, canonical __underlying_type(type) type. |
5721 | 0 | Canon = new (*this, alignof(DependentUnaryTransformType)) |
5722 | 0 | DependentUnaryTransformType(*this, getCanonicalType(BaseType), Kind); |
5723 | 0 | DependentUnaryTransformTypes.InsertNode(Canon, InsertPos); |
5724 | 0 | } |
5725 | 0 | ut = new (*this, alignof(UnaryTransformType)) |
5726 | 0 | UnaryTransformType(BaseType, QualType(), Kind, QualType(Canon, 0)); |
5727 | 0 | } else { |
5728 | 0 | QualType CanonType = getCanonicalType(UnderlyingType); |
5729 | 0 | ut = new (*this, alignof(UnaryTransformType)) |
5730 | 0 | UnaryTransformType(BaseType, UnderlyingType, Kind, CanonType); |
5731 | 0 | } |
5732 | 0 | Types.push_back(ut); |
5733 | 0 | return QualType(ut, 0); |
5734 | 0 | } |
5735 | | |
5736 | | QualType ASTContext::getAutoTypeInternal( |
5737 | | QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent, |
5738 | | bool IsPack, ConceptDecl *TypeConstraintConcept, |
5739 | 0 | ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const { |
5740 | 0 | if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && |
5741 | 0 | !TypeConstraintConcept && !IsDependent) |
5742 | 0 | return getAutoDeductType(); |
5743 | | |
5744 | | // Look in the folding set for an existing type. |
5745 | 0 | void *InsertPos = nullptr; |
5746 | 0 | llvm::FoldingSetNodeID ID; |
5747 | 0 | AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent, |
5748 | 0 | TypeConstraintConcept, TypeConstraintArgs); |
5749 | 0 | if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5750 | 0 | return QualType(AT, 0); |
5751 | | |
5752 | 0 | QualType Canon; |
5753 | 0 | if (!IsCanon) { |
5754 | 0 | if (!DeducedType.isNull()) { |
5755 | 0 | Canon = DeducedType.getCanonicalType(); |
5756 | 0 | } else if (TypeConstraintConcept) { |
5757 | 0 | bool AnyNonCanonArgs = false; |
5758 | 0 | ConceptDecl *CanonicalConcept = TypeConstraintConcept->getCanonicalDecl(); |
5759 | 0 | auto CanonicalConceptArgs = ::getCanonicalTemplateArguments( |
5760 | 0 | *this, TypeConstraintArgs, AnyNonCanonArgs); |
5761 | 0 | if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) { |
5762 | 0 | Canon = |
5763 | 0 | getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack, |
5764 | 0 | CanonicalConcept, CanonicalConceptArgs, true); |
5765 | | // Find the insert position again. |
5766 | 0 | [[maybe_unused]] auto *Nothing = |
5767 | 0 | AutoTypes.FindNodeOrInsertPos(ID, InsertPos); |
5768 | 0 | assert(!Nothing && "canonical type broken"); |
5769 | 0 | } |
5770 | 0 | } |
5771 | 0 | } |
5772 | | |
5773 | 0 | void *Mem = Allocate(sizeof(AutoType) + |
5774 | 0 | sizeof(TemplateArgument) * TypeConstraintArgs.size(), |
5775 | 0 | alignof(AutoType)); |
5776 | 0 | auto *AT = new (Mem) AutoType( |
5777 | 0 | DeducedType, Keyword, |
5778 | 0 | (IsDependent ? TypeDependence::DependentInstantiation |
5779 | 0 | : TypeDependence::None) | |
5780 | 0 | (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None), |
5781 | 0 | Canon, TypeConstraintConcept, TypeConstraintArgs); |
5782 | 0 | Types.push_back(AT); |
5783 | 0 | AutoTypes.InsertNode(AT, InsertPos); |
5784 | 0 | return QualType(AT, 0); |
5785 | 0 | } |
5786 | | |
5787 | | /// getAutoType - Return the uniqued reference to the 'auto' type which has been |
5788 | | /// deduced to the given type, or to the canonical undeduced 'auto' type, or the |
5789 | | /// canonical deduced-but-dependent 'auto' type. |
5790 | | QualType |
5791 | | ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, |
5792 | | bool IsDependent, bool IsPack, |
5793 | | ConceptDecl *TypeConstraintConcept, |
5794 | 0 | ArrayRef<TemplateArgument> TypeConstraintArgs) const { |
5795 | 0 | assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack"); |
5796 | 0 | assert((!IsDependent || DeducedType.isNull()) && |
5797 | 0 | "A dependent auto should be undeduced"); |
5798 | 0 | return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack, |
5799 | 0 | TypeConstraintConcept, TypeConstraintArgs); |
5800 | 0 | } |
5801 | | |
5802 | 0 | QualType ASTContext::getUnconstrainedType(QualType T) const { |
5803 | 0 | QualType CanonT = T.getCanonicalType(); |
5804 | | |
5805 | | // Remove a type-constraint from a top-level auto or decltype(auto). |
5806 | 0 | if (auto *AT = CanonT->getAs<AutoType>()) { |
5807 | 0 | if (!AT->isConstrained()) |
5808 | 0 | return T; |
5809 | 0 | return getQualifiedType(getAutoType(QualType(), AT->getKeyword(), false, |
5810 | 0 | AT->containsUnexpandedParameterPack()), |
5811 | 0 | T.getQualifiers()); |
5812 | 0 | } |
5813 | | |
5814 | | // FIXME: We only support constrained auto at the top level in the type of a |
5815 | | // non-type template parameter at the moment. Once we lift that restriction, |
5816 | | // we'll need to recursively build types containing auto here. |
5817 | 0 | assert(!CanonT->getContainedAutoType() || |
5818 | 0 | !CanonT->getContainedAutoType()->isConstrained()); |
5819 | 0 | return T; |
5820 | 0 | } |
5821 | | |
5822 | | /// Return the uniqued reference to the deduced template specialization type |
5823 | | /// which has been deduced to the given type, or to the canonical undeduced |
5824 | | /// such type, or the canonical deduced-but-dependent such type. |
5825 | | QualType ASTContext::getDeducedTemplateSpecializationType( |
5826 | 0 | TemplateName Template, QualType DeducedType, bool IsDependent) const { |
5827 | | // Look in the folding set for an existing type. |
5828 | 0 | void *InsertPos = nullptr; |
5829 | 0 | llvm::FoldingSetNodeID ID; |
5830 | 0 | DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType, |
5831 | 0 | IsDependent); |
5832 | 0 | if (DeducedTemplateSpecializationType *DTST = |
5833 | 0 | DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5834 | 0 | return QualType(DTST, 0); |
5835 | | |
5836 | 0 | auto *DTST = new (*this, alignof(DeducedTemplateSpecializationType)) |
5837 | 0 | DeducedTemplateSpecializationType(Template, DeducedType, IsDependent); |
5838 | 0 | llvm::FoldingSetNodeID TempID; |
5839 | 0 | DTST->Profile(TempID); |
5840 | 0 | assert(ID == TempID && "ID does not match"); |
5841 | 0 | Types.push_back(DTST); |
5842 | 0 | DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos); |
5843 | 0 | return QualType(DTST, 0); |
5844 | 0 | } |
5845 | | |
5846 | | /// getAtomicType - Return the uniqued reference to the atomic type for |
5847 | | /// the given value type. |
5848 | 0 | QualType ASTContext::getAtomicType(QualType T) const { |
5849 | | // Unique pointers, to guarantee there is only one pointer of a particular |
5850 | | // structure. |
5851 | 0 | llvm::FoldingSetNodeID ID; |
5852 | 0 | AtomicType::Profile(ID, T); |
5853 | |
|
5854 | 0 | void *InsertPos = nullptr; |
5855 | 0 | if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) |
5856 | 0 | return QualType(AT, 0); |
5857 | | |
5858 | | // If the atomic value type isn't canonical, this won't be a canonical type |
5859 | | // either, so fill in the canonical type field. |
5860 | 0 | QualType Canonical; |
5861 | 0 | if (!T.isCanonical()) { |
5862 | 0 | Canonical = getAtomicType(getCanonicalType(T)); |
5863 | | |
5864 | | // Get the new insert position for the node we care about. |
5865 | 0 | AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); |
5866 | 0 | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; |
5867 | 0 | } |
5868 | 0 | auto *New = new (*this, alignof(AtomicType)) AtomicType(T, Canonical); |
5869 | 0 | Types.push_back(New); |
5870 | 0 | AtomicTypes.InsertNode(New, InsertPos); |
5871 | 0 | return QualType(New, 0); |
5872 | 0 | } |
5873 | | |
5874 | | /// getAutoDeductType - Get type pattern for deducing against 'auto'. |
5875 | 0 | QualType ASTContext::getAutoDeductType() const { |
5876 | 0 | if (AutoDeductTy.isNull()) |
5877 | 0 | AutoDeductTy = QualType(new (*this, alignof(AutoType)) |
5878 | 0 | AutoType(QualType(), AutoTypeKeyword::Auto, |
5879 | 0 | TypeDependence::None, QualType(), |
5880 | 0 | /*concept*/ nullptr, /*args*/ {}), |
5881 | 0 | 0); |
5882 | 0 | return AutoDeductTy; |
5883 | 0 | } |
5884 | | |
5885 | | /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. |
5886 | 0 | QualType ASTContext::getAutoRRefDeductType() const { |
5887 | 0 | if (AutoRRefDeductTy.isNull()) |
5888 | 0 | AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); |
5889 | 0 | assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); |
5890 | 0 | return AutoRRefDeductTy; |
5891 | 0 | } |
5892 | | |
5893 | | /// getTagDeclType - Return the unique reference to the type for the |
5894 | | /// specified TagDecl (struct/union/class/enum) decl. |
5895 | 138 | QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { |
5896 | 138 | assert(Decl); |
5897 | | // FIXME: What is the design on getTagDeclType when it requires casting |
5898 | | // away const? mutable? |
5899 | 0 | return getTypeDeclType(const_cast<TagDecl*>(Decl)); |
5900 | 138 | } |
5901 | | |
5902 | | /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
5903 | | /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
5904 | | /// needs to agree with the definition in <stddef.h>. |
5905 | 97 | CanQualType ASTContext::getSizeType() const { |
5906 | 97 | return getFromTargetType(Target->getSizeType()); |
5907 | 97 | } |
5908 | | |
5909 | | /// Return the unique signed counterpart of the integer type |
5910 | | /// corresponding to size_t. |
5911 | 2 | CanQualType ASTContext::getSignedSizeType() const { |
5912 | 2 | return getFromTargetType(Target->getSignedSizeType()); |
5913 | 2 | } |
5914 | | |
5915 | | /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). |
5916 | 0 | CanQualType ASTContext::getIntMaxType() const { |
5917 | 0 | return getFromTargetType(Target->getIntMaxType()); |
5918 | 0 | } |
5919 | | |
5920 | | /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). |
5921 | 0 | CanQualType ASTContext::getUIntMaxType() const { |
5922 | 0 | return getFromTargetType(Target->getUIntMaxType()); |
5923 | 0 | } |
5924 | | |
5925 | | /// getSignedWCharType - Return the type of "signed wchar_t". |
5926 | | /// Used when in C++, as a GCC extension. |
5927 | 0 | QualType ASTContext::getSignedWCharType() const { |
5928 | | // FIXME: derive from "Target" ? |
5929 | 0 | return WCharTy; |
5930 | 0 | } |
5931 | | |
5932 | | /// getUnsignedWCharType - Return the type of "unsigned wchar_t". |
5933 | | /// Used when in C++, as a GCC extension. |
5934 | 0 | QualType ASTContext::getUnsignedWCharType() const { |
5935 | | // FIXME: derive from "Target" ? |
5936 | 0 | return UnsignedIntTy; |
5937 | 0 | } |
5938 | | |
5939 | 0 | QualType ASTContext::getIntPtrType() const { |
5940 | 0 | return getFromTargetType(Target->getIntPtrType()); |
5941 | 0 | } |
5942 | | |
5943 | 0 | QualType ASTContext::getUIntPtrType() const { |
5944 | 0 | return getCorrespondingUnsignedType(getIntPtrType()); |
5945 | 0 | } |
5946 | | |
5947 | | /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) |
5948 | | /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
5949 | 0 | QualType ASTContext::getPointerDiffType() const { |
5950 | 0 | return getFromTargetType(Target->getPtrDiffType(LangAS::Default)); |
5951 | 0 | } |
5952 | | |
5953 | | /// Return the unique unsigned counterpart of "ptrdiff_t" |
5954 | | /// integer type. The standard (C11 7.21.6.1p7) refers to this type |
5955 | | /// in the definition of %tu format specifier. |
5956 | 0 | QualType ASTContext::getUnsignedPointerDiffType() const { |
5957 | 0 | return getFromTargetType(Target->getUnsignedPtrDiffType(LangAS::Default)); |
5958 | 0 | } |
5959 | | |
5960 | | /// Return the unique type for "pid_t" defined in |
5961 | | /// <sys/types.h>. We need this to compute the correct type for vfork(). |
5962 | 0 | QualType ASTContext::getProcessIDType() const { |
5963 | 0 | return getFromTargetType(Target->getProcessIDType()); |
5964 | 0 | } |
5965 | | |
5966 | | //===----------------------------------------------------------------------===// |
5967 | | // Type Operators |
5968 | | //===----------------------------------------------------------------------===// |
5969 | | |
5970 | 0 | CanQualType ASTContext::getCanonicalParamType(QualType T) const { |
5971 | | // Push qualifiers into arrays, and then discard any remaining |
5972 | | // qualifiers. |
5973 | 0 | T = getCanonicalType(T); |
5974 | 0 | T = getVariableArrayDecayedType(T); |
5975 | 0 | const Type *Ty = T.getTypePtr(); |
5976 | 0 | QualType Result; |
5977 | 0 | if (isa<ArrayType>(Ty)) { |
5978 | 0 | Result = getArrayDecayedType(QualType(Ty,0)); |
5979 | 0 | } else if (isa<FunctionType>(Ty)) { |
5980 | 0 | Result = getPointerType(QualType(Ty, 0)); |
5981 | 0 | } else { |
5982 | 0 | Result = QualType(Ty, 0); |
5983 | 0 | } |
5984 | |
|
5985 | 0 | return CanQualType::CreateUnsafe(Result); |
5986 | 0 | } |
5987 | | |
5988 | | QualType ASTContext::getUnqualifiedArrayType(QualType type, |
5989 | 0 | Qualifiers &quals) { |
5990 | 0 | SplitQualType splitType = type.getSplitUnqualifiedType(); |
5991 | | |
5992 | | // FIXME: getSplitUnqualifiedType() actually walks all the way to |
5993 | | // the unqualified desugared type and then drops it on the floor. |
5994 | | // We then have to strip that sugar back off with |
5995 | | // getUnqualifiedDesugaredType(), which is silly. |
5996 | 0 | const auto *AT = |
5997 | 0 | dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); |
5998 | | |
5999 | | // If we don't have an array, just use the results in splitType. |
6000 | 0 | if (!AT) { |
6001 | 0 | quals = splitType.Quals; |
6002 | 0 | return QualType(splitType.Ty, 0); |
6003 | 0 | } |
6004 | | |
6005 | | // Otherwise, recurse on the array's element type. |
6006 | 0 | QualType elementType = AT->getElementType(); |
6007 | 0 | QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); |
6008 | | |
6009 | | // If that didn't change the element type, AT has no qualifiers, so we |
6010 | | // can just use the results in splitType. |
6011 | 0 | if (elementType == unqualElementType) { |
6012 | 0 | assert(quals.empty()); // from the recursive call |
6013 | 0 | quals = splitType.Quals; |
6014 | 0 | return QualType(splitType.Ty, 0); |
6015 | 0 | } |
6016 | | |
6017 | | // Otherwise, add in the qualifiers from the outermost type, then |
6018 | | // build the type back up. |
6019 | 0 | quals.addConsistentQualifiers(splitType.Quals); |
6020 | |
|
6021 | 0 | if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { |
6022 | 0 | return getConstantArrayType(unqualElementType, CAT->getSize(), |
6023 | 0 | CAT->getSizeExpr(), CAT->getSizeModifier(), 0); |
6024 | 0 | } |
6025 | | |
6026 | 0 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
6027 | 0 | return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); |
6028 | 0 | } |
6029 | | |
6030 | 0 | if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) { |
6031 | 0 | return getVariableArrayType(unqualElementType, |
6032 | 0 | VAT->getSizeExpr(), |
6033 | 0 | VAT->getSizeModifier(), |
6034 | 0 | VAT->getIndexTypeCVRQualifiers(), |
6035 | 0 | VAT->getBracketsRange()); |
6036 | 0 | } |
6037 | | |
6038 | 0 | const auto *DSAT = cast<DependentSizedArrayType>(AT); |
6039 | 0 | return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), |
6040 | 0 | DSAT->getSizeModifier(), 0, |
6041 | 0 | SourceRange()); |
6042 | 0 | } |
6043 | | |
6044 | | /// Attempt to unwrap two types that may both be array types with the same bound |
6045 | | /// (or both be array types of unknown bound) for the purpose of comparing the |
6046 | | /// cv-decomposition of two types per C++ [conv.qual]. |
6047 | | /// |
6048 | | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in |
6049 | | /// C++20 [conv.qual], if permitted by the current language mode. |
6050 | | void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2, |
6051 | 1 | bool AllowPiMismatch) { |
6052 | 1 | while (true) { |
6053 | 1 | auto *AT1 = getAsArrayType(T1); |
6054 | 1 | if (!AT1) |
6055 | 1 | return; |
6056 | | |
6057 | 0 | auto *AT2 = getAsArrayType(T2); |
6058 | 0 | if (!AT2) |
6059 | 0 | return; |
6060 | | |
6061 | | // If we don't have two array types with the same constant bound nor two |
6062 | | // incomplete array types, we've unwrapped everything we can. |
6063 | | // C++20 also permits one type to be a constant array type and the other |
6064 | | // to be an incomplete array type. |
6065 | | // FIXME: Consider also unwrapping array of unknown bound and VLA. |
6066 | 0 | if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) { |
6067 | 0 | auto *CAT2 = dyn_cast<ConstantArrayType>(AT2); |
6068 | 0 | if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) || |
6069 | 0 | (AllowPiMismatch && getLangOpts().CPlusPlus20 && |
6070 | 0 | isa<IncompleteArrayType>(AT2)))) |
6071 | 0 | return; |
6072 | 0 | } else if (isa<IncompleteArrayType>(AT1)) { |
6073 | 0 | if (!(isa<IncompleteArrayType>(AT2) || |
6074 | 0 | (AllowPiMismatch && getLangOpts().CPlusPlus20 && |
6075 | 0 | isa<ConstantArrayType>(AT2)))) |
6076 | 0 | return; |
6077 | 0 | } else { |
6078 | 0 | return; |
6079 | 0 | } |
6080 | | |
6081 | 0 | T1 = AT1->getElementType(); |
6082 | 0 | T2 = AT2->getElementType(); |
6083 | 0 | } |
6084 | 1 | } |
6085 | | |
6086 | | /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). |
6087 | | /// |
6088 | | /// If T1 and T2 are both pointer types of the same kind, or both array types |
6089 | | /// with the same bound, unwraps layers from T1 and T2 until a pointer type is |
6090 | | /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. |
6091 | | /// |
6092 | | /// This function will typically be called in a loop that successively |
6093 | | /// "unwraps" pointer and pointer-to-member types to compare them at each |
6094 | | /// level. |
6095 | | /// |
6096 | | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in |
6097 | | /// C++20 [conv.qual], if permitted by the current language mode. |
6098 | | /// |
6099 | | /// \return \c true if a pointer type was unwrapped, \c false if we reached a |
6100 | | /// pair of types that can't be unwrapped further. |
6101 | | bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2, |
6102 | 1 | bool AllowPiMismatch) { |
6103 | 1 | UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch); |
6104 | | |
6105 | 1 | const auto *T1PtrType = T1->getAs<PointerType>(); |
6106 | 1 | const auto *T2PtrType = T2->getAs<PointerType>(); |
6107 | 1 | if (T1PtrType && T2PtrType) { |
6108 | 0 | T1 = T1PtrType->getPointeeType(); |
6109 | 0 | T2 = T2PtrType->getPointeeType(); |
6110 | 0 | return true; |
6111 | 0 | } |
6112 | | |
6113 | 1 | const auto *T1MPType = T1->getAs<MemberPointerType>(); |
6114 | 1 | const auto *T2MPType = T2->getAs<MemberPointerType>(); |
6115 | 1 | if (T1MPType && T2MPType && |
6116 | 1 | hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), |
6117 | 0 | QualType(T2MPType->getClass(), 0))) { |
6118 | 0 | T1 = T1MPType->getPointeeType(); |
6119 | 0 | T2 = T2MPType->getPointeeType(); |
6120 | 0 | return true; |
6121 | 0 | } |
6122 | | |
6123 | 1 | if (getLangOpts().ObjC) { |
6124 | 0 | const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); |
6125 | 0 | const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); |
6126 | 0 | if (T1OPType && T2OPType) { |
6127 | 0 | T1 = T1OPType->getPointeeType(); |
6128 | 0 | T2 = T2OPType->getPointeeType(); |
6129 | 0 | return true; |
6130 | 0 | } |
6131 | 0 | } |
6132 | | |
6133 | | // FIXME: Block pointers, too? |
6134 | | |
6135 | 1 | return false; |
6136 | 1 | } |
6137 | | |
6138 | 0 | bool ASTContext::hasSimilarType(QualType T1, QualType T2) { |
6139 | 0 | while (true) { |
6140 | 0 | Qualifiers Quals; |
6141 | 0 | T1 = getUnqualifiedArrayType(T1, Quals); |
6142 | 0 | T2 = getUnqualifiedArrayType(T2, Quals); |
6143 | 0 | if (hasSameType(T1, T2)) |
6144 | 0 | return true; |
6145 | 0 | if (!UnwrapSimilarTypes(T1, T2)) |
6146 | 0 | return false; |
6147 | 0 | } |
6148 | 0 | } |
6149 | | |
6150 | 0 | bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { |
6151 | 0 | while (true) { |
6152 | 0 | Qualifiers Quals1, Quals2; |
6153 | 0 | T1 = getUnqualifiedArrayType(T1, Quals1); |
6154 | 0 | T2 = getUnqualifiedArrayType(T2, Quals2); |
6155 | |
|
6156 | 0 | Quals1.removeCVRQualifiers(); |
6157 | 0 | Quals2.removeCVRQualifiers(); |
6158 | 0 | if (Quals1 != Quals2) |
6159 | 0 | return false; |
6160 | | |
6161 | 0 | if (hasSameType(T1, T2)) |
6162 | 0 | return true; |
6163 | | |
6164 | 0 | if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false)) |
6165 | 0 | return false; |
6166 | 0 | } |
6167 | 0 | } |
6168 | | |
6169 | | DeclarationNameInfo |
6170 | | ASTContext::getNameForTemplate(TemplateName Name, |
6171 | 0 | SourceLocation NameLoc) const { |
6172 | 0 | switch (Name.getKind()) { |
6173 | 0 | case TemplateName::QualifiedTemplate: |
6174 | 0 | case TemplateName::Template: |
6175 | | // DNInfo work in progress: CHECKME: what about DNLoc? |
6176 | 0 | return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), |
6177 | 0 | NameLoc); |
6178 | | |
6179 | 0 | case TemplateName::OverloadedTemplate: { |
6180 | 0 | OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); |
6181 | | // DNInfo work in progress: CHECKME: what about DNLoc? |
6182 | 0 | return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); |
6183 | 0 | } |
6184 | | |
6185 | 0 | case TemplateName::AssumedTemplate: { |
6186 | 0 | AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName(); |
6187 | 0 | return DeclarationNameInfo(Storage->getDeclName(), NameLoc); |
6188 | 0 | } |
6189 | | |
6190 | 0 | case TemplateName::DependentTemplate: { |
6191 | 0 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
6192 | 0 | DeclarationName DName; |
6193 | 0 | if (DTN->isIdentifier()) { |
6194 | 0 | DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); |
6195 | 0 | return DeclarationNameInfo(DName, NameLoc); |
6196 | 0 | } else { |
6197 | 0 | DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); |
6198 | | // DNInfo work in progress: FIXME: source locations? |
6199 | 0 | DeclarationNameLoc DNLoc = |
6200 | 0 | DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange()); |
6201 | 0 | return DeclarationNameInfo(DName, NameLoc, DNLoc); |
6202 | 0 | } |
6203 | 0 | } |
6204 | | |
6205 | 0 | case TemplateName::SubstTemplateTemplateParm: { |
6206 | 0 | SubstTemplateTemplateParmStorage *subst |
6207 | 0 | = Name.getAsSubstTemplateTemplateParm(); |
6208 | 0 | return DeclarationNameInfo(subst->getParameter()->getDeclName(), |
6209 | 0 | NameLoc); |
6210 | 0 | } |
6211 | | |
6212 | 0 | case TemplateName::SubstTemplateTemplateParmPack: { |
6213 | 0 | SubstTemplateTemplateParmPackStorage *subst |
6214 | 0 | = Name.getAsSubstTemplateTemplateParmPack(); |
6215 | 0 | return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), |
6216 | 0 | NameLoc); |
6217 | 0 | } |
6218 | 0 | case TemplateName::UsingTemplate: |
6219 | 0 | return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(), |
6220 | 0 | NameLoc); |
6221 | 0 | } |
6222 | | |
6223 | 0 | llvm_unreachable("bad template name kind!"); |
6224 | 0 | } |
6225 | | |
6226 | | TemplateName |
6227 | 0 | ASTContext::getCanonicalTemplateName(const TemplateName &Name) const { |
6228 | 0 | switch (Name.getKind()) { |
6229 | 0 | case TemplateName::UsingTemplate: |
6230 | 0 | case TemplateName::QualifiedTemplate: |
6231 | 0 | case TemplateName::Template: { |
6232 | 0 | TemplateDecl *Template = Name.getAsTemplateDecl(); |
6233 | 0 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template)) |
6234 | 0 | Template = getCanonicalTemplateTemplateParmDecl(TTP); |
6235 | | |
6236 | | // The canonical template name is the canonical template declaration. |
6237 | 0 | return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); |
6238 | 0 | } |
6239 | | |
6240 | 0 | case TemplateName::OverloadedTemplate: |
6241 | 0 | case TemplateName::AssumedTemplate: |
6242 | 0 | llvm_unreachable("cannot canonicalize unresolved template"); |
6243 | |
|
6244 | 0 | case TemplateName::DependentTemplate: { |
6245 | 0 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
6246 | 0 | assert(DTN && "Non-dependent template names must refer to template decls."); |
6247 | 0 | return DTN->CanonicalTemplateName; |
6248 | 0 | } |
6249 | | |
6250 | 0 | case TemplateName::SubstTemplateTemplateParm: { |
6251 | 0 | SubstTemplateTemplateParmStorage *subst |
6252 | 0 | = Name.getAsSubstTemplateTemplateParm(); |
6253 | 0 | return getCanonicalTemplateName(subst->getReplacement()); |
6254 | 0 | } |
6255 | | |
6256 | 0 | case TemplateName::SubstTemplateTemplateParmPack: { |
6257 | 0 | SubstTemplateTemplateParmPackStorage *subst = |
6258 | 0 | Name.getAsSubstTemplateTemplateParmPack(); |
6259 | 0 | TemplateArgument canonArgPack = |
6260 | 0 | getCanonicalTemplateArgument(subst->getArgumentPack()); |
6261 | 0 | return getSubstTemplateTemplateParmPack( |
6262 | 0 | canonArgPack, subst->getAssociatedDecl()->getCanonicalDecl(), |
6263 | 0 | subst->getFinal(), subst->getIndex()); |
6264 | 0 | } |
6265 | 0 | } |
6266 | | |
6267 | 0 | llvm_unreachable("bad template name!"); |
6268 | 0 | } |
6269 | | |
6270 | | bool ASTContext::hasSameTemplateName(const TemplateName &X, |
6271 | 0 | const TemplateName &Y) const { |
6272 | 0 | return getCanonicalTemplateName(X).getAsVoidPointer() == |
6273 | 0 | getCanonicalTemplateName(Y).getAsVoidPointer(); |
6274 | 0 | } |
6275 | | |
6276 | 0 | bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const { |
6277 | 0 | if (!XCE != !YCE) |
6278 | 0 | return false; |
6279 | | |
6280 | 0 | if (!XCE) |
6281 | 0 | return true; |
6282 | | |
6283 | 0 | llvm::FoldingSetNodeID XCEID, YCEID; |
6284 | 0 | XCE->Profile(XCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); |
6285 | 0 | YCE->Profile(YCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); |
6286 | 0 | return XCEID == YCEID; |
6287 | 0 | } |
6288 | | |
6289 | | bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC, |
6290 | 0 | const TypeConstraint *YTC) const { |
6291 | 0 | if (!XTC != !YTC) |
6292 | 0 | return false; |
6293 | | |
6294 | 0 | if (!XTC) |
6295 | 0 | return true; |
6296 | | |
6297 | 0 | auto *NCX = XTC->getNamedConcept(); |
6298 | 0 | auto *NCY = YTC->getNamedConcept(); |
6299 | 0 | if (!NCX || !NCY || !isSameEntity(NCX, NCY)) |
6300 | 0 | return false; |
6301 | 0 | if (XTC->getConceptReference()->hasExplicitTemplateArgs() != |
6302 | 0 | YTC->getConceptReference()->hasExplicitTemplateArgs()) |
6303 | 0 | return false; |
6304 | 0 | if (XTC->getConceptReference()->hasExplicitTemplateArgs()) |
6305 | 0 | if (XTC->getConceptReference() |
6306 | 0 | ->getTemplateArgsAsWritten() |
6307 | 0 | ->NumTemplateArgs != |
6308 | 0 | YTC->getConceptReference()->getTemplateArgsAsWritten()->NumTemplateArgs) |
6309 | 0 | return false; |
6310 | | |
6311 | | // Compare slowly by profiling. |
6312 | | // |
6313 | | // We couldn't compare the profiling result for the template |
6314 | | // args here. Consider the following example in different modules: |
6315 | | // |
6316 | | // template <__integer_like _Tp, C<_Tp> Sentinel> |
6317 | | // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const { |
6318 | | // return __t; |
6319 | | // } |
6320 | | // |
6321 | | // When we compare the profiling result for `C<_Tp>` in different |
6322 | | // modules, it will compare the type of `_Tp` in different modules. |
6323 | | // However, the type of `_Tp` in different modules refer to different |
6324 | | // types here naturally. So we couldn't compare the profiling result |
6325 | | // for the template args directly. |
6326 | 0 | return isSameConstraintExpr(XTC->getImmediatelyDeclaredConstraint(), |
6327 | 0 | YTC->getImmediatelyDeclaredConstraint()); |
6328 | 0 | } |
6329 | | |
6330 | | bool ASTContext::isSameTemplateParameter(const NamedDecl *X, |
6331 | 0 | const NamedDecl *Y) const { |
6332 | 0 | if (X->getKind() != Y->getKind()) |
6333 | 0 | return false; |
6334 | | |
6335 | 0 | if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) { |
6336 | 0 | auto *TY = cast<TemplateTypeParmDecl>(Y); |
6337 | 0 | if (TX->isParameterPack() != TY->isParameterPack()) |
6338 | 0 | return false; |
6339 | 0 | if (TX->hasTypeConstraint() != TY->hasTypeConstraint()) |
6340 | 0 | return false; |
6341 | 0 | return isSameTypeConstraint(TX->getTypeConstraint(), |
6342 | 0 | TY->getTypeConstraint()); |
6343 | 0 | } |
6344 | | |
6345 | 0 | if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) { |
6346 | 0 | auto *TY = cast<NonTypeTemplateParmDecl>(Y); |
6347 | 0 | return TX->isParameterPack() == TY->isParameterPack() && |
6348 | 0 | TX->getASTContext().hasSameType(TX->getType(), TY->getType()) && |
6349 | 0 | isSameConstraintExpr(TX->getPlaceholderTypeConstraint(), |
6350 | 0 | TY->getPlaceholderTypeConstraint()); |
6351 | 0 | } |
6352 | | |
6353 | 0 | auto *TX = cast<TemplateTemplateParmDecl>(X); |
6354 | 0 | auto *TY = cast<TemplateTemplateParmDecl>(Y); |
6355 | 0 | return TX->isParameterPack() == TY->isParameterPack() && |
6356 | 0 | isSameTemplateParameterList(TX->getTemplateParameters(), |
6357 | 0 | TY->getTemplateParameters()); |
6358 | 0 | } |
6359 | | |
6360 | | bool ASTContext::isSameTemplateParameterList( |
6361 | 0 | const TemplateParameterList *X, const TemplateParameterList *Y) const { |
6362 | 0 | if (X->size() != Y->size()) |
6363 | 0 | return false; |
6364 | | |
6365 | 0 | for (unsigned I = 0, N = X->size(); I != N; ++I) |
6366 | 0 | if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I))) |
6367 | 0 | return false; |
6368 | | |
6369 | 0 | return isSameConstraintExpr(X->getRequiresClause(), Y->getRequiresClause()); |
6370 | 0 | } |
6371 | | |
6372 | | bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X, |
6373 | 0 | const NamedDecl *Y) const { |
6374 | | // If the type parameter isn't the same already, we don't need to check the |
6375 | | // default argument further. |
6376 | 0 | if (!isSameTemplateParameter(X, Y)) |
6377 | 0 | return false; |
6378 | | |
6379 | 0 | if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(X)) { |
6380 | 0 | auto *TTPY = cast<TemplateTypeParmDecl>(Y); |
6381 | 0 | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) |
6382 | 0 | return false; |
6383 | | |
6384 | 0 | return hasSameType(TTPX->getDefaultArgument(), TTPY->getDefaultArgument()); |
6385 | 0 | } |
6386 | | |
6387 | 0 | if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(X)) { |
6388 | 0 | auto *NTTPY = cast<NonTypeTemplateParmDecl>(Y); |
6389 | 0 | if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument()) |
6390 | 0 | return false; |
6391 | | |
6392 | 0 | Expr *DefaultArgumentX = NTTPX->getDefaultArgument()->IgnoreImpCasts(); |
6393 | 0 | Expr *DefaultArgumentY = NTTPY->getDefaultArgument()->IgnoreImpCasts(); |
6394 | 0 | llvm::FoldingSetNodeID XID, YID; |
6395 | 0 | DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true); |
6396 | 0 | DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true); |
6397 | 0 | return XID == YID; |
6398 | 0 | } |
6399 | | |
6400 | 0 | auto *TTPX = cast<TemplateTemplateParmDecl>(X); |
6401 | 0 | auto *TTPY = cast<TemplateTemplateParmDecl>(Y); |
6402 | |
|
6403 | 0 | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) |
6404 | 0 | return false; |
6405 | | |
6406 | 0 | const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument(); |
6407 | 0 | const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument(); |
6408 | 0 | return hasSameTemplateName(TAX.getAsTemplate(), TAY.getAsTemplate()); |
6409 | 0 | } |
6410 | | |
6411 | 0 | static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) { |
6412 | 0 | if (auto *NS = X->getAsNamespace()) |
6413 | 0 | return NS; |
6414 | 0 | if (auto *NAS = X->getAsNamespaceAlias()) |
6415 | 0 | return NAS->getNamespace(); |
6416 | 0 | return nullptr; |
6417 | 0 | } |
6418 | | |
6419 | | static bool isSameQualifier(const NestedNameSpecifier *X, |
6420 | 0 | const NestedNameSpecifier *Y) { |
6421 | 0 | if (auto *NSX = getNamespace(X)) { |
6422 | 0 | auto *NSY = getNamespace(Y); |
6423 | 0 | if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl()) |
6424 | 0 | return false; |
6425 | 0 | } else if (X->getKind() != Y->getKind()) |
6426 | 0 | return false; |
6427 | | |
6428 | | // FIXME: For namespaces and types, we're permitted to check that the entity |
6429 | | // is named via the same tokens. We should probably do so. |
6430 | 0 | switch (X->getKind()) { |
6431 | 0 | case NestedNameSpecifier::Identifier: |
6432 | 0 | if (X->getAsIdentifier() != Y->getAsIdentifier()) |
6433 | 0 | return false; |
6434 | 0 | break; |
6435 | 0 | case NestedNameSpecifier::Namespace: |
6436 | 0 | case NestedNameSpecifier::NamespaceAlias: |
6437 | | // We've already checked that we named the same namespace. |
6438 | 0 | break; |
6439 | 0 | case NestedNameSpecifier::TypeSpec: |
6440 | 0 | case NestedNameSpecifier::TypeSpecWithTemplate: |
6441 | 0 | if (X->getAsType()->getCanonicalTypeInternal() != |
6442 | 0 | Y->getAsType()->getCanonicalTypeInternal()) |
6443 | 0 | return false; |
6444 | 0 | break; |
6445 | 0 | case NestedNameSpecifier::Global: |
6446 | 0 | case NestedNameSpecifier::Super: |
6447 | 0 | return true; |
6448 | 0 | } |
6449 | | |
6450 | | // Recurse into earlier portion of NNS, if any. |
6451 | 0 | auto *PX = X->getPrefix(); |
6452 | 0 | auto *PY = Y->getPrefix(); |
6453 | 0 | if (PX && PY) |
6454 | 0 | return isSameQualifier(PX, PY); |
6455 | 0 | return !PX && !PY; |
6456 | 0 | } |
6457 | | |
6458 | | /// Determine whether the attributes we can overload on are identical for A and |
6459 | | /// B. Will ignore any overloadable attrs represented in the type of A and B. |
6460 | | static bool hasSameOverloadableAttrs(const FunctionDecl *A, |
6461 | 0 | const FunctionDecl *B) { |
6462 | | // Note that pass_object_size attributes are represented in the function's |
6463 | | // ExtParameterInfo, so we don't need to check them here. |
6464 | |
|
6465 | 0 | llvm::FoldingSetNodeID Cand1ID, Cand2ID; |
6466 | 0 | auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>(); |
6467 | 0 | auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>(); |
6468 | |
|
6469 | 0 | for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) { |
6470 | 0 | std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); |
6471 | 0 | std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); |
6472 | | |
6473 | | // Return false if the number of enable_if attributes is different. |
6474 | 0 | if (!Cand1A || !Cand2A) |
6475 | 0 | return false; |
6476 | | |
6477 | 0 | Cand1ID.clear(); |
6478 | 0 | Cand2ID.clear(); |
6479 | |
|
6480 | 0 | (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true); |
6481 | 0 | (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true); |
6482 | | |
6483 | | // Return false if any of the enable_if expressions of A and B are |
6484 | | // different. |
6485 | 0 | if (Cand1ID != Cand2ID) |
6486 | 0 | return false; |
6487 | 0 | } |
6488 | 0 | return true; |
6489 | 0 | } |
6490 | | |
6491 | 0 | bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const { |
6492 | | // Caution: this function is called by the AST reader during deserialization, |
6493 | | // so it cannot rely on AST invariants being met. Non-trivial accessors |
6494 | | // should be avoided, along with any traversal of redeclaration chains. |
6495 | |
|
6496 | 0 | if (X == Y) |
6497 | 0 | return true; |
6498 | | |
6499 | 0 | if (X->getDeclName() != Y->getDeclName()) |
6500 | 0 | return false; |
6501 | | |
6502 | | // Must be in the same context. |
6503 | | // |
6504 | | // Note that we can't use DeclContext::Equals here, because the DeclContexts |
6505 | | // could be two different declarations of the same function. (We will fix the |
6506 | | // semantic DC to refer to the primary definition after merging.) |
6507 | 0 | if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()), |
6508 | 0 | cast<Decl>(Y->getDeclContext()->getRedeclContext()))) |
6509 | 0 | return false; |
6510 | | |
6511 | | // Two typedefs refer to the same entity if they have the same underlying |
6512 | | // type. |
6513 | 0 | if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X)) |
6514 | 0 | if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y)) |
6515 | 0 | return hasSameType(TypedefX->getUnderlyingType(), |
6516 | 0 | TypedefY->getUnderlyingType()); |
6517 | | |
6518 | | // Must have the same kind. |
6519 | 0 | if (X->getKind() != Y->getKind()) |
6520 | 0 | return false; |
6521 | | |
6522 | | // Objective-C classes and protocols with the same name always match. |
6523 | 0 | if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X)) |
6524 | 0 | return true; |
6525 | | |
6526 | 0 | if (isa<ClassTemplateSpecializationDecl>(X)) { |
6527 | | // No need to handle these here: we merge them when adding them to the |
6528 | | // template. |
6529 | 0 | return false; |
6530 | 0 | } |
6531 | | |
6532 | | // Compatible tags match. |
6533 | 0 | if (const auto *TagX = dyn_cast<TagDecl>(X)) { |
6534 | 0 | const auto *TagY = cast<TagDecl>(Y); |
6535 | 0 | return (TagX->getTagKind() == TagY->getTagKind()) || |
6536 | 0 | ((TagX->getTagKind() == TagTypeKind::Struct || |
6537 | 0 | TagX->getTagKind() == TagTypeKind::Class || |
6538 | 0 | TagX->getTagKind() == TagTypeKind::Interface) && |
6539 | 0 | (TagY->getTagKind() == TagTypeKind::Struct || |
6540 | 0 | TagY->getTagKind() == TagTypeKind::Class || |
6541 | 0 | TagY->getTagKind() == TagTypeKind::Interface)); |
6542 | 0 | } |
6543 | | |
6544 | | // Functions with the same type and linkage match. |
6545 | | // FIXME: This needs to cope with merging of prototyped/non-prototyped |
6546 | | // functions, etc. |
6547 | 0 | if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) { |
6548 | 0 | const auto *FuncY = cast<FunctionDecl>(Y); |
6549 | 0 | if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) { |
6550 | 0 | const auto *CtorY = cast<CXXConstructorDecl>(Y); |
6551 | 0 | if (CtorX->getInheritedConstructor() && |
6552 | 0 | !isSameEntity(CtorX->getInheritedConstructor().getConstructor(), |
6553 | 0 | CtorY->getInheritedConstructor().getConstructor())) |
6554 | 0 | return false; |
6555 | 0 | } |
6556 | | |
6557 | 0 | if (FuncX->isMultiVersion() != FuncY->isMultiVersion()) |
6558 | 0 | return false; |
6559 | | |
6560 | | // Multiversioned functions with different feature strings are represented |
6561 | | // as separate declarations. |
6562 | 0 | if (FuncX->isMultiVersion()) { |
6563 | 0 | const auto *TAX = FuncX->getAttr<TargetAttr>(); |
6564 | 0 | const auto *TAY = FuncY->getAttr<TargetAttr>(); |
6565 | 0 | assert(TAX && TAY && "Multiversion Function without target attribute"); |
6566 | | |
6567 | 0 | if (TAX->getFeaturesStr() != TAY->getFeaturesStr()) |
6568 | 0 | return false; |
6569 | 0 | } |
6570 | | |
6571 | | // Per C++20 [temp.over.link]/4, friends in different classes are sometimes |
6572 | | // not the same entity if they are constrained. |
6573 | 0 | if ((FuncX->isMemberLikeConstrainedFriend() || |
6574 | 0 | FuncY->isMemberLikeConstrainedFriend()) && |
6575 | 0 | !FuncX->getLexicalDeclContext()->Equals( |
6576 | 0 | FuncY->getLexicalDeclContext())) { |
6577 | 0 | return false; |
6578 | 0 | } |
6579 | | |
6580 | 0 | if (!isSameConstraintExpr(FuncX->getTrailingRequiresClause(), |
6581 | 0 | FuncY->getTrailingRequiresClause())) |
6582 | 0 | return false; |
6583 | | |
6584 | 0 | auto GetTypeAsWritten = [](const FunctionDecl *FD) { |
6585 | | // Map to the first declaration that we've already merged into this one. |
6586 | | // The TSI of redeclarations might not match (due to calling conventions |
6587 | | // being inherited onto the type but not the TSI), but the TSI type of |
6588 | | // the first declaration of the function should match across modules. |
6589 | 0 | FD = FD->getCanonicalDecl(); |
6590 | 0 | return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType() |
6591 | 0 | : FD->getType(); |
6592 | 0 | }; |
6593 | 0 | QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY); |
6594 | 0 | if (!hasSameType(XT, YT)) { |
6595 | | // We can get functions with different types on the redecl chain in C++17 |
6596 | | // if they have differing exception specifications and at least one of |
6597 | | // the excpetion specs is unresolved. |
6598 | 0 | auto *XFPT = XT->getAs<FunctionProtoType>(); |
6599 | 0 | auto *YFPT = YT->getAs<FunctionProtoType>(); |
6600 | 0 | if (getLangOpts().CPlusPlus17 && XFPT && YFPT && |
6601 | 0 | (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) || |
6602 | 0 | isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) && |
6603 | 0 | hasSameFunctionTypeIgnoringExceptionSpec(XT, YT)) |
6604 | 0 | return true; |
6605 | 0 | return false; |
6606 | 0 | } |
6607 | | |
6608 | 0 | return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() && |
6609 | 0 | hasSameOverloadableAttrs(FuncX, FuncY); |
6610 | 0 | } |
6611 | | |
6612 | | // Variables with the same type and linkage match. |
6613 | 0 | if (const auto *VarX = dyn_cast<VarDecl>(X)) { |
6614 | 0 | const auto *VarY = cast<VarDecl>(Y); |
6615 | 0 | if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) { |
6616 | | // During deserialization, we might compare variables before we load |
6617 | | // their types. Assume the types will end up being the same. |
6618 | 0 | if (VarX->getType().isNull() || VarY->getType().isNull()) |
6619 | 0 | return true; |
6620 | | |
6621 | 0 | if (hasSameType(VarX->getType(), VarY->getType())) |
6622 | 0 | return true; |
6623 | | |
6624 | | // We can get decls with different types on the redecl chain. Eg. |
6625 | | // template <typename T> struct S { static T Var[]; }; // #1 |
6626 | | // template <typename T> T S<T>::Var[sizeof(T)]; // #2 |
6627 | | // Only? happens when completing an incomplete array type. In this case |
6628 | | // when comparing #1 and #2 we should go through their element type. |
6629 | 0 | const ArrayType *VarXTy = getAsArrayType(VarX->getType()); |
6630 | 0 | const ArrayType *VarYTy = getAsArrayType(VarY->getType()); |
6631 | 0 | if (!VarXTy || !VarYTy) |
6632 | 0 | return false; |
6633 | 0 | if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType()) |
6634 | 0 | return hasSameType(VarXTy->getElementType(), VarYTy->getElementType()); |
6635 | 0 | } |
6636 | 0 | return false; |
6637 | 0 | } |
6638 | | |
6639 | | // Namespaces with the same name and inlinedness match. |
6640 | 0 | if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) { |
6641 | 0 | const auto *NamespaceY = cast<NamespaceDecl>(Y); |
6642 | 0 | return NamespaceX->isInline() == NamespaceY->isInline(); |
6643 | 0 | } |
6644 | | |
6645 | | // Identical template names and kinds match if their template parameter lists |
6646 | | // and patterns match. |
6647 | 0 | if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) { |
6648 | 0 | const auto *TemplateY = cast<TemplateDecl>(Y); |
6649 | | |
6650 | | // ConceptDecl wouldn't be the same if their constraint expression differs. |
6651 | 0 | if (const auto *ConceptX = dyn_cast<ConceptDecl>(X)) { |
6652 | 0 | const auto *ConceptY = cast<ConceptDecl>(Y); |
6653 | 0 | if (!isSameConstraintExpr(ConceptX->getConstraintExpr(), |
6654 | 0 | ConceptY->getConstraintExpr())) |
6655 | 0 | return false; |
6656 | 0 | } |
6657 | | |
6658 | 0 | return isSameEntity(TemplateX->getTemplatedDecl(), |
6659 | 0 | TemplateY->getTemplatedDecl()) && |
6660 | 0 | isSameTemplateParameterList(TemplateX->getTemplateParameters(), |
6661 | 0 | TemplateY->getTemplateParameters()); |
6662 | 0 | } |
6663 | | |
6664 | | // Fields with the same name and the same type match. |
6665 | 0 | if (const auto *FDX = dyn_cast<FieldDecl>(X)) { |
6666 | 0 | const auto *FDY = cast<FieldDecl>(Y); |
6667 | | // FIXME: Also check the bitwidth is odr-equivalent, if any. |
6668 | 0 | return hasSameType(FDX->getType(), FDY->getType()); |
6669 | 0 | } |
6670 | | |
6671 | | // Indirect fields with the same target field match. |
6672 | 0 | if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) { |
6673 | 0 | const auto *IFDY = cast<IndirectFieldDecl>(Y); |
6674 | 0 | return IFDX->getAnonField()->getCanonicalDecl() == |
6675 | 0 | IFDY->getAnonField()->getCanonicalDecl(); |
6676 | 0 | } |
6677 | | |
6678 | | // Enumerators with the same name match. |
6679 | 0 | if (isa<EnumConstantDecl>(X)) |
6680 | | // FIXME: Also check the value is odr-equivalent. |
6681 | 0 | return true; |
6682 | | |
6683 | | // Using shadow declarations with the same target match. |
6684 | 0 | if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) { |
6685 | 0 | const auto *USY = cast<UsingShadowDecl>(Y); |
6686 | 0 | return USX->getTargetDecl() == USY->getTargetDecl(); |
6687 | 0 | } |
6688 | | |
6689 | | // Using declarations with the same qualifier match. (We already know that |
6690 | | // the name matches.) |
6691 | 0 | if (const auto *UX = dyn_cast<UsingDecl>(X)) { |
6692 | 0 | const auto *UY = cast<UsingDecl>(Y); |
6693 | 0 | return isSameQualifier(UX->getQualifier(), UY->getQualifier()) && |
6694 | 0 | UX->hasTypename() == UY->hasTypename() && |
6695 | 0 | UX->isAccessDeclaration() == UY->isAccessDeclaration(); |
6696 | 0 | } |
6697 | 0 | if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) { |
6698 | 0 | const auto *UY = cast<UnresolvedUsingValueDecl>(Y); |
6699 | 0 | return isSameQualifier(UX->getQualifier(), UY->getQualifier()) && |
6700 | 0 | UX->isAccessDeclaration() == UY->isAccessDeclaration(); |
6701 | 0 | } |
6702 | 0 | if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) { |
6703 | 0 | return isSameQualifier( |
6704 | 0 | UX->getQualifier(), |
6705 | 0 | cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier()); |
6706 | 0 | } |
6707 | | |
6708 | | // Using-pack declarations are only created by instantiation, and match if |
6709 | | // they're instantiated from matching UnresolvedUsing...Decls. |
6710 | 0 | if (const auto *UX = dyn_cast<UsingPackDecl>(X)) { |
6711 | 0 | return declaresSameEntity( |
6712 | 0 | UX->getInstantiatedFromUsingDecl(), |
6713 | 0 | cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl()); |
6714 | 0 | } |
6715 | | |
6716 | | // Namespace alias definitions with the same target match. |
6717 | 0 | if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) { |
6718 | 0 | const auto *NAY = cast<NamespaceAliasDecl>(Y); |
6719 | 0 | return NAX->getNamespace()->Equals(NAY->getNamespace()); |
6720 | 0 | } |
6721 | | |
6722 | 0 | return false; |
6723 | 0 | } |
6724 | | |
6725 | | TemplateArgument |
6726 | 0 | ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { |
6727 | 0 | switch (Arg.getKind()) { |
6728 | 0 | case TemplateArgument::Null: |
6729 | 0 | return Arg; |
6730 | | |
6731 | 0 | case TemplateArgument::Expression: |
6732 | 0 | return Arg; |
6733 | | |
6734 | 0 | case TemplateArgument::Declaration: { |
6735 | 0 | auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); |
6736 | 0 | return TemplateArgument(D, getCanonicalType(Arg.getParamTypeForDecl()), |
6737 | 0 | Arg.getIsDefaulted()); |
6738 | 0 | } |
6739 | | |
6740 | 0 | case TemplateArgument::NullPtr: |
6741 | 0 | return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), |
6742 | 0 | /*isNullPtr*/ true, Arg.getIsDefaulted()); |
6743 | | |
6744 | 0 | case TemplateArgument::Template: |
6745 | 0 | return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()), |
6746 | 0 | Arg.getIsDefaulted()); |
6747 | | |
6748 | 0 | case TemplateArgument::TemplateExpansion: |
6749 | 0 | return TemplateArgument( |
6750 | 0 | getCanonicalTemplateName(Arg.getAsTemplateOrTemplatePattern()), |
6751 | 0 | Arg.getNumTemplateExpansions(), Arg.getIsDefaulted()); |
6752 | | |
6753 | 0 | case TemplateArgument::Integral: |
6754 | 0 | return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); |
6755 | | |
6756 | 0 | case TemplateArgument::Type: |
6757 | 0 | return TemplateArgument(getCanonicalType(Arg.getAsType()), |
6758 | 0 | /*isNullPtr*/ false, Arg.getIsDefaulted()); |
6759 | | |
6760 | 0 | case TemplateArgument::Pack: { |
6761 | 0 | bool AnyNonCanonArgs = false; |
6762 | 0 | auto CanonArgs = ::getCanonicalTemplateArguments( |
6763 | 0 | *this, Arg.pack_elements(), AnyNonCanonArgs); |
6764 | 0 | if (!AnyNonCanonArgs) |
6765 | 0 | return Arg; |
6766 | 0 | return TemplateArgument::CreatePackCopy(const_cast<ASTContext &>(*this), |
6767 | 0 | CanonArgs); |
6768 | 0 | } |
6769 | 0 | } |
6770 | | |
6771 | | // Silence GCC warning |
6772 | 0 | llvm_unreachable("Unhandled template argument kind"); |
6773 | 0 | } |
6774 | | |
6775 | | NestedNameSpecifier * |
6776 | 1 | ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { |
6777 | 1 | if (!NNS) |
6778 | 1 | return nullptr; |
6779 | | |
6780 | 0 | switch (NNS->getKind()) { |
6781 | 0 | case NestedNameSpecifier::Identifier: |
6782 | | // Canonicalize the prefix but keep the identifier the same. |
6783 | 0 | return NestedNameSpecifier::Create(*this, |
6784 | 0 | getCanonicalNestedNameSpecifier(NNS->getPrefix()), |
6785 | 0 | NNS->getAsIdentifier()); |
6786 | | |
6787 | 0 | case NestedNameSpecifier::Namespace: |
6788 | | // A namespace is canonical; build a nested-name-specifier with |
6789 | | // this namespace and no prefix. |
6790 | 0 | return NestedNameSpecifier::Create(*this, nullptr, |
6791 | 0 | NNS->getAsNamespace()->getOriginalNamespace()); |
6792 | | |
6793 | 0 | case NestedNameSpecifier::NamespaceAlias: |
6794 | | // A namespace is canonical; build a nested-name-specifier with |
6795 | | // this namespace and no prefix. |
6796 | 0 | return NestedNameSpecifier::Create(*this, nullptr, |
6797 | 0 | NNS->getAsNamespaceAlias()->getNamespace() |
6798 | 0 | ->getOriginalNamespace()); |
6799 | | |
6800 | | // The difference between TypeSpec and TypeSpecWithTemplate is that the |
6801 | | // latter will have the 'template' keyword when printed. |
6802 | 0 | case NestedNameSpecifier::TypeSpec: |
6803 | 0 | case NestedNameSpecifier::TypeSpecWithTemplate: { |
6804 | 0 | const Type *T = getCanonicalType(NNS->getAsType()); |
6805 | | |
6806 | | // If we have some kind of dependent-named type (e.g., "typename T::type"), |
6807 | | // break it apart into its prefix and identifier, then reconsititute those |
6808 | | // as the canonical nested-name-specifier. This is required to canonicalize |
6809 | | // a dependent nested-name-specifier involving typedefs of dependent-name |
6810 | | // types, e.g., |
6811 | | // typedef typename T::type T1; |
6812 | | // typedef typename T1::type T2; |
6813 | 0 | if (const auto *DNT = T->getAs<DependentNameType>()) |
6814 | 0 | return NestedNameSpecifier::Create( |
6815 | 0 | *this, DNT->getQualifier(), |
6816 | 0 | const_cast<IdentifierInfo *>(DNT->getIdentifier())); |
6817 | 0 | if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>()) |
6818 | 0 | return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true, |
6819 | 0 | const_cast<Type *>(T)); |
6820 | | |
6821 | | // TODO: Set 'Template' parameter to true for other template types. |
6822 | 0 | return NestedNameSpecifier::Create(*this, nullptr, false, |
6823 | 0 | const_cast<Type *>(T)); |
6824 | 0 | } |
6825 | | |
6826 | 0 | case NestedNameSpecifier::Global: |
6827 | 0 | case NestedNameSpecifier::Super: |
6828 | | // The global specifier and __super specifer are canonical and unique. |
6829 | 0 | return NNS; |
6830 | 0 | } |
6831 | | |
6832 | 0 | llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); |
6833 | 0 | } |
6834 | | |
6835 | 1.28k | const ArrayType *ASTContext::getAsArrayType(QualType T) const { |
6836 | | // Handle the non-qualified case efficiently. |
6837 | 1.28k | if (!T.hasLocalQualifiers()) { |
6838 | | // Handle the common positive case fast. |
6839 | 1.28k | if (const auto *AT = dyn_cast<ArrayType>(T)) |
6840 | 46 | return AT; |
6841 | 1.28k | } |
6842 | | |
6843 | | // Handle the common negative case fast. |
6844 | 1.23k | if (!isa<ArrayType>(T.getCanonicalType())) |
6845 | 1.23k | return nullptr; |
6846 | | |
6847 | | // Apply any qualifiers from the array type to the element type. This |
6848 | | // implements C99 6.7.3p8: "If the specification of an array type includes |
6849 | | // any type qualifiers, the element type is so qualified, not the array type." |
6850 | | |
6851 | | // If we get here, we either have type qualifiers on the type, or we have |
6852 | | // sugar such as a typedef in the way. If we have type qualifiers on the type |
6853 | | // we must propagate them down into the element type. |
6854 | | |
6855 | 0 | SplitQualType split = T.getSplitDesugaredType(); |
6856 | 0 | Qualifiers qs = split.Quals; |
6857 | | |
6858 | | // If we have a simple case, just return now. |
6859 | 0 | const auto *ATy = dyn_cast<ArrayType>(split.Ty); |
6860 | 0 | if (!ATy || qs.empty()) |
6861 | 0 | return ATy; |
6862 | | |
6863 | | // Otherwise, we have an array and we have qualifiers on it. Push the |
6864 | | // qualifiers into the array element type and return a new array type. |
6865 | 0 | QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); |
6866 | |
|
6867 | 0 | if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy)) |
6868 | 0 | return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), |
6869 | 0 | CAT->getSizeExpr(), |
6870 | 0 | CAT->getSizeModifier(), |
6871 | 0 | CAT->getIndexTypeCVRQualifiers())); |
6872 | 0 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy)) |
6873 | 0 | return cast<ArrayType>(getIncompleteArrayType(NewEltTy, |
6874 | 0 | IAT->getSizeModifier(), |
6875 | 0 | IAT->getIndexTypeCVRQualifiers())); |
6876 | | |
6877 | 0 | if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy)) |
6878 | 0 | return cast<ArrayType>( |
6879 | 0 | getDependentSizedArrayType(NewEltTy, |
6880 | 0 | DSAT->getSizeExpr(), |
6881 | 0 | DSAT->getSizeModifier(), |
6882 | 0 | DSAT->getIndexTypeCVRQualifiers(), |
6883 | 0 | DSAT->getBracketsRange())); |
6884 | | |
6885 | 0 | const auto *VAT = cast<VariableArrayType>(ATy); |
6886 | 0 | return cast<ArrayType>(getVariableArrayType(NewEltTy, |
6887 | 0 | VAT->getSizeExpr(), |
6888 | 0 | VAT->getSizeModifier(), |
6889 | 0 | VAT->getIndexTypeCVRQualifiers(), |
6890 | 0 | VAT->getBracketsRange())); |
6891 | 0 | } |
6892 | | |
6893 | 40 | QualType ASTContext::getAdjustedParameterType(QualType T) const { |
6894 | 40 | if (T->isArrayType() || T->isFunctionType()) |
6895 | 0 | return getDecayedType(T); |
6896 | 40 | return T; |
6897 | 40 | } |
6898 | | |
6899 | 0 | QualType ASTContext::getSignatureParameterType(QualType T) const { |
6900 | 0 | T = getVariableArrayDecayedType(T); |
6901 | 0 | T = getAdjustedParameterType(T); |
6902 | 0 | return T.getUnqualifiedType(); |
6903 | 0 | } |
6904 | | |
6905 | 0 | QualType ASTContext::getExceptionObjectType(QualType T) const { |
6906 | | // C++ [except.throw]p3: |
6907 | | // A throw-expression initializes a temporary object, called the exception |
6908 | | // object, the type of which is determined by removing any top-level |
6909 | | // cv-qualifiers from the static type of the operand of throw and adjusting |
6910 | | // the type from "array of T" or "function returning T" to "pointer to T" |
6911 | | // or "pointer to function returning T", [...] |
6912 | 0 | T = getVariableArrayDecayedType(T); |
6913 | 0 | if (T->isArrayType() || T->isFunctionType()) |
6914 | 0 | T = getDecayedType(T); |
6915 | 0 | return T.getUnqualifiedType(); |
6916 | 0 | } |
6917 | | |
6918 | | /// getArrayDecayedType - Return the properly qualified result of decaying the |
6919 | | /// specified array type to a pointer. This operation is non-trivial when |
6920 | | /// handling typedefs etc. The canonical type of "T" must be an array type, |
6921 | | /// this returns a pointer to a properly qualified element of the array. |
6922 | | /// |
6923 | | /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. |
6924 | 0 | QualType ASTContext::getArrayDecayedType(QualType Ty) const { |
6925 | | // Get the element type with 'getAsArrayType' so that we don't lose any |
6926 | | // typedefs in the element type of the array. This also handles propagation |
6927 | | // of type qualifiers from the array type into the element type if present |
6928 | | // (C99 6.7.3p8). |
6929 | 0 | const ArrayType *PrettyArrayType = getAsArrayType(Ty); |
6930 | 0 | assert(PrettyArrayType && "Not an array type!"); |
6931 | | |
6932 | 0 | QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); |
6933 | | |
6934 | | // int x[restrict 4] -> int *restrict |
6935 | 0 | QualType Result = getQualifiedType(PtrTy, |
6936 | 0 | PrettyArrayType->getIndexTypeQualifiers()); |
6937 | | |
6938 | | // int x[_Nullable] -> int * _Nullable |
6939 | 0 | if (auto Nullability = Ty->getNullability()) { |
6940 | 0 | Result = const_cast<ASTContext *>(this)->getAttributedType( |
6941 | 0 | AttributedType::getNullabilityAttrKind(*Nullability), Result, Result); |
6942 | 0 | } |
6943 | 0 | return Result; |
6944 | 0 | } |
6945 | | |
6946 | 0 | QualType ASTContext::getBaseElementType(const ArrayType *array) const { |
6947 | 0 | return getBaseElementType(array->getElementType()); |
6948 | 0 | } |
6949 | | |
6950 | 715 | QualType ASTContext::getBaseElementType(QualType type) const { |
6951 | 715 | Qualifiers qs; |
6952 | 773 | while (true) { |
6953 | 773 | SplitQualType split = type.getSplitDesugaredType(); |
6954 | 773 | const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); |
6955 | 773 | if (!array) break; |
6956 | | |
6957 | 58 | type = array->getElementType(); |
6958 | 58 | qs.addConsistentQualifiers(split.Quals); |
6959 | 58 | } |
6960 | | |
6961 | 715 | return getQualifiedType(type, qs); |
6962 | 715 | } |
6963 | | |
6964 | | /// getConstantArrayElementCount - Returns number of constant array elements. |
6965 | | uint64_t |
6966 | 0 | ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { |
6967 | 0 | uint64_t ElementCount = 1; |
6968 | 0 | do { |
6969 | 0 | ElementCount *= CA->getSize().getZExtValue(); |
6970 | 0 | CA = dyn_cast_or_null<ConstantArrayType>( |
6971 | 0 | CA->getElementType()->getAsArrayTypeUnsafe()); |
6972 | 0 | } while (CA); |
6973 | 0 | return ElementCount; |
6974 | 0 | } |
6975 | | |
6976 | | uint64_t ASTContext::getArrayInitLoopExprElementCount( |
6977 | 0 | const ArrayInitLoopExpr *AILE) const { |
6978 | 0 | if (!AILE) |
6979 | 0 | return 0; |
6980 | | |
6981 | 0 | uint64_t ElementCount = 1; |
6982 | |
|
6983 | 0 | do { |
6984 | 0 | ElementCount *= AILE->getArraySize().getZExtValue(); |
6985 | 0 | AILE = dyn_cast<ArrayInitLoopExpr>(AILE->getSubExpr()); |
6986 | 0 | } while (AILE); |
6987 | |
|
6988 | 0 | return ElementCount; |
6989 | 0 | } |
6990 | | |
6991 | | /// getFloatingRank - Return a relative rank for floating point types. |
6992 | | /// This routine will assert if passed a built-in type that isn't a float. |
6993 | 0 | static FloatingRank getFloatingRank(QualType T) { |
6994 | 0 | if (const auto *CT = T->getAs<ComplexType>()) |
6995 | 0 | return getFloatingRank(CT->getElementType()); |
6996 | | |
6997 | 0 | switch (T->castAs<BuiltinType>()->getKind()) { |
6998 | 0 | default: llvm_unreachable("getFloatingRank(): not a floating type"); |
6999 | 0 | case BuiltinType::Float16: return Float16Rank; |
7000 | 0 | case BuiltinType::Half: return HalfRank; |
7001 | 0 | case BuiltinType::Float: return FloatRank; |
7002 | 0 | case BuiltinType::Double: return DoubleRank; |
7003 | 0 | case BuiltinType::LongDouble: return LongDoubleRank; |
7004 | 0 | case BuiltinType::Float128: return Float128Rank; |
7005 | 0 | case BuiltinType::BFloat16: return BFloat16Rank; |
7006 | 0 | case BuiltinType::Ibm128: return Ibm128Rank; |
7007 | 0 | } |
7008 | 0 | } |
7009 | | |
7010 | | /// getFloatingTypeOrder - Compare the rank of the two specified floating |
7011 | | /// point types, ignoring the domain of the type (i.e. 'double' == |
7012 | | /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If |
7013 | | /// LHS < RHS, return -1. |
7014 | 0 | int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { |
7015 | 0 | FloatingRank LHSR = getFloatingRank(LHS); |
7016 | 0 | FloatingRank RHSR = getFloatingRank(RHS); |
7017 | |
|
7018 | 0 | if (LHSR == RHSR) |
7019 | 0 | return 0; |
7020 | 0 | if (LHSR > RHSR) |
7021 | 0 | return 1; |
7022 | 0 | return -1; |
7023 | 0 | } |
7024 | | |
7025 | 0 | int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const { |
7026 | 0 | if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS)) |
7027 | 0 | return 0; |
7028 | 0 | return getFloatingTypeOrder(LHS, RHS); |
7029 | 0 | } |
7030 | | |
7031 | | /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
7032 | | /// routine will assert if passed a built-in type that isn't an integer or enum, |
7033 | | /// or if it is not canonicalized. |
7034 | 0 | unsigned ASTContext::getIntegerRank(const Type *T) const { |
7035 | 0 | assert(T->isCanonicalUnqualified() && "T should be canonicalized"); |
7036 | | |
7037 | | // Results in this 'losing' to any type of the same size, but winning if |
7038 | | // larger. |
7039 | 0 | if (const auto *EIT = dyn_cast<BitIntType>(T)) |
7040 | 0 | return 0 + (EIT->getNumBits() << 3); |
7041 | | |
7042 | 0 | switch (cast<BuiltinType>(T)->getKind()) { |
7043 | 0 | default: llvm_unreachable("getIntegerRank(): not a built-in integer"); |
7044 | 0 | case BuiltinType::Bool: |
7045 | 0 | return 1 + (getIntWidth(BoolTy) << 3); |
7046 | 0 | case BuiltinType::Char_S: |
7047 | 0 | case BuiltinType::Char_U: |
7048 | 0 | case BuiltinType::SChar: |
7049 | 0 | case BuiltinType::UChar: |
7050 | 0 | return 2 + (getIntWidth(CharTy) << 3); |
7051 | 0 | case BuiltinType::Short: |
7052 | 0 | case BuiltinType::UShort: |
7053 | 0 | return 3 + (getIntWidth(ShortTy) << 3); |
7054 | 0 | case BuiltinType::Int: |
7055 | 0 | case BuiltinType::UInt: |
7056 | 0 | return 4 + (getIntWidth(IntTy) << 3); |
7057 | 0 | case BuiltinType::Long: |
7058 | 0 | case BuiltinType::ULong: |
7059 | 0 | return 5 + (getIntWidth(LongTy) << 3); |
7060 | 0 | case BuiltinType::LongLong: |
7061 | 0 | case BuiltinType::ULongLong: |
7062 | 0 | return 6 + (getIntWidth(LongLongTy) << 3); |
7063 | 0 | case BuiltinType::Int128: |
7064 | 0 | case BuiltinType::UInt128: |
7065 | 0 | return 7 + (getIntWidth(Int128Ty) << 3); |
7066 | | |
7067 | | // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of |
7068 | | // their underlying types" [c++20 conv.rank] |
7069 | 0 | case BuiltinType::Char8: |
7070 | 0 | return getIntegerRank(UnsignedCharTy.getTypePtr()); |
7071 | 0 | case BuiltinType::Char16: |
7072 | 0 | return getIntegerRank( |
7073 | 0 | getFromTargetType(Target->getChar16Type()).getTypePtr()); |
7074 | 0 | case BuiltinType::Char32: |
7075 | 0 | return getIntegerRank( |
7076 | 0 | getFromTargetType(Target->getChar32Type()).getTypePtr()); |
7077 | 0 | case BuiltinType::WChar_S: |
7078 | 0 | case BuiltinType::WChar_U: |
7079 | 0 | return getIntegerRank( |
7080 | 0 | getFromTargetType(Target->getWCharType()).getTypePtr()); |
7081 | 0 | } |
7082 | 0 | } |
7083 | | |
7084 | | /// Whether this is a promotable bitfield reference according |
7085 | | /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). |
7086 | | /// |
7087 | | /// \returns the type this bit-field will promote to, or NULL if no |
7088 | | /// promotion occurs. |
7089 | 2 | QualType ASTContext::isPromotableBitField(Expr *E) const { |
7090 | 2 | if (E->isTypeDependent() || E->isValueDependent()) |
7091 | 0 | return {}; |
7092 | | |
7093 | | // C++ [conv.prom]p5: |
7094 | | // If the bit-field has an enumerated type, it is treated as any other |
7095 | | // value of that type for promotion purposes. |
7096 | 2 | if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) |
7097 | 0 | return {}; |
7098 | | |
7099 | | // FIXME: We should not do this unless E->refersToBitField() is true. This |
7100 | | // matters in C where getSourceBitField() will find bit-fields for various |
7101 | | // cases where the source expression is not a bit-field designator. |
7102 | | |
7103 | 2 | FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? |
7104 | 2 | if (!Field) |
7105 | 2 | return {}; |
7106 | | |
7107 | 0 | QualType FT = Field->getType(); |
7108 | |
|
7109 | 0 | uint64_t BitWidth = Field->getBitWidthValue(*this); |
7110 | 0 | uint64_t IntSize = getTypeSize(IntTy); |
7111 | | // C++ [conv.prom]p5: |
7112 | | // A prvalue for an integral bit-field can be converted to a prvalue of type |
7113 | | // int if int can represent all the values of the bit-field; otherwise, it |
7114 | | // can be converted to unsigned int if unsigned int can represent all the |
7115 | | // values of the bit-field. If the bit-field is larger yet, no integral |
7116 | | // promotion applies to it. |
7117 | | // C11 6.3.1.1/2: |
7118 | | // [For a bit-field of type _Bool, int, signed int, or unsigned int:] |
7119 | | // If an int can represent all values of the original type (as restricted by |
7120 | | // the width, for a bit-field), the value is converted to an int; otherwise, |
7121 | | // it is converted to an unsigned int. |
7122 | | // |
7123 | | // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. |
7124 | | // We perform that promotion here to match GCC and C++. |
7125 | | // FIXME: C does not permit promotion of an enum bit-field whose rank is |
7126 | | // greater than that of 'int'. We perform that promotion to match GCC. |
7127 | 0 | if (BitWidth < IntSize) |
7128 | 0 | return IntTy; |
7129 | | |
7130 | 0 | if (BitWidth == IntSize) |
7131 | 0 | return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; |
7132 | | |
7133 | | // Bit-fields wider than int are not subject to promotions, and therefore act |
7134 | | // like the base type. GCC has some weird bugs in this area that we |
7135 | | // deliberately do not follow (GCC follows a pre-standard resolution to |
7136 | | // C's DR315 which treats bit-width as being part of the type, and this leaks |
7137 | | // into their semantics in some cases). |
7138 | 0 | return {}; |
7139 | 0 | } |
7140 | | |
7141 | | /// getPromotedIntegerType - Returns the type that Promotable will |
7142 | | /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable |
7143 | | /// integer type. |
7144 | 0 | QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { |
7145 | 0 | assert(!Promotable.isNull()); |
7146 | 0 | assert(isPromotableIntegerType(Promotable)); |
7147 | 0 | if (const auto *ET = Promotable->getAs<EnumType>()) |
7148 | 0 | return ET->getDecl()->getPromotionType(); |
7149 | | |
7150 | 0 | if (const auto *BT = Promotable->getAs<BuiltinType>()) { |
7151 | | // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t |
7152 | | // (3.9.1) can be converted to a prvalue of the first of the following |
7153 | | // types that can represent all the values of its underlying type: |
7154 | | // int, unsigned int, long int, unsigned long int, long long int, or |
7155 | | // unsigned long long int [...] |
7156 | | // FIXME: Is there some better way to compute this? |
7157 | 0 | if (BT->getKind() == BuiltinType::WChar_S || |
7158 | 0 | BT->getKind() == BuiltinType::WChar_U || |
7159 | 0 | BT->getKind() == BuiltinType::Char8 || |
7160 | 0 | BT->getKind() == BuiltinType::Char16 || |
7161 | 0 | BT->getKind() == BuiltinType::Char32) { |
7162 | 0 | bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; |
7163 | 0 | uint64_t FromSize = getTypeSize(BT); |
7164 | 0 | QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, |
7165 | 0 | LongLongTy, UnsignedLongLongTy }; |
7166 | 0 | for (const auto &PT : PromoteTypes) { |
7167 | 0 | uint64_t ToSize = getTypeSize(PT); |
7168 | 0 | if (FromSize < ToSize || |
7169 | 0 | (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType())) |
7170 | 0 | return PT; |
7171 | 0 | } |
7172 | 0 | llvm_unreachable("char type should fit into long long"); |
7173 | 0 | } |
7174 | 0 | } |
7175 | | |
7176 | | // At this point, we should have a signed or unsigned integer type. |
7177 | 0 | if (Promotable->isSignedIntegerType()) |
7178 | 0 | return IntTy; |
7179 | 0 | uint64_t PromotableSize = getIntWidth(Promotable); |
7180 | 0 | uint64_t IntSize = getIntWidth(IntTy); |
7181 | 0 | assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); |
7182 | 0 | return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; |
7183 | 0 | } |
7184 | | |
7185 | | /// Recurses in pointer/array types until it finds an objc retainable |
7186 | | /// type and returns its ownership. |
7187 | 0 | Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { |
7188 | 0 | while (!T.isNull()) { |
7189 | 0 | if (T.getObjCLifetime() != Qualifiers::OCL_None) |
7190 | 0 | return T.getObjCLifetime(); |
7191 | 0 | if (T->isArrayType()) |
7192 | 0 | T = getBaseElementType(T); |
7193 | 0 | else if (const auto *PT = T->getAs<PointerType>()) |
7194 | 0 | T = PT->getPointeeType(); |
7195 | 0 | else if (const auto *RT = T->getAs<ReferenceType>()) |
7196 | 0 | T = RT->getPointeeType(); |
7197 | 0 | else |
7198 | 0 | break; |
7199 | 0 | } |
7200 | | |
7201 | 0 | return Qualifiers::OCL_None; |
7202 | 0 | } |
7203 | | |
7204 | 0 | static const Type *getIntegerTypeForEnum(const EnumType *ET) { |
7205 | | // Incomplete enum types are not treated as integer types. |
7206 | | // FIXME: In C++, enum types are never integer types. |
7207 | 0 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
7208 | 0 | return ET->getDecl()->getIntegerType().getTypePtr(); |
7209 | 0 | return nullptr; |
7210 | 0 | } |
7211 | | |
7212 | | /// getIntegerTypeOrder - Returns the highest ranked integer type: |
7213 | | /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If |
7214 | | /// LHS < RHS, return -1. |
7215 | 0 | int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { |
7216 | 0 | const Type *LHSC = getCanonicalType(LHS).getTypePtr(); |
7217 | 0 | const Type *RHSC = getCanonicalType(RHS).getTypePtr(); |
7218 | | |
7219 | | // Unwrap enums to their underlying type. |
7220 | 0 | if (const auto *ET = dyn_cast<EnumType>(LHSC)) |
7221 | 0 | LHSC = getIntegerTypeForEnum(ET); |
7222 | 0 | if (const auto *ET = dyn_cast<EnumType>(RHSC)) |
7223 | 0 | RHSC = getIntegerTypeForEnum(ET); |
7224 | |
|
7225 | 0 | if (LHSC == RHSC) return 0; |
7226 | | |
7227 | 0 | bool LHSUnsigned = LHSC->isUnsignedIntegerType(); |
7228 | 0 | bool RHSUnsigned = RHSC->isUnsignedIntegerType(); |
7229 | |
|
7230 | 0 | unsigned LHSRank = getIntegerRank(LHSC); |
7231 | 0 | unsigned RHSRank = getIntegerRank(RHSC); |
7232 | |
|
7233 | 0 | if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. |
7234 | 0 | if (LHSRank == RHSRank) return 0; |
7235 | 0 | return LHSRank > RHSRank ? 1 : -1; |
7236 | 0 | } |
7237 | | |
7238 | | // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. |
7239 | 0 | if (LHSUnsigned) { |
7240 | | // If the unsigned [LHS] type is larger, return it. |
7241 | 0 | if (LHSRank >= RHSRank) |
7242 | 0 | return 1; |
7243 | | |
7244 | | // If the signed type can represent all values of the unsigned type, it |
7245 | | // wins. Because we are dealing with 2's complement and types that are |
7246 | | // powers of two larger than each other, this is always safe. |
7247 | 0 | return -1; |
7248 | 0 | } |
7249 | | |
7250 | | // If the unsigned [RHS] type is larger, return it. |
7251 | 0 | if (RHSRank >= LHSRank) |
7252 | 0 | return -1; |
7253 | | |
7254 | | // If the signed type can represent all values of the unsigned type, it |
7255 | | // wins. Because we are dealing with 2's complement and types that are |
7256 | | // powers of two larger than each other, this is always safe. |
7257 | 0 | return 1; |
7258 | 0 | } |
7259 | | |
7260 | 46 | TypedefDecl *ASTContext::getCFConstantStringDecl() const { |
7261 | 46 | if (CFConstantStringTypeDecl) |
7262 | 0 | return CFConstantStringTypeDecl; |
7263 | | |
7264 | 46 | assert(!CFConstantStringTagDecl && |
7265 | 46 | "tag and typedef should be initialized together"); |
7266 | 0 | CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag"); |
7267 | 46 | CFConstantStringTagDecl->startDefinition(); |
7268 | | |
7269 | 46 | struct { |
7270 | 46 | QualType Type; |
7271 | 46 | const char *Name; |
7272 | 46 | } Fields[5]; |
7273 | 46 | unsigned Count = 0; |
7274 | | |
7275 | | /// Objective-C ABI |
7276 | | /// |
7277 | | /// typedef struct __NSConstantString_tag { |
7278 | | /// const int *isa; |
7279 | | /// int flags; |
7280 | | /// const char *str; |
7281 | | /// long length; |
7282 | | /// } __NSConstantString; |
7283 | | /// |
7284 | | /// Swift ABI (4.1, 4.2) |
7285 | | /// |
7286 | | /// typedef struct __NSConstantString_tag { |
7287 | | /// uintptr_t _cfisa; |
7288 | | /// uintptr_t _swift_rc; |
7289 | | /// _Atomic(uint64_t) _cfinfoa; |
7290 | | /// const char *_ptr; |
7291 | | /// uint32_t _length; |
7292 | | /// } __NSConstantString; |
7293 | | /// |
7294 | | /// Swift ABI (5.0) |
7295 | | /// |
7296 | | /// typedef struct __NSConstantString_tag { |
7297 | | /// uintptr_t _cfisa; |
7298 | | /// uintptr_t _swift_rc; |
7299 | | /// _Atomic(uint64_t) _cfinfoa; |
7300 | | /// const char *_ptr; |
7301 | | /// uintptr_t _length; |
7302 | | /// } __NSConstantString; |
7303 | | |
7304 | 46 | const auto CFRuntime = getLangOpts().CFRuntime; |
7305 | 46 | if (static_cast<unsigned>(CFRuntime) < |
7306 | 46 | static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) { |
7307 | 46 | Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" }; |
7308 | 46 | Fields[Count++] = { IntTy, "flags" }; |
7309 | 46 | Fields[Count++] = { getPointerType(CharTy.withConst()), "str" }; |
7310 | 46 | Fields[Count++] = { LongTy, "length" }; |
7311 | 46 | } else { |
7312 | 0 | Fields[Count++] = { getUIntPtrType(), "_cfisa" }; |
7313 | 0 | Fields[Count++] = { getUIntPtrType(), "_swift_rc" }; |
7314 | 0 | Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" }; |
7315 | 0 | Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" }; |
7316 | 0 | if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || |
7317 | 0 | CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) |
7318 | 0 | Fields[Count++] = { IntTy, "_ptr" }; |
7319 | 0 | else |
7320 | 0 | Fields[Count++] = { getUIntPtrType(), "_ptr" }; |
7321 | 0 | } |
7322 | | |
7323 | | // Create fields |
7324 | 230 | for (unsigned i = 0; i < Count; ++i) { |
7325 | 184 | FieldDecl *Field = |
7326 | 184 | FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(), |
7327 | 184 | SourceLocation(), &Idents.get(Fields[i].Name), |
7328 | 184 | Fields[i].Type, /*TInfo=*/nullptr, |
7329 | 184 | /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); |
7330 | 184 | Field->setAccess(AS_public); |
7331 | 184 | CFConstantStringTagDecl->addDecl(Field); |
7332 | 184 | } |
7333 | | |
7334 | 46 | CFConstantStringTagDecl->completeDefinition(); |
7335 | | // This type is designed to be compatible with NSConstantString, but cannot |
7336 | | // use the same name, since NSConstantString is an interface. |
7337 | 46 | auto tagType = getTagDeclType(CFConstantStringTagDecl); |
7338 | 46 | CFConstantStringTypeDecl = |
7339 | 46 | buildImplicitTypedef(tagType, "__NSConstantString"); |
7340 | | |
7341 | 46 | return CFConstantStringTypeDecl; |
7342 | 46 | } |
7343 | | |
7344 | 0 | RecordDecl *ASTContext::getCFConstantStringTagDecl() const { |
7345 | 0 | if (!CFConstantStringTagDecl) |
7346 | 0 | getCFConstantStringDecl(); // Build the tag and the typedef. |
7347 | 0 | return CFConstantStringTagDecl; |
7348 | 0 | } |
7349 | | |
7350 | | // getCFConstantStringType - Return the type used for constant CFStrings. |
7351 | 0 | QualType ASTContext::getCFConstantStringType() const { |
7352 | 0 | return getTypedefType(getCFConstantStringDecl()); |
7353 | 0 | } |
7354 | | |
7355 | 0 | QualType ASTContext::getObjCSuperType() const { |
7356 | 0 | if (ObjCSuperType.isNull()) { |
7357 | 0 | RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); |
7358 | 0 | getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl); |
7359 | 0 | ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); |
7360 | 0 | } |
7361 | 0 | return ObjCSuperType; |
7362 | 0 | } |
7363 | | |
7364 | 0 | void ASTContext::setCFConstantStringType(QualType T) { |
7365 | 0 | const auto *TD = T->castAs<TypedefType>(); |
7366 | 0 | CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl()); |
7367 | 0 | const auto *TagType = |
7368 | 0 | CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>(); |
7369 | 0 | CFConstantStringTagDecl = TagType->getDecl(); |
7370 | 0 | } |
7371 | | |
7372 | 0 | QualType ASTContext::getBlockDescriptorType() const { |
7373 | 0 | if (BlockDescriptorType) |
7374 | 0 | return getTagDeclType(BlockDescriptorType); |
7375 | | |
7376 | 0 | RecordDecl *RD; |
7377 | | // FIXME: Needs the FlagAppleBlock bit. |
7378 | 0 | RD = buildImplicitRecord("__block_descriptor"); |
7379 | 0 | RD->startDefinition(); |
7380 | |
|
7381 | 0 | QualType FieldTypes[] = { |
7382 | 0 | UnsignedLongTy, |
7383 | 0 | UnsignedLongTy, |
7384 | 0 | }; |
7385 | |
|
7386 | 0 | static const char *const FieldNames[] = { |
7387 | 0 | "reserved", |
7388 | 0 | "Size" |
7389 | 0 | }; |
7390 | |
|
7391 | 0 | for (size_t i = 0; i < 2; ++i) { |
7392 | 0 | FieldDecl *Field = FieldDecl::Create( |
7393 | 0 | *this, RD, SourceLocation(), SourceLocation(), |
7394 | 0 | &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, |
7395 | 0 | /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); |
7396 | 0 | Field->setAccess(AS_public); |
7397 | 0 | RD->addDecl(Field); |
7398 | 0 | } |
7399 | |
|
7400 | 0 | RD->completeDefinition(); |
7401 | |
|
7402 | 0 | BlockDescriptorType = RD; |
7403 | |
|
7404 | 0 | return getTagDeclType(BlockDescriptorType); |
7405 | 0 | } |
7406 | | |
7407 | 0 | QualType ASTContext::getBlockDescriptorExtendedType() const { |
7408 | 0 | if (BlockDescriptorExtendedType) |
7409 | 0 | return getTagDeclType(BlockDescriptorExtendedType); |
7410 | | |
7411 | 0 | RecordDecl *RD; |
7412 | | // FIXME: Needs the FlagAppleBlock bit. |
7413 | 0 | RD = buildImplicitRecord("__block_descriptor_withcopydispose"); |
7414 | 0 | RD->startDefinition(); |
7415 | |
|
7416 | 0 | QualType FieldTypes[] = { |
7417 | 0 | UnsignedLongTy, |
7418 | 0 | UnsignedLongTy, |
7419 | 0 | getPointerType(VoidPtrTy), |
7420 | 0 | getPointerType(VoidPtrTy) |
7421 | 0 | }; |
7422 | |
|
7423 | 0 | static const char *const FieldNames[] = { |
7424 | 0 | "reserved", |
7425 | 0 | "Size", |
7426 | 0 | "CopyFuncPtr", |
7427 | 0 | "DestroyFuncPtr" |
7428 | 0 | }; |
7429 | |
|
7430 | 0 | for (size_t i = 0; i < 4; ++i) { |
7431 | 0 | FieldDecl *Field = FieldDecl::Create( |
7432 | 0 | *this, RD, SourceLocation(), SourceLocation(), |
7433 | 0 | &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, |
7434 | 0 | /*BitWidth=*/nullptr, |
7435 | 0 | /*Mutable=*/false, ICIS_NoInit); |
7436 | 0 | Field->setAccess(AS_public); |
7437 | 0 | RD->addDecl(Field); |
7438 | 0 | } |
7439 | |
|
7440 | 0 | RD->completeDefinition(); |
7441 | |
|
7442 | 0 | BlockDescriptorExtendedType = RD; |
7443 | 0 | return getTagDeclType(BlockDescriptorExtendedType); |
7444 | 0 | } |
7445 | | |
7446 | 0 | OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { |
7447 | 0 | const auto *BT = dyn_cast<BuiltinType>(T); |
7448 | |
|
7449 | 0 | if (!BT) { |
7450 | 0 | if (isa<PipeType>(T)) |
7451 | 0 | return OCLTK_Pipe; |
7452 | | |
7453 | 0 | return OCLTK_Default; |
7454 | 0 | } |
7455 | | |
7456 | 0 | switch (BT->getKind()) { |
7457 | 0 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
7458 | 0 | case BuiltinType::Id: \ |
7459 | 0 | return OCLTK_Image; |
7460 | 0 | #include "clang/Basic/OpenCLImageTypes.def" |
7461 | | |
7462 | 0 | case BuiltinType::OCLClkEvent: |
7463 | 0 | return OCLTK_ClkEvent; |
7464 | | |
7465 | 0 | case BuiltinType::OCLEvent: |
7466 | 0 | return OCLTK_Event; |
7467 | | |
7468 | 0 | case BuiltinType::OCLQueue: |
7469 | 0 | return OCLTK_Queue; |
7470 | | |
7471 | 0 | case BuiltinType::OCLReserveID: |
7472 | 0 | return OCLTK_ReserveID; |
7473 | | |
7474 | 0 | case BuiltinType::OCLSampler: |
7475 | 0 | return OCLTK_Sampler; |
7476 | | |
7477 | 0 | default: |
7478 | 0 | return OCLTK_Default; |
7479 | 0 | } |
7480 | 0 | } |
7481 | | |
7482 | 0 | LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { |
7483 | 0 | return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); |
7484 | 0 | } |
7485 | | |
7486 | | /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" |
7487 | | /// requires copy/dispose. Note that this must match the logic |
7488 | | /// in buildByrefHelpers. |
7489 | | bool ASTContext::BlockRequiresCopying(QualType Ty, |
7490 | 0 | const VarDecl *D) { |
7491 | 0 | if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { |
7492 | 0 | const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr(); |
7493 | 0 | if (!copyExpr && record->hasTrivialDestructor()) return false; |
7494 | | |
7495 | 0 | return true; |
7496 | 0 | } |
7497 | | |
7498 | | // The block needs copy/destroy helpers if Ty is non-trivial to destructively |
7499 | | // move or destroy. |
7500 | 0 | if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) |
7501 | 0 | return true; |
7502 | | |
7503 | 0 | if (!Ty->isObjCRetainableType()) return false; |
7504 | | |
7505 | 0 | Qualifiers qs = Ty.getQualifiers(); |
7506 | | |
7507 | | // If we have lifetime, that dominates. |
7508 | 0 | if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { |
7509 | 0 | switch (lifetime) { |
7510 | 0 | case Qualifiers::OCL_None: llvm_unreachable("impossible"); |
7511 | | |
7512 | | // These are just bits as far as the runtime is concerned. |
7513 | 0 | case Qualifiers::OCL_ExplicitNone: |
7514 | 0 | case Qualifiers::OCL_Autoreleasing: |
7515 | 0 | return false; |
7516 | | |
7517 | | // These cases should have been taken care of when checking the type's |
7518 | | // non-triviality. |
7519 | 0 | case Qualifiers::OCL_Weak: |
7520 | 0 | case Qualifiers::OCL_Strong: |
7521 | 0 | llvm_unreachable("impossible"); |
7522 | 0 | } |
7523 | 0 | llvm_unreachable("fell out of lifetime switch!"); |
7524 | 0 | } |
7525 | 0 | return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || |
7526 | 0 | Ty->isObjCObjectPointerType()); |
7527 | 0 | } |
7528 | | |
7529 | | bool ASTContext::getByrefLifetime(QualType Ty, |
7530 | | Qualifiers::ObjCLifetime &LifeTime, |
7531 | 0 | bool &HasByrefExtendedLayout) const { |
7532 | 0 | if (!getLangOpts().ObjC || |
7533 | 0 | getLangOpts().getGC() != LangOptions::NonGC) |
7534 | 0 | return false; |
7535 | | |
7536 | 0 | HasByrefExtendedLayout = false; |
7537 | 0 | if (Ty->isRecordType()) { |
7538 | 0 | HasByrefExtendedLayout = true; |
7539 | 0 | LifeTime = Qualifiers::OCL_None; |
7540 | 0 | } else if ((LifeTime = Ty.getObjCLifetime())) { |
7541 | | // Honor the ARC qualifiers. |
7542 | 0 | } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { |
7543 | | // The MRR rule. |
7544 | 0 | LifeTime = Qualifiers::OCL_ExplicitNone; |
7545 | 0 | } else { |
7546 | 0 | LifeTime = Qualifiers::OCL_None; |
7547 | 0 | } |
7548 | 0 | return true; |
7549 | 0 | } |
7550 | | |
7551 | 0 | CanQualType ASTContext::getNSUIntegerType() const { |
7552 | 0 | assert(Target && "Expected target to be initialized"); |
7553 | 0 | const llvm::Triple &T = Target->getTriple(); |
7554 | | // Windows is LLP64 rather than LP64 |
7555 | 0 | if (T.isOSWindows() && T.isArch64Bit()) |
7556 | 0 | return UnsignedLongLongTy; |
7557 | 0 | return UnsignedLongTy; |
7558 | 0 | } |
7559 | | |
7560 | 0 | CanQualType ASTContext::getNSIntegerType() const { |
7561 | 0 | assert(Target && "Expected target to be initialized"); |
7562 | 0 | const llvm::Triple &T = Target->getTriple(); |
7563 | | // Windows is LLP64 rather than LP64 |
7564 | 0 | if (T.isOSWindows() && T.isArch64Bit()) |
7565 | 0 | return LongLongTy; |
7566 | 0 | return LongTy; |
7567 | 0 | } |
7568 | | |
7569 | 0 | TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { |
7570 | 0 | if (!ObjCInstanceTypeDecl) |
7571 | 0 | ObjCInstanceTypeDecl = |
7572 | 0 | buildImplicitTypedef(getObjCIdType(), "instancetype"); |
7573 | 0 | return ObjCInstanceTypeDecl; |
7574 | 0 | } |
7575 | | |
7576 | | // This returns true if a type has been typedefed to BOOL: |
7577 | | // typedef <type> BOOL; |
7578 | 0 | static bool isTypeTypedefedAsBOOL(QualType T) { |
7579 | 0 | if (const auto *TT = dyn_cast<TypedefType>(T)) |
7580 | 0 | if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) |
7581 | 0 | return II->isStr("BOOL"); |
7582 | | |
7583 | 0 | return false; |
7584 | 0 | } |
7585 | | |
7586 | | /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
7587 | | /// purpose. |
7588 | 0 | CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { |
7589 | 0 | if (!type->isIncompleteArrayType() && type->isIncompleteType()) |
7590 | 0 | return CharUnits::Zero(); |
7591 | | |
7592 | 0 | CharUnits sz = getTypeSizeInChars(type); |
7593 | | |
7594 | | // Make all integer and enum types at least as large as an int |
7595 | 0 | if (sz.isPositive() && type->isIntegralOrEnumerationType()) |
7596 | 0 | sz = std::max(sz, getTypeSizeInChars(IntTy)); |
7597 | | // Treat arrays as pointers, since that's how they're passed in. |
7598 | 0 | else if (type->isArrayType()) |
7599 | 0 | sz = getTypeSizeInChars(VoidPtrTy); |
7600 | 0 | return sz; |
7601 | 0 | } |
7602 | | |
7603 | 889 | bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { |
7604 | 889 | return getTargetInfo().getCXXABI().isMicrosoft() && |
7605 | 889 | VD->isStaticDataMember() && |
7606 | 889 | VD->getType()->isIntegralOrEnumerationType() && |
7607 | 889 | !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); |
7608 | 889 | } |
7609 | | |
7610 | | ASTContext::InlineVariableDefinitionKind |
7611 | 889 | ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { |
7612 | 889 | if (!VD->isInline()) |
7613 | 889 | return InlineVariableDefinitionKind::None; |
7614 | | |
7615 | | // In almost all cases, it's a weak definition. |
7616 | 0 | auto *First = VD->getFirstDecl(); |
7617 | 0 | if (First->isInlineSpecified() || !First->isStaticDataMember()) |
7618 | 0 | return InlineVariableDefinitionKind::Weak; |
7619 | | |
7620 | | // If there's a file-context declaration in this translation unit, it's a |
7621 | | // non-discardable definition. |
7622 | 0 | for (auto *D : VD->redecls()) |
7623 | 0 | if (D->getLexicalDeclContext()->isFileContext() && |
7624 | 0 | !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) |
7625 | 0 | return InlineVariableDefinitionKind::Strong; |
7626 | | |
7627 | | // If we've not seen one yet, we don't know. |
7628 | 0 | return InlineVariableDefinitionKind::WeakUnknown; |
7629 | 0 | } |
7630 | | |
7631 | 0 | static std::string charUnitsToString(const CharUnits &CU) { |
7632 | 0 | return llvm::itostr(CU.getQuantity()); |
7633 | 0 | } |
7634 | | |
7635 | | /// getObjCEncodingForBlock - Return the encoded type for this block |
7636 | | /// declaration. |
7637 | 0 | std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { |
7638 | 0 | std::string S; |
7639 | |
|
7640 | 0 | const BlockDecl *Decl = Expr->getBlockDecl(); |
7641 | 0 | QualType BlockTy = |
7642 | 0 | Expr->getType()->castAs<BlockPointerType>()->getPointeeType(); |
7643 | 0 | QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType(); |
7644 | | // Encode result type. |
7645 | 0 | if (getLangOpts().EncodeExtendedBlockSig) |
7646 | 0 | getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S, |
7647 | 0 | true /*Extended*/); |
7648 | 0 | else |
7649 | 0 | getObjCEncodingForType(BlockReturnTy, S); |
7650 | | // Compute size of all parameters. |
7651 | | // Start with computing size of a pointer in number of bytes. |
7652 | | // FIXME: There might(should) be a better way of doing this computation! |
7653 | 0 | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
7654 | 0 | CharUnits ParmOffset = PtrSize; |
7655 | 0 | for (auto *PI : Decl->parameters()) { |
7656 | 0 | QualType PType = PI->getType(); |
7657 | 0 | CharUnits sz = getObjCEncodingTypeSize(PType); |
7658 | 0 | if (sz.isZero()) |
7659 | 0 | continue; |
7660 | 0 | assert(sz.isPositive() && "BlockExpr - Incomplete param type"); |
7661 | 0 | ParmOffset += sz; |
7662 | 0 | } |
7663 | | // Size of the argument frame |
7664 | 0 | S += charUnitsToString(ParmOffset); |
7665 | | // Block pointer and offset. |
7666 | 0 | S += "@?0"; |
7667 | | |
7668 | | // Argument types. |
7669 | 0 | ParmOffset = PtrSize; |
7670 | 0 | for (auto *PVDecl : Decl->parameters()) { |
7671 | 0 | QualType PType = PVDecl->getOriginalType(); |
7672 | 0 | if (const auto *AT = |
7673 | 0 | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
7674 | | // Use array's original type only if it has known number of |
7675 | | // elements. |
7676 | 0 | if (!isa<ConstantArrayType>(AT)) |
7677 | 0 | PType = PVDecl->getType(); |
7678 | 0 | } else if (PType->isFunctionType()) |
7679 | 0 | PType = PVDecl->getType(); |
7680 | 0 | if (getLangOpts().EncodeExtendedBlockSig) |
7681 | 0 | getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, |
7682 | 0 | S, true /*Extended*/); |
7683 | 0 | else |
7684 | 0 | getObjCEncodingForType(PType, S); |
7685 | 0 | S += charUnitsToString(ParmOffset); |
7686 | 0 | ParmOffset += getObjCEncodingTypeSize(PType); |
7687 | 0 | } |
7688 | |
|
7689 | 0 | return S; |
7690 | 0 | } |
7691 | | |
7692 | | std::string |
7693 | 0 | ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { |
7694 | 0 | std::string S; |
7695 | | // Encode result type. |
7696 | 0 | getObjCEncodingForType(Decl->getReturnType(), S); |
7697 | 0 | CharUnits ParmOffset; |
7698 | | // Compute size of all parameters. |
7699 | 0 | for (auto *PI : Decl->parameters()) { |
7700 | 0 | QualType PType = PI->getType(); |
7701 | 0 | CharUnits sz = getObjCEncodingTypeSize(PType); |
7702 | 0 | if (sz.isZero()) |
7703 | 0 | continue; |
7704 | | |
7705 | 0 | assert(sz.isPositive() && |
7706 | 0 | "getObjCEncodingForFunctionDecl - Incomplete param type"); |
7707 | 0 | ParmOffset += sz; |
7708 | 0 | } |
7709 | 0 | S += charUnitsToString(ParmOffset); |
7710 | 0 | ParmOffset = CharUnits::Zero(); |
7711 | | |
7712 | | // Argument types. |
7713 | 0 | for (auto *PVDecl : Decl->parameters()) { |
7714 | 0 | QualType PType = PVDecl->getOriginalType(); |
7715 | 0 | if (const auto *AT = |
7716 | 0 | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
7717 | | // Use array's original type only if it has known number of |
7718 | | // elements. |
7719 | 0 | if (!isa<ConstantArrayType>(AT)) |
7720 | 0 | PType = PVDecl->getType(); |
7721 | 0 | } else if (PType->isFunctionType()) |
7722 | 0 | PType = PVDecl->getType(); |
7723 | 0 | getObjCEncodingForType(PType, S); |
7724 | 0 | S += charUnitsToString(ParmOffset); |
7725 | 0 | ParmOffset += getObjCEncodingTypeSize(PType); |
7726 | 0 | } |
7727 | |
|
7728 | 0 | return S; |
7729 | 0 | } |
7730 | | |
7731 | | /// getObjCEncodingForMethodParameter - Return the encoded type for a single |
7732 | | /// method parameter or return type. If Extended, include class names and |
7733 | | /// block object types. |
7734 | | void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, |
7735 | | QualType T, std::string& S, |
7736 | 0 | bool Extended) const { |
7737 | | // Encode type qualifier, 'in', 'inout', etc. for the parameter. |
7738 | 0 | getObjCEncodingForTypeQualifier(QT, S); |
7739 | | // Encode parameter type. |
7740 | 0 | ObjCEncOptions Options = ObjCEncOptions() |
7741 | 0 | .setExpandPointedToStructures() |
7742 | 0 | .setExpandStructures() |
7743 | 0 | .setIsOutermostType(); |
7744 | 0 | if (Extended) |
7745 | 0 | Options.setEncodeBlockParameters().setEncodeClassNames(); |
7746 | 0 | getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr); |
7747 | 0 | } |
7748 | | |
7749 | | /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
7750 | | /// declaration. |
7751 | | std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, |
7752 | 0 | bool Extended) const { |
7753 | | // FIXME: This is not very efficient. |
7754 | | // Encode return type. |
7755 | 0 | std::string S; |
7756 | 0 | getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), |
7757 | 0 | Decl->getReturnType(), S, Extended); |
7758 | | // Compute size of all parameters. |
7759 | | // Start with computing size of a pointer in number of bytes. |
7760 | | // FIXME: There might(should) be a better way of doing this computation! |
7761 | 0 | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
7762 | | // The first two arguments (self and _cmd) are pointers; account for |
7763 | | // their size. |
7764 | 0 | CharUnits ParmOffset = 2 * PtrSize; |
7765 | 0 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
7766 | 0 | E = Decl->sel_param_end(); PI != E; ++PI) { |
7767 | 0 | QualType PType = (*PI)->getType(); |
7768 | 0 | CharUnits sz = getObjCEncodingTypeSize(PType); |
7769 | 0 | if (sz.isZero()) |
7770 | 0 | continue; |
7771 | | |
7772 | 0 | assert(sz.isPositive() && |
7773 | 0 | "getObjCEncodingForMethodDecl - Incomplete param type"); |
7774 | 0 | ParmOffset += sz; |
7775 | 0 | } |
7776 | 0 | S += charUnitsToString(ParmOffset); |
7777 | 0 | S += "@0:"; |
7778 | 0 | S += charUnitsToString(PtrSize); |
7779 | | |
7780 | | // Argument types. |
7781 | 0 | ParmOffset = 2 * PtrSize; |
7782 | 0 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
7783 | 0 | E = Decl->sel_param_end(); PI != E; ++PI) { |
7784 | 0 | const ParmVarDecl *PVDecl = *PI; |
7785 | 0 | QualType PType = PVDecl->getOriginalType(); |
7786 | 0 | if (const auto *AT = |
7787 | 0 | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
7788 | | // Use array's original type only if it has known number of |
7789 | | // elements. |
7790 | 0 | if (!isa<ConstantArrayType>(AT)) |
7791 | 0 | PType = PVDecl->getType(); |
7792 | 0 | } else if (PType->isFunctionType()) |
7793 | 0 | PType = PVDecl->getType(); |
7794 | 0 | getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), |
7795 | 0 | PType, S, Extended); |
7796 | 0 | S += charUnitsToString(ParmOffset); |
7797 | 0 | ParmOffset += getObjCEncodingTypeSize(PType); |
7798 | 0 | } |
7799 | |
|
7800 | 0 | return S; |
7801 | 0 | } |
7802 | | |
7803 | | ObjCPropertyImplDecl * |
7804 | | ASTContext::getObjCPropertyImplDeclForPropertyDecl( |
7805 | | const ObjCPropertyDecl *PD, |
7806 | 0 | const Decl *Container) const { |
7807 | 0 | if (!Container) |
7808 | 0 | return nullptr; |
7809 | 0 | if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) { |
7810 | 0 | for (auto *PID : CID->property_impls()) |
7811 | 0 | if (PID->getPropertyDecl() == PD) |
7812 | 0 | return PID; |
7813 | 0 | } else { |
7814 | 0 | const auto *OID = cast<ObjCImplementationDecl>(Container); |
7815 | 0 | for (auto *PID : OID->property_impls()) |
7816 | 0 | if (PID->getPropertyDecl() == PD) |
7817 | 0 | return PID; |
7818 | 0 | } |
7819 | 0 | return nullptr; |
7820 | 0 | } |
7821 | | |
7822 | | /// getObjCEncodingForPropertyDecl - Return the encoded type for this |
7823 | | /// property declaration. If non-NULL, Container must be either an |
7824 | | /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be |
7825 | | /// NULL when getting encodings for protocol properties. |
7826 | | /// Property attributes are stored as a comma-delimited C string. The simple |
7827 | | /// attributes readonly and bycopy are encoded as single characters. The |
7828 | | /// parametrized attributes, getter=name, setter=name, and ivar=name, are |
7829 | | /// encoded as single characters, followed by an identifier. Property types |
7830 | | /// are also encoded as a parametrized attribute. The characters used to encode |
7831 | | /// these attributes are defined by the following enumeration: |
7832 | | /// @code |
7833 | | /// enum PropertyAttributes { |
7834 | | /// kPropertyReadOnly = 'R', // property is read-only. |
7835 | | /// kPropertyBycopy = 'C', // property is a copy of the value last assigned |
7836 | | /// kPropertyByref = '&', // property is a reference to the value last assigned |
7837 | | /// kPropertyDynamic = 'D', // property is dynamic |
7838 | | /// kPropertyGetter = 'G', // followed by getter selector name |
7839 | | /// kPropertySetter = 'S', // followed by setter selector name |
7840 | | /// kPropertyInstanceVariable = 'V' // followed by instance variable name |
7841 | | /// kPropertyType = 'T' // followed by old-style type encoding. |
7842 | | /// kPropertyWeak = 'W' // 'weak' property |
7843 | | /// kPropertyStrong = 'P' // property GC'able |
7844 | | /// kPropertyNonAtomic = 'N' // property non-atomic |
7845 | | /// kPropertyOptional = '?' // property optional |
7846 | | /// }; |
7847 | | /// @endcode |
7848 | | std::string |
7849 | | ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, |
7850 | 0 | const Decl *Container) const { |
7851 | | // Collect information from the property implementation decl(s). |
7852 | 0 | bool Dynamic = false; |
7853 | 0 | ObjCPropertyImplDecl *SynthesizePID = nullptr; |
7854 | |
|
7855 | 0 | if (ObjCPropertyImplDecl *PropertyImpDecl = |
7856 | 0 | getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { |
7857 | 0 | if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) |
7858 | 0 | Dynamic = true; |
7859 | 0 | else |
7860 | 0 | SynthesizePID = PropertyImpDecl; |
7861 | 0 | } |
7862 | | |
7863 | | // FIXME: This is not very efficient. |
7864 | 0 | std::string S = "T"; |
7865 | | |
7866 | | // Encode result type. |
7867 | | // GCC has some special rules regarding encoding of properties which |
7868 | | // closely resembles encoding of ivars. |
7869 | 0 | getObjCEncodingForPropertyType(PD->getType(), S); |
7870 | |
|
7871 | 0 | if (PD->isOptional()) |
7872 | 0 | S += ",?"; |
7873 | |
|
7874 | 0 | if (PD->isReadOnly()) { |
7875 | 0 | S += ",R"; |
7876 | 0 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy) |
7877 | 0 | S += ",C"; |
7878 | 0 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain) |
7879 | 0 | S += ",&"; |
7880 | 0 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) |
7881 | 0 | S += ",W"; |
7882 | 0 | } else { |
7883 | 0 | switch (PD->getSetterKind()) { |
7884 | 0 | case ObjCPropertyDecl::Assign: break; |
7885 | 0 | case ObjCPropertyDecl::Copy: S += ",C"; break; |
7886 | 0 | case ObjCPropertyDecl::Retain: S += ",&"; break; |
7887 | 0 | case ObjCPropertyDecl::Weak: S += ",W"; break; |
7888 | 0 | } |
7889 | 0 | } |
7890 | | |
7891 | | // It really isn't clear at all what this means, since properties |
7892 | | // are "dynamic by default". |
7893 | 0 | if (Dynamic) |
7894 | 0 | S += ",D"; |
7895 | |
|
7896 | 0 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic) |
7897 | 0 | S += ",N"; |
7898 | |
|
7899 | 0 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) { |
7900 | 0 | S += ",G"; |
7901 | 0 | S += PD->getGetterName().getAsString(); |
7902 | 0 | } |
7903 | |
|
7904 | 0 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) { |
7905 | 0 | S += ",S"; |
7906 | 0 | S += PD->getSetterName().getAsString(); |
7907 | 0 | } |
7908 | |
|
7909 | 0 | if (SynthesizePID) { |
7910 | 0 | const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); |
7911 | 0 | S += ",V"; |
7912 | 0 | S += OID->getNameAsString(); |
7913 | 0 | } |
7914 | | |
7915 | | // FIXME: OBJCGC: weak & strong |
7916 | 0 | return S; |
7917 | 0 | } |
7918 | | |
7919 | | /// getLegacyIntegralTypeEncoding - |
7920 | | /// Another legacy compatibility encoding: 32-bit longs are encoded as |
7921 | | /// 'l' or 'L' , but not always. For typedefs, we need to use |
7922 | | /// 'i' or 'I' instead if encoding a struct field, or a pointer! |
7923 | 0 | void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { |
7924 | 0 | if (PointeeTy->getAs<TypedefType>()) { |
7925 | 0 | if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { |
7926 | 0 | if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) |
7927 | 0 | PointeeTy = UnsignedIntTy; |
7928 | 0 | else |
7929 | 0 | if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) |
7930 | 0 | PointeeTy = IntTy; |
7931 | 0 | } |
7932 | 0 | } |
7933 | 0 | } |
7934 | | |
7935 | | void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
7936 | | const FieldDecl *Field, |
7937 | 0 | QualType *NotEncodedT) const { |
7938 | | // We follow the behavior of gcc, expanding structures which are |
7939 | | // directly pointed to, and expanding embedded structures. Note that |
7940 | | // these rules are sufficient to prevent recursive encoding of the |
7941 | | // same type. |
7942 | 0 | getObjCEncodingForTypeImpl(T, S, |
7943 | 0 | ObjCEncOptions() |
7944 | 0 | .setExpandPointedToStructures() |
7945 | 0 | .setExpandStructures() |
7946 | 0 | .setIsOutermostType(), |
7947 | 0 | Field, NotEncodedT); |
7948 | 0 | } |
7949 | | |
7950 | | void ASTContext::getObjCEncodingForPropertyType(QualType T, |
7951 | 0 | std::string& S) const { |
7952 | | // Encode result type. |
7953 | | // GCC has some special rules regarding encoding of properties which |
7954 | | // closely resembles encoding of ivars. |
7955 | 0 | getObjCEncodingForTypeImpl(T, S, |
7956 | 0 | ObjCEncOptions() |
7957 | 0 | .setExpandPointedToStructures() |
7958 | 0 | .setExpandStructures() |
7959 | 0 | .setIsOutermostType() |
7960 | 0 | .setEncodingProperty(), |
7961 | 0 | /*Field=*/nullptr); |
7962 | 0 | } |
7963 | | |
7964 | | static char getObjCEncodingForPrimitiveType(const ASTContext *C, |
7965 | 0 | const BuiltinType *BT) { |
7966 | 0 | BuiltinType::Kind kind = BT->getKind(); |
7967 | 0 | switch (kind) { |
7968 | 0 | case BuiltinType::Void: return 'v'; |
7969 | 0 | case BuiltinType::Bool: return 'B'; |
7970 | 0 | case BuiltinType::Char8: |
7971 | 0 | case BuiltinType::Char_U: |
7972 | 0 | case BuiltinType::UChar: return 'C'; |
7973 | 0 | case BuiltinType::Char16: |
7974 | 0 | case BuiltinType::UShort: return 'S'; |
7975 | 0 | case BuiltinType::Char32: |
7976 | 0 | case BuiltinType::UInt: return 'I'; |
7977 | 0 | case BuiltinType::ULong: |
7978 | 0 | return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; |
7979 | 0 | case BuiltinType::UInt128: return 'T'; |
7980 | 0 | case BuiltinType::ULongLong: return 'Q'; |
7981 | 0 | case BuiltinType::Char_S: |
7982 | 0 | case BuiltinType::SChar: return 'c'; |
7983 | 0 | case BuiltinType::Short: return 's'; |
7984 | 0 | case BuiltinType::WChar_S: |
7985 | 0 | case BuiltinType::WChar_U: |
7986 | 0 | case BuiltinType::Int: return 'i'; |
7987 | 0 | case BuiltinType::Long: |
7988 | 0 | return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; |
7989 | 0 | case BuiltinType::LongLong: return 'q'; |
7990 | 0 | case BuiltinType::Int128: return 't'; |
7991 | 0 | case BuiltinType::Float: return 'f'; |
7992 | 0 | case BuiltinType::Double: return 'd'; |
7993 | 0 | case BuiltinType::LongDouble: return 'D'; |
7994 | 0 | case BuiltinType::NullPtr: return '*'; // like char* |
7995 | | |
7996 | 0 | case BuiltinType::BFloat16: |
7997 | 0 | case BuiltinType::Float16: |
7998 | 0 | case BuiltinType::Float128: |
7999 | 0 | case BuiltinType::Ibm128: |
8000 | 0 | case BuiltinType::Half: |
8001 | 0 | case BuiltinType::ShortAccum: |
8002 | 0 | case BuiltinType::Accum: |
8003 | 0 | case BuiltinType::LongAccum: |
8004 | 0 | case BuiltinType::UShortAccum: |
8005 | 0 | case BuiltinType::UAccum: |
8006 | 0 | case BuiltinType::ULongAccum: |
8007 | 0 | case BuiltinType::ShortFract: |
8008 | 0 | case BuiltinType::Fract: |
8009 | 0 | case BuiltinType::LongFract: |
8010 | 0 | case BuiltinType::UShortFract: |
8011 | 0 | case BuiltinType::UFract: |
8012 | 0 | case BuiltinType::ULongFract: |
8013 | 0 | case BuiltinType::SatShortAccum: |
8014 | 0 | case BuiltinType::SatAccum: |
8015 | 0 | case BuiltinType::SatLongAccum: |
8016 | 0 | case BuiltinType::SatUShortAccum: |
8017 | 0 | case BuiltinType::SatUAccum: |
8018 | 0 | case BuiltinType::SatULongAccum: |
8019 | 0 | case BuiltinType::SatShortFract: |
8020 | 0 | case BuiltinType::SatFract: |
8021 | 0 | case BuiltinType::SatLongFract: |
8022 | 0 | case BuiltinType::SatUShortFract: |
8023 | 0 | case BuiltinType::SatUFract: |
8024 | 0 | case BuiltinType::SatULongFract: |
8025 | | // FIXME: potentially need @encodes for these! |
8026 | 0 | return ' '; |
8027 | | |
8028 | 0 | #define SVE_TYPE(Name, Id, SingletonId) \ |
8029 | 0 | case BuiltinType::Id: |
8030 | 0 | #include "clang/Basic/AArch64SVEACLETypes.def" |
8031 | 0 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
8032 | 0 | #include "clang/Basic/RISCVVTypes.def" |
8033 | 0 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
8034 | 0 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
8035 | 0 | { |
8036 | 0 | DiagnosticsEngine &Diags = C->getDiagnostics(); |
8037 | 0 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
8038 | 0 | "cannot yet @encode type %0"); |
8039 | 0 | Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy()); |
8040 | 0 | return ' '; |
8041 | 0 | } |
8042 | | |
8043 | 0 | case BuiltinType::ObjCId: |
8044 | 0 | case BuiltinType::ObjCClass: |
8045 | 0 | case BuiltinType::ObjCSel: |
8046 | 0 | llvm_unreachable("@encoding ObjC primitive type"); |
8047 | | |
8048 | | // OpenCL and placeholder types don't need @encodings. |
8049 | 0 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
8050 | 0 | case BuiltinType::Id: |
8051 | 0 | #include "clang/Basic/OpenCLImageTypes.def" |
8052 | 0 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
8053 | 0 | case BuiltinType::Id: |
8054 | 0 | #include "clang/Basic/OpenCLExtensionTypes.def" |
8055 | 0 | case BuiltinType::OCLEvent: |
8056 | 0 | case BuiltinType::OCLClkEvent: |
8057 | 0 | case BuiltinType::OCLQueue: |
8058 | 0 | case BuiltinType::OCLReserveID: |
8059 | 0 | case BuiltinType::OCLSampler: |
8060 | 0 | case BuiltinType::Dependent: |
8061 | 0 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
8062 | 0 | case BuiltinType::Id: |
8063 | 0 | #include "clang/Basic/PPCTypes.def" |
8064 | 0 | #define BUILTIN_TYPE(KIND, ID) |
8065 | 0 | #define PLACEHOLDER_TYPE(KIND, ID) \ |
8066 | 0 | case BuiltinType::KIND: |
8067 | 0 | #include "clang/AST/BuiltinTypes.def" |
8068 | 0 | llvm_unreachable("invalid builtin type for @encode"); |
8069 | 0 | } |
8070 | 0 | llvm_unreachable("invalid BuiltinType::Kind value"); |
8071 | 0 | } |
8072 | | |
8073 | 0 | static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { |
8074 | 0 | EnumDecl *Enum = ET->getDecl(); |
8075 | | |
8076 | | // The encoding of an non-fixed enum type is always 'i', regardless of size. |
8077 | 0 | if (!Enum->isFixed()) |
8078 | 0 | return 'i'; |
8079 | | |
8080 | | // The encoding of a fixed enum type matches its fixed underlying type. |
8081 | 0 | const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); |
8082 | 0 | return getObjCEncodingForPrimitiveType(C, BT); |
8083 | 0 | } |
8084 | | |
8085 | | static void EncodeBitField(const ASTContext *Ctx, std::string& S, |
8086 | 0 | QualType T, const FieldDecl *FD) { |
8087 | 0 | assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); |
8088 | 0 | S += 'b'; |
8089 | | // The NeXT runtime encodes bit fields as b followed by the number of bits. |
8090 | | // The GNU runtime requires more information; bitfields are encoded as b, |
8091 | | // then the offset (in bits) of the first element, then the type of the |
8092 | | // bitfield, then the size in bits. For example, in this structure: |
8093 | | // |
8094 | | // struct |
8095 | | // { |
8096 | | // int integer; |
8097 | | // int flags:2; |
8098 | | // }; |
8099 | | // On a 32-bit system, the encoding for flags would be b2 for the NeXT |
8100 | | // runtime, but b32i2 for the GNU runtime. The reason for this extra |
8101 | | // information is not especially sensible, but we're stuck with it for |
8102 | | // compatibility with GCC, although providing it breaks anything that |
8103 | | // actually uses runtime introspection and wants to work on both runtimes... |
8104 | 0 | if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { |
8105 | 0 | uint64_t Offset; |
8106 | |
|
8107 | 0 | if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) { |
8108 | 0 | Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr, |
8109 | 0 | IVD); |
8110 | 0 | } else { |
8111 | 0 | const RecordDecl *RD = FD->getParent(); |
8112 | 0 | const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); |
8113 | 0 | Offset = RL.getFieldOffset(FD->getFieldIndex()); |
8114 | 0 | } |
8115 | |
|
8116 | 0 | S += llvm::utostr(Offset); |
8117 | |
|
8118 | 0 | if (const auto *ET = T->getAs<EnumType>()) |
8119 | 0 | S += ObjCEncodingForEnumType(Ctx, ET); |
8120 | 0 | else { |
8121 | 0 | const auto *BT = T->castAs<BuiltinType>(); |
8122 | 0 | S += getObjCEncodingForPrimitiveType(Ctx, BT); |
8123 | 0 | } |
8124 | 0 | } |
8125 | 0 | S += llvm::utostr(FD->getBitWidthValue(*Ctx)); |
8126 | 0 | } |
8127 | | |
8128 | | // Helper function for determining whether the encoded type string would include |
8129 | | // a template specialization type. |
8130 | | static bool hasTemplateSpecializationInEncodedString(const Type *T, |
8131 | 0 | bool VisitBasesAndFields) { |
8132 | 0 | T = T->getBaseElementTypeUnsafe(); |
8133 | |
|
8134 | 0 | if (auto *PT = T->getAs<PointerType>()) |
8135 | 0 | return hasTemplateSpecializationInEncodedString( |
8136 | 0 | PT->getPointeeType().getTypePtr(), false); |
8137 | | |
8138 | 0 | auto *CXXRD = T->getAsCXXRecordDecl(); |
8139 | |
|
8140 | 0 | if (!CXXRD) |
8141 | 0 | return false; |
8142 | | |
8143 | 0 | if (isa<ClassTemplateSpecializationDecl>(CXXRD)) |
8144 | 0 | return true; |
8145 | | |
8146 | 0 | if (!CXXRD->hasDefinition() || !VisitBasesAndFields) |
8147 | 0 | return false; |
8148 | | |
8149 | 0 | for (const auto &B : CXXRD->bases()) |
8150 | 0 | if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(), |
8151 | 0 | true)) |
8152 | 0 | return true; |
8153 | | |
8154 | 0 | for (auto *FD : CXXRD->fields()) |
8155 | 0 | if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(), |
8156 | 0 | true)) |
8157 | 0 | return true; |
8158 | | |
8159 | 0 | return false; |
8160 | 0 | } |
8161 | | |
8162 | | // FIXME: Use SmallString for accumulating string. |
8163 | | void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S, |
8164 | | const ObjCEncOptions Options, |
8165 | | const FieldDecl *FD, |
8166 | 0 | QualType *NotEncodedT) const { |
8167 | 0 | CanQualType CT = getCanonicalType(T); |
8168 | 0 | switch (CT->getTypeClass()) { |
8169 | 0 | case Type::Builtin: |
8170 | 0 | case Type::Enum: |
8171 | 0 | if (FD && FD->isBitField()) |
8172 | 0 | return EncodeBitField(this, S, T, FD); |
8173 | 0 | if (const auto *BT = dyn_cast<BuiltinType>(CT)) |
8174 | 0 | S += getObjCEncodingForPrimitiveType(this, BT); |
8175 | 0 | else |
8176 | 0 | S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); |
8177 | 0 | return; |
8178 | | |
8179 | 0 | case Type::Complex: |
8180 | 0 | S += 'j'; |
8181 | 0 | getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S, |
8182 | 0 | ObjCEncOptions(), |
8183 | 0 | /*Field=*/nullptr); |
8184 | 0 | return; |
8185 | | |
8186 | 0 | case Type::Atomic: |
8187 | 0 | S += 'A'; |
8188 | 0 | getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S, |
8189 | 0 | ObjCEncOptions(), |
8190 | 0 | /*Field=*/nullptr); |
8191 | 0 | return; |
8192 | | |
8193 | | // encoding for pointer or reference types. |
8194 | 0 | case Type::Pointer: |
8195 | 0 | case Type::LValueReference: |
8196 | 0 | case Type::RValueReference: { |
8197 | 0 | QualType PointeeTy; |
8198 | 0 | if (isa<PointerType>(CT)) { |
8199 | 0 | const auto *PT = T->castAs<PointerType>(); |
8200 | 0 | if (PT->isObjCSelType()) { |
8201 | 0 | S += ':'; |
8202 | 0 | return; |
8203 | 0 | } |
8204 | 0 | PointeeTy = PT->getPointeeType(); |
8205 | 0 | } else { |
8206 | 0 | PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); |
8207 | 0 | } |
8208 | | |
8209 | 0 | bool isReadOnly = false; |
8210 | | // For historical/compatibility reasons, the read-only qualifier of the |
8211 | | // pointee gets emitted _before_ the '^'. The read-only qualifier of |
8212 | | // the pointer itself gets ignored, _unless_ we are looking at a typedef! |
8213 | | // Also, do not emit the 'r' for anything but the outermost type! |
8214 | 0 | if (T->getAs<TypedefType>()) { |
8215 | 0 | if (Options.IsOutermostType() && T.isConstQualified()) { |
8216 | 0 | isReadOnly = true; |
8217 | 0 | S += 'r'; |
8218 | 0 | } |
8219 | 0 | } else if (Options.IsOutermostType()) { |
8220 | 0 | QualType P = PointeeTy; |
8221 | 0 | while (auto PT = P->getAs<PointerType>()) |
8222 | 0 | P = PT->getPointeeType(); |
8223 | 0 | if (P.isConstQualified()) { |
8224 | 0 | isReadOnly = true; |
8225 | 0 | S += 'r'; |
8226 | 0 | } |
8227 | 0 | } |
8228 | 0 | if (isReadOnly) { |
8229 | | // Another legacy compatibility encoding. Some ObjC qualifier and type |
8230 | | // combinations need to be rearranged. |
8231 | | // Rewrite "in const" from "nr" to "rn" |
8232 | 0 | if (StringRef(S).ends_with("nr")) |
8233 | 0 | S.replace(S.end()-2, S.end(), "rn"); |
8234 | 0 | } |
8235 | |
|
8236 | 0 | if (PointeeTy->isCharType()) { |
8237 | | // char pointer types should be encoded as '*' unless it is a |
8238 | | // type that has been typedef'd to 'BOOL'. |
8239 | 0 | if (!isTypeTypedefedAsBOOL(PointeeTy)) { |
8240 | 0 | S += '*'; |
8241 | 0 | return; |
8242 | 0 | } |
8243 | 0 | } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) { |
8244 | | // GCC binary compat: Need to convert "struct objc_class *" to "#". |
8245 | 0 | if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { |
8246 | 0 | S += '#'; |
8247 | 0 | return; |
8248 | 0 | } |
8249 | | // GCC binary compat: Need to convert "struct objc_object *" to "@". |
8250 | 0 | if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { |
8251 | 0 | S += '@'; |
8252 | 0 | return; |
8253 | 0 | } |
8254 | | // If the encoded string for the class includes template names, just emit |
8255 | | // "^v" for pointers to the class. |
8256 | 0 | if (getLangOpts().CPlusPlus && |
8257 | 0 | (!getLangOpts().EncodeCXXClassTemplateSpec && |
8258 | 0 | hasTemplateSpecializationInEncodedString( |
8259 | 0 | RTy, Options.ExpandPointedToStructures()))) { |
8260 | 0 | S += "^v"; |
8261 | 0 | return; |
8262 | 0 | } |
8263 | | // fall through... |
8264 | 0 | } |
8265 | 0 | S += '^'; |
8266 | 0 | getLegacyIntegralTypeEncoding(PointeeTy); |
8267 | |
|
8268 | 0 | ObjCEncOptions NewOptions; |
8269 | 0 | if (Options.ExpandPointedToStructures()) |
8270 | 0 | NewOptions.setExpandStructures(); |
8271 | 0 | getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions, |
8272 | 0 | /*Field=*/nullptr, NotEncodedT); |
8273 | 0 | return; |
8274 | 0 | } |
8275 | | |
8276 | 0 | case Type::ConstantArray: |
8277 | 0 | case Type::IncompleteArray: |
8278 | 0 | case Type::VariableArray: { |
8279 | 0 | const auto *AT = cast<ArrayType>(CT); |
8280 | |
|
8281 | 0 | if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) { |
8282 | | // Incomplete arrays are encoded as a pointer to the array element. |
8283 | 0 | S += '^'; |
8284 | |
|
8285 | 0 | getObjCEncodingForTypeImpl( |
8286 | 0 | AT->getElementType(), S, |
8287 | 0 | Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD); |
8288 | 0 | } else { |
8289 | 0 | S += '['; |
8290 | |
|
8291 | 0 | if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
8292 | 0 | S += llvm::utostr(CAT->getSize().getZExtValue()); |
8293 | 0 | else { |
8294 | | //Variable length arrays are encoded as a regular array with 0 elements. |
8295 | 0 | assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && |
8296 | 0 | "Unknown array type!"); |
8297 | 0 | S += '0'; |
8298 | 0 | } |
8299 | | |
8300 | 0 | getObjCEncodingForTypeImpl( |
8301 | 0 | AT->getElementType(), S, |
8302 | 0 | Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD, |
8303 | 0 | NotEncodedT); |
8304 | 0 | S += ']'; |
8305 | 0 | } |
8306 | 0 | return; |
8307 | 0 | } |
8308 | | |
8309 | 0 | case Type::FunctionNoProto: |
8310 | 0 | case Type::FunctionProto: |
8311 | 0 | S += '?'; |
8312 | 0 | return; |
8313 | | |
8314 | 0 | case Type::Record: { |
8315 | 0 | RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); |
8316 | 0 | S += RDecl->isUnion() ? '(' : '{'; |
8317 | | // Anonymous structures print as '?' |
8318 | 0 | if (const IdentifierInfo *II = RDecl->getIdentifier()) { |
8319 | 0 | S += II->getName(); |
8320 | 0 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { |
8321 | 0 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
8322 | 0 | llvm::raw_string_ostream OS(S); |
8323 | 0 | printTemplateArgumentList(OS, TemplateArgs.asArray(), |
8324 | 0 | getPrintingPolicy()); |
8325 | 0 | } |
8326 | 0 | } else { |
8327 | 0 | S += '?'; |
8328 | 0 | } |
8329 | 0 | if (Options.ExpandStructures()) { |
8330 | 0 | S += '='; |
8331 | 0 | if (!RDecl->isUnion()) { |
8332 | 0 | getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); |
8333 | 0 | } else { |
8334 | 0 | for (const auto *Field : RDecl->fields()) { |
8335 | 0 | if (FD) { |
8336 | 0 | S += '"'; |
8337 | 0 | S += Field->getNameAsString(); |
8338 | 0 | S += '"'; |
8339 | 0 | } |
8340 | | |
8341 | | // Special case bit-fields. |
8342 | 0 | if (Field->isBitField()) { |
8343 | 0 | getObjCEncodingForTypeImpl(Field->getType(), S, |
8344 | 0 | ObjCEncOptions().setExpandStructures(), |
8345 | 0 | Field); |
8346 | 0 | } else { |
8347 | 0 | QualType qt = Field->getType(); |
8348 | 0 | getLegacyIntegralTypeEncoding(qt); |
8349 | 0 | getObjCEncodingForTypeImpl( |
8350 | 0 | qt, S, |
8351 | 0 | ObjCEncOptions().setExpandStructures().setIsStructField(), FD, |
8352 | 0 | NotEncodedT); |
8353 | 0 | } |
8354 | 0 | } |
8355 | 0 | } |
8356 | 0 | } |
8357 | 0 | S += RDecl->isUnion() ? ')' : '}'; |
8358 | 0 | return; |
8359 | 0 | } |
8360 | | |
8361 | 0 | case Type::BlockPointer: { |
8362 | 0 | const auto *BT = T->castAs<BlockPointerType>(); |
8363 | 0 | S += "@?"; // Unlike a pointer-to-function, which is "^?". |
8364 | 0 | if (Options.EncodeBlockParameters()) { |
8365 | 0 | const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); |
8366 | |
|
8367 | 0 | S += '<'; |
8368 | | // Block return type |
8369 | 0 | getObjCEncodingForTypeImpl(FT->getReturnType(), S, |
8370 | 0 | Options.forComponentType(), FD, NotEncodedT); |
8371 | | // Block self |
8372 | 0 | S += "@?"; |
8373 | | // Block parameters |
8374 | 0 | if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) { |
8375 | 0 | for (const auto &I : FPT->param_types()) |
8376 | 0 | getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD, |
8377 | 0 | NotEncodedT); |
8378 | 0 | } |
8379 | 0 | S += '>'; |
8380 | 0 | } |
8381 | 0 | return; |
8382 | 0 | } |
8383 | | |
8384 | 0 | case Type::ObjCObject: { |
8385 | | // hack to match legacy encoding of *id and *Class |
8386 | 0 | QualType Ty = getObjCObjectPointerType(CT); |
8387 | 0 | if (Ty->isObjCIdType()) { |
8388 | 0 | S += "{objc_object=}"; |
8389 | 0 | return; |
8390 | 0 | } |
8391 | 0 | else if (Ty->isObjCClassType()) { |
8392 | 0 | S += "{objc_class=}"; |
8393 | 0 | return; |
8394 | 0 | } |
8395 | | // TODO: Double check to make sure this intentionally falls through. |
8396 | 0 | [[fallthrough]]; |
8397 | 0 | } |
8398 | | |
8399 | 0 | case Type::ObjCInterface: { |
8400 | | // Ignore protocol qualifiers when mangling at this level. |
8401 | | // @encode(class_name) |
8402 | 0 | ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); |
8403 | 0 | S += '{'; |
8404 | 0 | S += OI->getObjCRuntimeNameAsString(); |
8405 | 0 | if (Options.ExpandStructures()) { |
8406 | 0 | S += '='; |
8407 | 0 | SmallVector<const ObjCIvarDecl*, 32> Ivars; |
8408 | 0 | DeepCollectObjCIvars(OI, true, Ivars); |
8409 | 0 | for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { |
8410 | 0 | const FieldDecl *Field = Ivars[i]; |
8411 | 0 | if (Field->isBitField()) |
8412 | 0 | getObjCEncodingForTypeImpl(Field->getType(), S, |
8413 | 0 | ObjCEncOptions().setExpandStructures(), |
8414 | 0 | Field); |
8415 | 0 | else |
8416 | 0 | getObjCEncodingForTypeImpl(Field->getType(), S, |
8417 | 0 | ObjCEncOptions().setExpandStructures(), FD, |
8418 | 0 | NotEncodedT); |
8419 | 0 | } |
8420 | 0 | } |
8421 | 0 | S += '}'; |
8422 | 0 | return; |
8423 | 0 | } |
8424 | | |
8425 | 0 | case Type::ObjCObjectPointer: { |
8426 | 0 | const auto *OPT = T->castAs<ObjCObjectPointerType>(); |
8427 | 0 | if (OPT->isObjCIdType()) { |
8428 | 0 | S += '@'; |
8429 | 0 | return; |
8430 | 0 | } |
8431 | | |
8432 | 0 | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { |
8433 | | // FIXME: Consider if we need to output qualifiers for 'Class<p>'. |
8434 | | // Since this is a binary compatibility issue, need to consult with |
8435 | | // runtime folks. Fortunately, this is a *very* obscure construct. |
8436 | 0 | S += '#'; |
8437 | 0 | return; |
8438 | 0 | } |
8439 | | |
8440 | 0 | if (OPT->isObjCQualifiedIdType()) { |
8441 | 0 | getObjCEncodingForTypeImpl( |
8442 | 0 | getObjCIdType(), S, |
8443 | 0 | Options.keepingOnly(ObjCEncOptions() |
8444 | 0 | .setExpandPointedToStructures() |
8445 | 0 | .setExpandStructures()), |
8446 | 0 | FD); |
8447 | 0 | if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) { |
8448 | | // Note that we do extended encoding of protocol qualifier list |
8449 | | // Only when doing ivar or property encoding. |
8450 | 0 | S += '"'; |
8451 | 0 | for (const auto *I : OPT->quals()) { |
8452 | 0 | S += '<'; |
8453 | 0 | S += I->getObjCRuntimeNameAsString(); |
8454 | 0 | S += '>'; |
8455 | 0 | } |
8456 | 0 | S += '"'; |
8457 | 0 | } |
8458 | 0 | return; |
8459 | 0 | } |
8460 | | |
8461 | 0 | S += '@'; |
8462 | 0 | if (OPT->getInterfaceDecl() && |
8463 | 0 | (FD || Options.EncodingProperty() || Options.EncodeClassNames())) { |
8464 | 0 | S += '"'; |
8465 | 0 | S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); |
8466 | 0 | for (const auto *I : OPT->quals()) { |
8467 | 0 | S += '<'; |
8468 | 0 | S += I->getObjCRuntimeNameAsString(); |
8469 | 0 | S += '>'; |
8470 | 0 | } |
8471 | 0 | S += '"'; |
8472 | 0 | } |
8473 | 0 | return; |
8474 | 0 | } |
8475 | | |
8476 | | // gcc just blithely ignores member pointers. |
8477 | | // FIXME: we should do better than that. 'M' is available. |
8478 | 0 | case Type::MemberPointer: |
8479 | | // This matches gcc's encoding, even though technically it is insufficient. |
8480 | | //FIXME. We should do a better job than gcc. |
8481 | 0 | case Type::Vector: |
8482 | 0 | case Type::ExtVector: |
8483 | | // Until we have a coherent encoding of these three types, issue warning. |
8484 | 0 | if (NotEncodedT) |
8485 | 0 | *NotEncodedT = T; |
8486 | 0 | return; |
8487 | | |
8488 | 0 | case Type::ConstantMatrix: |
8489 | 0 | if (NotEncodedT) |
8490 | 0 | *NotEncodedT = T; |
8491 | 0 | return; |
8492 | | |
8493 | 0 | case Type::BitInt: |
8494 | 0 | if (NotEncodedT) |
8495 | 0 | *NotEncodedT = T; |
8496 | 0 | return; |
8497 | | |
8498 | | // We could see an undeduced auto type here during error recovery. |
8499 | | // Just ignore it. |
8500 | 0 | case Type::Auto: |
8501 | 0 | case Type::DeducedTemplateSpecialization: |
8502 | 0 | return; |
8503 | | |
8504 | 0 | case Type::Pipe: |
8505 | 0 | #define ABSTRACT_TYPE(KIND, BASE) |
8506 | 0 | #define TYPE(KIND, BASE) |
8507 | 0 | #define DEPENDENT_TYPE(KIND, BASE) \ |
8508 | 0 | case Type::KIND: |
8509 | 0 | #define NON_CANONICAL_TYPE(KIND, BASE) \ |
8510 | 0 | case Type::KIND: |
8511 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ |
8512 | 0 | case Type::KIND: |
8513 | 0 | #include "clang/AST/TypeNodes.inc" |
8514 | 0 | llvm_unreachable("@encode for dependent type!"); |
8515 | 0 | } |
8516 | 0 | llvm_unreachable("bad type kind!"); |
8517 | 0 | } |
8518 | | |
8519 | | void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, |
8520 | | std::string &S, |
8521 | | const FieldDecl *FD, |
8522 | | bool includeVBases, |
8523 | 0 | QualType *NotEncodedT) const { |
8524 | 0 | assert(RDecl && "Expected non-null RecordDecl"); |
8525 | 0 | assert(!RDecl->isUnion() && "Should not be called for unions"); |
8526 | 0 | if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) |
8527 | 0 | return; |
8528 | | |
8529 | 0 | const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); |
8530 | 0 | std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; |
8531 | 0 | const ASTRecordLayout &layout = getASTRecordLayout(RDecl); |
8532 | |
|
8533 | 0 | if (CXXRec) { |
8534 | 0 | for (const auto &BI : CXXRec->bases()) { |
8535 | 0 | if (!BI.isVirtual()) { |
8536 | 0 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
8537 | 0 | if (base->isEmpty()) |
8538 | 0 | continue; |
8539 | 0 | uint64_t offs = toBits(layout.getBaseClassOffset(base)); |
8540 | 0 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
8541 | 0 | std::make_pair(offs, base)); |
8542 | 0 | } |
8543 | 0 | } |
8544 | 0 | } |
8545 | |
|
8546 | 0 | for (FieldDecl *Field : RDecl->fields()) { |
8547 | 0 | if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this)) |
8548 | 0 | continue; |
8549 | 0 | uint64_t offs = layout.getFieldOffset(Field->getFieldIndex()); |
8550 | 0 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
8551 | 0 | std::make_pair(offs, Field)); |
8552 | 0 | } |
8553 | |
|
8554 | 0 | if (CXXRec && includeVBases) { |
8555 | 0 | for (const auto &BI : CXXRec->vbases()) { |
8556 | 0 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
8557 | 0 | if (base->isEmpty()) |
8558 | 0 | continue; |
8559 | 0 | uint64_t offs = toBits(layout.getVBaseClassOffset(base)); |
8560 | 0 | if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && |
8561 | 0 | FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) |
8562 | 0 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), |
8563 | 0 | std::make_pair(offs, base)); |
8564 | 0 | } |
8565 | 0 | } |
8566 | |
|
8567 | 0 | CharUnits size; |
8568 | 0 | if (CXXRec) { |
8569 | 0 | size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); |
8570 | 0 | } else { |
8571 | 0 | size = layout.getSize(); |
8572 | 0 | } |
8573 | |
|
8574 | 0 | #ifndef NDEBUG |
8575 | 0 | uint64_t CurOffs = 0; |
8576 | 0 | #endif |
8577 | 0 | std::multimap<uint64_t, NamedDecl *>::iterator |
8578 | 0 | CurLayObj = FieldOrBaseOffsets.begin(); |
8579 | |
|
8580 | 0 | if (CXXRec && CXXRec->isDynamicClass() && |
8581 | 0 | (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { |
8582 | 0 | if (FD) { |
8583 | 0 | S += "\"_vptr$"; |
8584 | 0 | std::string recname = CXXRec->getNameAsString(); |
8585 | 0 | if (recname.empty()) recname = "?"; |
8586 | 0 | S += recname; |
8587 | 0 | S += '"'; |
8588 | 0 | } |
8589 | 0 | S += "^^?"; |
8590 | 0 | #ifndef NDEBUG |
8591 | 0 | CurOffs += getTypeSize(VoidPtrTy); |
8592 | 0 | #endif |
8593 | 0 | } |
8594 | |
|
8595 | 0 | if (!RDecl->hasFlexibleArrayMember()) { |
8596 | | // Mark the end of the structure. |
8597 | 0 | uint64_t offs = toBits(size); |
8598 | 0 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
8599 | 0 | std::make_pair(offs, nullptr)); |
8600 | 0 | } |
8601 | |
|
8602 | 0 | for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { |
8603 | 0 | #ifndef NDEBUG |
8604 | 0 | assert(CurOffs <= CurLayObj->first); |
8605 | 0 | if (CurOffs < CurLayObj->first) { |
8606 | 0 | uint64_t padding = CurLayObj->first - CurOffs; |
8607 | | // FIXME: There doesn't seem to be a way to indicate in the encoding that |
8608 | | // packing/alignment of members is different that normal, in which case |
8609 | | // the encoding will be out-of-sync with the real layout. |
8610 | | // If the runtime switches to just consider the size of types without |
8611 | | // taking into account alignment, we could make padding explicit in the |
8612 | | // encoding (e.g. using arrays of chars). The encoding strings would be |
8613 | | // longer then though. |
8614 | 0 | CurOffs += padding; |
8615 | 0 | } |
8616 | 0 | #endif |
8617 | |
|
8618 | 0 | NamedDecl *dcl = CurLayObj->second; |
8619 | 0 | if (!dcl) |
8620 | 0 | break; // reached end of structure. |
8621 | | |
8622 | 0 | if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) { |
8623 | | // We expand the bases without their virtual bases since those are going |
8624 | | // in the initial structure. Note that this differs from gcc which |
8625 | | // expands virtual bases each time one is encountered in the hierarchy, |
8626 | | // making the encoding type bigger than it really is. |
8627 | 0 | getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, |
8628 | 0 | NotEncodedT); |
8629 | 0 | assert(!base->isEmpty()); |
8630 | 0 | #ifndef NDEBUG |
8631 | 0 | CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); |
8632 | 0 | #endif |
8633 | 0 | } else { |
8634 | 0 | const auto *field = cast<FieldDecl>(dcl); |
8635 | 0 | if (FD) { |
8636 | 0 | S += '"'; |
8637 | 0 | S += field->getNameAsString(); |
8638 | 0 | S += '"'; |
8639 | 0 | } |
8640 | |
|
8641 | 0 | if (field->isBitField()) { |
8642 | 0 | EncodeBitField(this, S, field->getType(), field); |
8643 | 0 | #ifndef NDEBUG |
8644 | 0 | CurOffs += field->getBitWidthValue(*this); |
8645 | 0 | #endif |
8646 | 0 | } else { |
8647 | 0 | QualType qt = field->getType(); |
8648 | 0 | getLegacyIntegralTypeEncoding(qt); |
8649 | 0 | getObjCEncodingForTypeImpl( |
8650 | 0 | qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(), |
8651 | 0 | FD, NotEncodedT); |
8652 | 0 | #ifndef NDEBUG |
8653 | 0 | CurOffs += getTypeSize(field->getType()); |
8654 | 0 | #endif |
8655 | 0 | } |
8656 | 0 | } |
8657 | 0 | } |
8658 | 0 | } |
8659 | | |
8660 | | void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
8661 | 0 | std::string& S) const { |
8662 | 0 | if (QT & Decl::OBJC_TQ_In) |
8663 | 0 | S += 'n'; |
8664 | 0 | if (QT & Decl::OBJC_TQ_Inout) |
8665 | 0 | S += 'N'; |
8666 | 0 | if (QT & Decl::OBJC_TQ_Out) |
8667 | 0 | S += 'o'; |
8668 | 0 | if (QT & Decl::OBJC_TQ_Bycopy) |
8669 | 0 | S += 'O'; |
8670 | 0 | if (QT & Decl::OBJC_TQ_Byref) |
8671 | 0 | S += 'R'; |
8672 | 0 | if (QT & Decl::OBJC_TQ_Oneway) |
8673 | 0 | S += 'V'; |
8674 | 0 | } |
8675 | | |
8676 | 69 | TypedefDecl *ASTContext::getObjCIdDecl() const { |
8677 | 69 | if (!ObjCIdDecl) { |
8678 | 23 | QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {}); |
8679 | 23 | T = getObjCObjectPointerType(T); |
8680 | 23 | ObjCIdDecl = buildImplicitTypedef(T, "id"); |
8681 | 23 | } |
8682 | 69 | return ObjCIdDecl; |
8683 | 69 | } |
8684 | | |
8685 | 69 | TypedefDecl *ASTContext::getObjCSelDecl() const { |
8686 | 69 | if (!ObjCSelDecl) { |
8687 | 23 | QualType T = getPointerType(ObjCBuiltinSelTy); |
8688 | 23 | ObjCSelDecl = buildImplicitTypedef(T, "SEL"); |
8689 | 23 | } |
8690 | 69 | return ObjCSelDecl; |
8691 | 69 | } |
8692 | | |
8693 | 46 | TypedefDecl *ASTContext::getObjCClassDecl() const { |
8694 | 46 | if (!ObjCClassDecl) { |
8695 | 23 | QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {}); |
8696 | 23 | T = getObjCObjectPointerType(T); |
8697 | 23 | ObjCClassDecl = buildImplicitTypedef(T, "Class"); |
8698 | 23 | } |
8699 | 46 | return ObjCClassDecl; |
8700 | 46 | } |
8701 | | |
8702 | 23 | ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { |
8703 | 23 | if (!ObjCProtocolClassDecl) { |
8704 | 23 | ObjCProtocolClassDecl |
8705 | 23 | = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), |
8706 | 23 | SourceLocation(), |
8707 | 23 | &Idents.get("Protocol"), |
8708 | 23 | /*typeParamList=*/nullptr, |
8709 | 23 | /*PrevDecl=*/nullptr, |
8710 | 23 | SourceLocation(), true); |
8711 | 23 | } |
8712 | | |
8713 | 23 | return ObjCProtocolClassDecl; |
8714 | 23 | } |
8715 | | |
8716 | | //===----------------------------------------------------------------------===// |
8717 | | // __builtin_va_list Construction Functions |
8718 | | //===----------------------------------------------------------------------===// |
8719 | | |
8720 | | static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, |
8721 | 46 | StringRef Name) { |
8722 | | // typedef char* __builtin[_ms]_va_list; |
8723 | 46 | QualType T = Context->getPointerType(Context->CharTy); |
8724 | 46 | return Context->buildImplicitTypedef(T, Name); |
8725 | 46 | } |
8726 | | |
8727 | 46 | static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { |
8728 | 46 | return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list"); |
8729 | 46 | } |
8730 | | |
8731 | 0 | static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { |
8732 | 0 | return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list"); |
8733 | 0 | } |
8734 | | |
8735 | 0 | static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { |
8736 | | // typedef void* __builtin_va_list; |
8737 | 0 | QualType T = Context->getPointerType(Context->VoidTy); |
8738 | 0 | return Context->buildImplicitTypedef(T, "__builtin_va_list"); |
8739 | 0 | } |
8740 | | |
8741 | | static TypedefDecl * |
8742 | 0 | CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { |
8743 | | // struct __va_list |
8744 | 0 | RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); |
8745 | 0 | if (Context->getLangOpts().CPlusPlus) { |
8746 | | // namespace std { struct __va_list { |
8747 | 0 | auto *NS = NamespaceDecl::Create( |
8748 | 0 | const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(), |
8749 | 0 | /*Inline=*/false, SourceLocation(), SourceLocation(), |
8750 | 0 | &Context->Idents.get("std"), |
8751 | 0 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
8752 | 0 | NS->setImplicit(); |
8753 | 0 | VaListTagDecl->setDeclContext(NS); |
8754 | 0 | } |
8755 | |
|
8756 | 0 | VaListTagDecl->startDefinition(); |
8757 | |
|
8758 | 0 | const size_t NumFields = 5; |
8759 | 0 | QualType FieldTypes[NumFields]; |
8760 | 0 | const char *FieldNames[NumFields]; |
8761 | | |
8762 | | // void *__stack; |
8763 | 0 | FieldTypes[0] = Context->getPointerType(Context->VoidTy); |
8764 | 0 | FieldNames[0] = "__stack"; |
8765 | | |
8766 | | // void *__gr_top; |
8767 | 0 | FieldTypes[1] = Context->getPointerType(Context->VoidTy); |
8768 | 0 | FieldNames[1] = "__gr_top"; |
8769 | | |
8770 | | // void *__vr_top; |
8771 | 0 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
8772 | 0 | FieldNames[2] = "__vr_top"; |
8773 | | |
8774 | | // int __gr_offs; |
8775 | 0 | FieldTypes[3] = Context->IntTy; |
8776 | 0 | FieldNames[3] = "__gr_offs"; |
8777 | | |
8778 | | // int __vr_offs; |
8779 | 0 | FieldTypes[4] = Context->IntTy; |
8780 | 0 | FieldNames[4] = "__vr_offs"; |
8781 | | |
8782 | | // Create fields |
8783 | 0 | for (unsigned i = 0; i < NumFields; ++i) { |
8784 | 0 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
8785 | 0 | VaListTagDecl, |
8786 | 0 | SourceLocation(), |
8787 | 0 | SourceLocation(), |
8788 | 0 | &Context->Idents.get(FieldNames[i]), |
8789 | 0 | FieldTypes[i], /*TInfo=*/nullptr, |
8790 | 0 | /*BitWidth=*/nullptr, |
8791 | 0 | /*Mutable=*/false, |
8792 | 0 | ICIS_NoInit); |
8793 | 0 | Field->setAccess(AS_public); |
8794 | 0 | VaListTagDecl->addDecl(Field); |
8795 | 0 | } |
8796 | 0 | VaListTagDecl->completeDefinition(); |
8797 | 0 | Context->VaListTagDecl = VaListTagDecl; |
8798 | 0 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
8799 | | |
8800 | | // } __builtin_va_list; |
8801 | 0 | return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); |
8802 | 0 | } |
8803 | | |
8804 | 0 | static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { |
8805 | | // typedef struct __va_list_tag { |
8806 | 0 | RecordDecl *VaListTagDecl; |
8807 | |
|
8808 | 0 | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
8809 | 0 | VaListTagDecl->startDefinition(); |
8810 | |
|
8811 | 0 | const size_t NumFields = 5; |
8812 | 0 | QualType FieldTypes[NumFields]; |
8813 | 0 | const char *FieldNames[NumFields]; |
8814 | | |
8815 | | // unsigned char gpr; |
8816 | 0 | FieldTypes[0] = Context->UnsignedCharTy; |
8817 | 0 | FieldNames[0] = "gpr"; |
8818 | | |
8819 | | // unsigned char fpr; |
8820 | 0 | FieldTypes[1] = Context->UnsignedCharTy; |
8821 | 0 | FieldNames[1] = "fpr"; |
8822 | | |
8823 | | // unsigned short reserved; |
8824 | 0 | FieldTypes[2] = Context->UnsignedShortTy; |
8825 | 0 | FieldNames[2] = "reserved"; |
8826 | | |
8827 | | // void* overflow_arg_area; |
8828 | 0 | FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
8829 | 0 | FieldNames[3] = "overflow_arg_area"; |
8830 | | |
8831 | | // void* reg_save_area; |
8832 | 0 | FieldTypes[4] = Context->getPointerType(Context->VoidTy); |
8833 | 0 | FieldNames[4] = "reg_save_area"; |
8834 | | |
8835 | | // Create fields |
8836 | 0 | for (unsigned i = 0; i < NumFields; ++i) { |
8837 | 0 | FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, |
8838 | 0 | SourceLocation(), |
8839 | 0 | SourceLocation(), |
8840 | 0 | &Context->Idents.get(FieldNames[i]), |
8841 | 0 | FieldTypes[i], /*TInfo=*/nullptr, |
8842 | 0 | /*BitWidth=*/nullptr, |
8843 | 0 | /*Mutable=*/false, |
8844 | 0 | ICIS_NoInit); |
8845 | 0 | Field->setAccess(AS_public); |
8846 | 0 | VaListTagDecl->addDecl(Field); |
8847 | 0 | } |
8848 | 0 | VaListTagDecl->completeDefinition(); |
8849 | 0 | Context->VaListTagDecl = VaListTagDecl; |
8850 | 0 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
8851 | | |
8852 | | // } __va_list_tag; |
8853 | 0 | TypedefDecl *VaListTagTypedefDecl = |
8854 | 0 | Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); |
8855 | |
|
8856 | 0 | QualType VaListTagTypedefType = |
8857 | 0 | Context->getTypedefType(VaListTagTypedefDecl); |
8858 | | |
8859 | | // typedef __va_list_tag __builtin_va_list[1]; |
8860 | 0 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
8861 | 0 | QualType VaListTagArrayType = Context->getConstantArrayType( |
8862 | 0 | VaListTagTypedefType, Size, nullptr, ArraySizeModifier::Normal, 0); |
8863 | 0 | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
8864 | 0 | } |
8865 | | |
8866 | | static TypedefDecl * |
8867 | 46 | CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { |
8868 | | // struct __va_list_tag { |
8869 | 46 | RecordDecl *VaListTagDecl; |
8870 | 46 | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
8871 | 46 | VaListTagDecl->startDefinition(); |
8872 | | |
8873 | 46 | const size_t NumFields = 4; |
8874 | 46 | QualType FieldTypes[NumFields]; |
8875 | 46 | const char *FieldNames[NumFields]; |
8876 | | |
8877 | | // unsigned gp_offset; |
8878 | 46 | FieldTypes[0] = Context->UnsignedIntTy; |
8879 | 46 | FieldNames[0] = "gp_offset"; |
8880 | | |
8881 | | // unsigned fp_offset; |
8882 | 46 | FieldTypes[1] = Context->UnsignedIntTy; |
8883 | 46 | FieldNames[1] = "fp_offset"; |
8884 | | |
8885 | | // void* overflow_arg_area; |
8886 | 46 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
8887 | 46 | FieldNames[2] = "overflow_arg_area"; |
8888 | | |
8889 | | // void* reg_save_area; |
8890 | 46 | FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
8891 | 46 | FieldNames[3] = "reg_save_area"; |
8892 | | |
8893 | | // Create fields |
8894 | 230 | for (unsigned i = 0; i < NumFields; ++i) { |
8895 | 184 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
8896 | 184 | VaListTagDecl, |
8897 | 184 | SourceLocation(), |
8898 | 184 | SourceLocation(), |
8899 | 184 | &Context->Idents.get(FieldNames[i]), |
8900 | 184 | FieldTypes[i], /*TInfo=*/nullptr, |
8901 | 184 | /*BitWidth=*/nullptr, |
8902 | 184 | /*Mutable=*/false, |
8903 | 184 | ICIS_NoInit); |
8904 | 184 | Field->setAccess(AS_public); |
8905 | 184 | VaListTagDecl->addDecl(Field); |
8906 | 184 | } |
8907 | 46 | VaListTagDecl->completeDefinition(); |
8908 | 46 | Context->VaListTagDecl = VaListTagDecl; |
8909 | 46 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
8910 | | |
8911 | | // }; |
8912 | | |
8913 | | // typedef struct __va_list_tag __builtin_va_list[1]; |
8914 | 46 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
8915 | 46 | QualType VaListTagArrayType = Context->getConstantArrayType( |
8916 | 46 | VaListTagType, Size, nullptr, ArraySizeModifier::Normal, 0); |
8917 | 46 | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
8918 | 46 | } |
8919 | | |
8920 | 0 | static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { |
8921 | | // typedef int __builtin_va_list[4]; |
8922 | 0 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); |
8923 | 0 | QualType IntArrayType = Context->getConstantArrayType( |
8924 | 0 | Context->IntTy, Size, nullptr, ArraySizeModifier::Normal, 0); |
8925 | 0 | return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); |
8926 | 0 | } |
8927 | | |
8928 | | static TypedefDecl * |
8929 | 0 | CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { |
8930 | | // struct __va_list |
8931 | 0 | RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); |
8932 | 0 | if (Context->getLangOpts().CPlusPlus) { |
8933 | | // namespace std { struct __va_list { |
8934 | 0 | NamespaceDecl *NS; |
8935 | 0 | NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), |
8936 | 0 | Context->getTranslationUnitDecl(), |
8937 | 0 | /*Inline=*/false, SourceLocation(), |
8938 | 0 | SourceLocation(), &Context->Idents.get("std"), |
8939 | 0 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
8940 | 0 | NS->setImplicit(); |
8941 | 0 | VaListDecl->setDeclContext(NS); |
8942 | 0 | } |
8943 | |
|
8944 | 0 | VaListDecl->startDefinition(); |
8945 | | |
8946 | | // void * __ap; |
8947 | 0 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
8948 | 0 | VaListDecl, |
8949 | 0 | SourceLocation(), |
8950 | 0 | SourceLocation(), |
8951 | 0 | &Context->Idents.get("__ap"), |
8952 | 0 | Context->getPointerType(Context->VoidTy), |
8953 | 0 | /*TInfo=*/nullptr, |
8954 | 0 | /*BitWidth=*/nullptr, |
8955 | 0 | /*Mutable=*/false, |
8956 | 0 | ICIS_NoInit); |
8957 | 0 | Field->setAccess(AS_public); |
8958 | 0 | VaListDecl->addDecl(Field); |
8959 | | |
8960 | | // }; |
8961 | 0 | VaListDecl->completeDefinition(); |
8962 | 0 | Context->VaListTagDecl = VaListDecl; |
8963 | | |
8964 | | // typedef struct __va_list __builtin_va_list; |
8965 | 0 | QualType T = Context->getRecordType(VaListDecl); |
8966 | 0 | return Context->buildImplicitTypedef(T, "__builtin_va_list"); |
8967 | 0 | } |
8968 | | |
8969 | | static TypedefDecl * |
8970 | 0 | CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { |
8971 | | // struct __va_list_tag { |
8972 | 0 | RecordDecl *VaListTagDecl; |
8973 | 0 | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
8974 | 0 | VaListTagDecl->startDefinition(); |
8975 | |
|
8976 | 0 | const size_t NumFields = 4; |
8977 | 0 | QualType FieldTypes[NumFields]; |
8978 | 0 | const char *FieldNames[NumFields]; |
8979 | | |
8980 | | // long __gpr; |
8981 | 0 | FieldTypes[0] = Context->LongTy; |
8982 | 0 | FieldNames[0] = "__gpr"; |
8983 | | |
8984 | | // long __fpr; |
8985 | 0 | FieldTypes[1] = Context->LongTy; |
8986 | 0 | FieldNames[1] = "__fpr"; |
8987 | | |
8988 | | // void *__overflow_arg_area; |
8989 | 0 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
8990 | 0 | FieldNames[2] = "__overflow_arg_area"; |
8991 | | |
8992 | | // void *__reg_save_area; |
8993 | 0 | FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
8994 | 0 | FieldNames[3] = "__reg_save_area"; |
8995 | | |
8996 | | // Create fields |
8997 | 0 | for (unsigned i = 0; i < NumFields; ++i) { |
8998 | 0 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
8999 | 0 | VaListTagDecl, |
9000 | 0 | SourceLocation(), |
9001 | 0 | SourceLocation(), |
9002 | 0 | &Context->Idents.get(FieldNames[i]), |
9003 | 0 | FieldTypes[i], /*TInfo=*/nullptr, |
9004 | 0 | /*BitWidth=*/nullptr, |
9005 | 0 | /*Mutable=*/false, |
9006 | 0 | ICIS_NoInit); |
9007 | 0 | Field->setAccess(AS_public); |
9008 | 0 | VaListTagDecl->addDecl(Field); |
9009 | 0 | } |
9010 | 0 | VaListTagDecl->completeDefinition(); |
9011 | 0 | Context->VaListTagDecl = VaListTagDecl; |
9012 | 0 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
9013 | | |
9014 | | // }; |
9015 | | |
9016 | | // typedef __va_list_tag __builtin_va_list[1]; |
9017 | 0 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
9018 | 0 | QualType VaListTagArrayType = Context->getConstantArrayType( |
9019 | 0 | VaListTagType, Size, nullptr, ArraySizeModifier::Normal, 0); |
9020 | |
|
9021 | 0 | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
9022 | 0 | } |
9023 | | |
9024 | 0 | static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) { |
9025 | | // typedef struct __va_list_tag { |
9026 | 0 | RecordDecl *VaListTagDecl; |
9027 | 0 | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
9028 | 0 | VaListTagDecl->startDefinition(); |
9029 | |
|
9030 | 0 | const size_t NumFields = 3; |
9031 | 0 | QualType FieldTypes[NumFields]; |
9032 | 0 | const char *FieldNames[NumFields]; |
9033 | | |
9034 | | // void *CurrentSavedRegisterArea; |
9035 | 0 | FieldTypes[0] = Context->getPointerType(Context->VoidTy); |
9036 | 0 | FieldNames[0] = "__current_saved_reg_area_pointer"; |
9037 | | |
9038 | | // void *SavedRegAreaEnd; |
9039 | 0 | FieldTypes[1] = Context->getPointerType(Context->VoidTy); |
9040 | 0 | FieldNames[1] = "__saved_reg_area_end_pointer"; |
9041 | | |
9042 | | // void *OverflowArea; |
9043 | 0 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
9044 | 0 | FieldNames[2] = "__overflow_area_pointer"; |
9045 | | |
9046 | | // Create fields |
9047 | 0 | for (unsigned i = 0; i < NumFields; ++i) { |
9048 | 0 | FieldDecl *Field = FieldDecl::Create( |
9049 | 0 | const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(), |
9050 | 0 | SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i], |
9051 | 0 | /*TInfo=*/nullptr, |
9052 | 0 | /*BitWidth=*/nullptr, |
9053 | 0 | /*Mutable=*/false, ICIS_NoInit); |
9054 | 0 | Field->setAccess(AS_public); |
9055 | 0 | VaListTagDecl->addDecl(Field); |
9056 | 0 | } |
9057 | 0 | VaListTagDecl->completeDefinition(); |
9058 | 0 | Context->VaListTagDecl = VaListTagDecl; |
9059 | 0 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
9060 | | |
9061 | | // } __va_list_tag; |
9062 | 0 | TypedefDecl *VaListTagTypedefDecl = |
9063 | 0 | Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); |
9064 | |
|
9065 | 0 | QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl); |
9066 | | |
9067 | | // typedef __va_list_tag __builtin_va_list[1]; |
9068 | 0 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
9069 | 0 | QualType VaListTagArrayType = Context->getConstantArrayType( |
9070 | 0 | VaListTagTypedefType, Size, nullptr, ArraySizeModifier::Normal, 0); |
9071 | |
|
9072 | 0 | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
9073 | 0 | } |
9074 | | |
9075 | | static TypedefDecl *CreateVaListDecl(const ASTContext *Context, |
9076 | 46 | TargetInfo::BuiltinVaListKind Kind) { |
9077 | 46 | switch (Kind) { |
9078 | 0 | case TargetInfo::CharPtrBuiltinVaList: |
9079 | 0 | return CreateCharPtrBuiltinVaListDecl(Context); |
9080 | 0 | case TargetInfo::VoidPtrBuiltinVaList: |
9081 | 0 | return CreateVoidPtrBuiltinVaListDecl(Context); |
9082 | 0 | case TargetInfo::AArch64ABIBuiltinVaList: |
9083 | 0 | return CreateAArch64ABIBuiltinVaListDecl(Context); |
9084 | 0 | case TargetInfo::PowerABIBuiltinVaList: |
9085 | 0 | return CreatePowerABIBuiltinVaListDecl(Context); |
9086 | 46 | case TargetInfo::X86_64ABIBuiltinVaList: |
9087 | 46 | return CreateX86_64ABIBuiltinVaListDecl(Context); |
9088 | 0 | case TargetInfo::PNaClABIBuiltinVaList: |
9089 | 0 | return CreatePNaClABIBuiltinVaListDecl(Context); |
9090 | 0 | case TargetInfo::AAPCSABIBuiltinVaList: |
9091 | 0 | return CreateAAPCSABIBuiltinVaListDecl(Context); |
9092 | 0 | case TargetInfo::SystemZBuiltinVaList: |
9093 | 0 | return CreateSystemZBuiltinVaListDecl(Context); |
9094 | 0 | case TargetInfo::HexagonBuiltinVaList: |
9095 | 0 | return CreateHexagonBuiltinVaListDecl(Context); |
9096 | 46 | } |
9097 | | |
9098 | 0 | llvm_unreachable("Unhandled __builtin_va_list type kind"); |
9099 | 0 | } |
9100 | | |
9101 | 46 | TypedefDecl *ASTContext::getBuiltinVaListDecl() const { |
9102 | 46 | if (!BuiltinVaListDecl) { |
9103 | 46 | BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); |
9104 | 46 | assert(BuiltinVaListDecl->isImplicit()); |
9105 | 46 | } |
9106 | | |
9107 | 0 | return BuiltinVaListDecl; |
9108 | 46 | } |
9109 | | |
9110 | 0 | Decl *ASTContext::getVaListTagDecl() const { |
9111 | | // Force the creation of VaListTagDecl by building the __builtin_va_list |
9112 | | // declaration. |
9113 | 0 | if (!VaListTagDecl) |
9114 | 0 | (void)getBuiltinVaListDecl(); |
9115 | |
|
9116 | 0 | return VaListTagDecl; |
9117 | 0 | } |
9118 | | |
9119 | 46 | TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { |
9120 | 46 | if (!BuiltinMSVaListDecl) |
9121 | 46 | BuiltinMSVaListDecl = CreateMSVaListDecl(this); |
9122 | | |
9123 | 46 | return BuiltinMSVaListDecl; |
9124 | 46 | } |
9125 | | |
9126 | 0 | bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { |
9127 | | // Allow redecl custom type checking builtin for HLSL. |
9128 | 0 | if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin && |
9129 | 0 | BuiltinInfo.hasCustomTypechecking(FD->getBuiltinID())) |
9130 | 0 | return true; |
9131 | 0 | return BuiltinInfo.canBeRedeclared(FD->getBuiltinID()); |
9132 | 0 | } |
9133 | | |
9134 | 0 | void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
9135 | 0 | assert(ObjCConstantStringType.isNull() && |
9136 | 0 | "'NSConstantString' type already set!"); |
9137 | | |
9138 | 0 | ObjCConstantStringType = getObjCInterfaceType(Decl); |
9139 | 0 | } |
9140 | | |
9141 | | /// Retrieve the template name that corresponds to a non-empty |
9142 | | /// lookup. |
9143 | | TemplateName |
9144 | | ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, |
9145 | 0 | UnresolvedSetIterator End) const { |
9146 | 0 | unsigned size = End - Begin; |
9147 | 0 | assert(size > 1 && "set is not overloaded!"); |
9148 | | |
9149 | 0 | void *memory = Allocate(sizeof(OverloadedTemplateStorage) + |
9150 | 0 | size * sizeof(FunctionTemplateDecl*)); |
9151 | 0 | auto *OT = new (memory) OverloadedTemplateStorage(size); |
9152 | |
|
9153 | 0 | NamedDecl **Storage = OT->getStorage(); |
9154 | 0 | for (UnresolvedSetIterator I = Begin; I != End; ++I) { |
9155 | 0 | NamedDecl *D = *I; |
9156 | 0 | assert(isa<FunctionTemplateDecl>(D) || |
9157 | 0 | isa<UnresolvedUsingValueDecl>(D) || |
9158 | 0 | (isa<UsingShadowDecl>(D) && |
9159 | 0 | isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); |
9160 | 0 | *Storage++ = D; |
9161 | 0 | } |
9162 | |
|
9163 | 0 | return TemplateName(OT); |
9164 | 0 | } |
9165 | | |
9166 | | /// Retrieve a template name representing an unqualified-id that has been |
9167 | | /// assumed to name a template for ADL purposes. |
9168 | 3.06k | TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const { |
9169 | 3.06k | auto *OT = new (*this) AssumedTemplateStorage(Name); |
9170 | 3.06k | return TemplateName(OT); |
9171 | 3.06k | } |
9172 | | |
9173 | | /// Retrieve the template name that represents a qualified |
9174 | | /// template name such as \c std::vector. |
9175 | | TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, |
9176 | | bool TemplateKeyword, |
9177 | 0 | TemplateName Template) const { |
9178 | 0 | assert(NNS && "Missing nested-name-specifier in qualified template name"); |
9179 | | |
9180 | | // FIXME: Canonicalization? |
9181 | 0 | llvm::FoldingSetNodeID ID; |
9182 | 0 | QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); |
9183 | |
|
9184 | 0 | void *InsertPos = nullptr; |
9185 | 0 | QualifiedTemplateName *QTN = |
9186 | 0 | QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9187 | 0 | if (!QTN) { |
9188 | 0 | QTN = new (*this, alignof(QualifiedTemplateName)) |
9189 | 0 | QualifiedTemplateName(NNS, TemplateKeyword, Template); |
9190 | 0 | QualifiedTemplateNames.InsertNode(QTN, InsertPos); |
9191 | 0 | } |
9192 | |
|
9193 | 0 | return TemplateName(QTN); |
9194 | 0 | } |
9195 | | |
9196 | | /// Retrieve the template name that represents a dependent |
9197 | | /// template name such as \c MetaFun::template apply. |
9198 | | TemplateName |
9199 | | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
9200 | 0 | const IdentifierInfo *Name) const { |
9201 | 0 | assert((!NNS || NNS->isDependent()) && |
9202 | 0 | "Nested name specifier must be dependent"); |
9203 | | |
9204 | 0 | llvm::FoldingSetNodeID ID; |
9205 | 0 | DependentTemplateName::Profile(ID, NNS, Name); |
9206 | |
|
9207 | 0 | void *InsertPos = nullptr; |
9208 | 0 | DependentTemplateName *QTN = |
9209 | 0 | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9210 | |
|
9211 | 0 | if (QTN) |
9212 | 0 | return TemplateName(QTN); |
9213 | | |
9214 | 0 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
9215 | 0 | if (CanonNNS == NNS) { |
9216 | 0 | QTN = new (*this, alignof(DependentTemplateName)) |
9217 | 0 | DependentTemplateName(NNS, Name); |
9218 | 0 | } else { |
9219 | 0 | TemplateName Canon = getDependentTemplateName(CanonNNS, Name); |
9220 | 0 | QTN = new (*this, alignof(DependentTemplateName)) |
9221 | 0 | DependentTemplateName(NNS, Name, Canon); |
9222 | 0 | DependentTemplateName *CheckQTN = |
9223 | 0 | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9224 | 0 | assert(!CheckQTN && "Dependent type name canonicalization broken"); |
9225 | 0 | (void)CheckQTN; |
9226 | 0 | } |
9227 | | |
9228 | 0 | DependentTemplateNames.InsertNode(QTN, InsertPos); |
9229 | 0 | return TemplateName(QTN); |
9230 | 0 | } |
9231 | | |
9232 | | /// Retrieve the template name that represents a dependent |
9233 | | /// template name such as \c MetaFun::template operator+. |
9234 | | TemplateName |
9235 | | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
9236 | 0 | OverloadedOperatorKind Operator) const { |
9237 | 0 | assert((!NNS || NNS->isDependent()) && |
9238 | 0 | "Nested name specifier must be dependent"); |
9239 | | |
9240 | 0 | llvm::FoldingSetNodeID ID; |
9241 | 0 | DependentTemplateName::Profile(ID, NNS, Operator); |
9242 | |
|
9243 | 0 | void *InsertPos = nullptr; |
9244 | 0 | DependentTemplateName *QTN |
9245 | 0 | = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9246 | |
|
9247 | 0 | if (QTN) |
9248 | 0 | return TemplateName(QTN); |
9249 | | |
9250 | 0 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
9251 | 0 | if (CanonNNS == NNS) { |
9252 | 0 | QTN = new (*this, alignof(DependentTemplateName)) |
9253 | 0 | DependentTemplateName(NNS, Operator); |
9254 | 0 | } else { |
9255 | 0 | TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); |
9256 | 0 | QTN = new (*this, alignof(DependentTemplateName)) |
9257 | 0 | DependentTemplateName(NNS, Operator, Canon); |
9258 | |
|
9259 | 0 | DependentTemplateName *CheckQTN |
9260 | 0 | = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
9261 | 0 | assert(!CheckQTN && "Dependent template name canonicalization broken"); |
9262 | 0 | (void)CheckQTN; |
9263 | 0 | } |
9264 | | |
9265 | 0 | DependentTemplateNames.InsertNode(QTN, InsertPos); |
9266 | 0 | return TemplateName(QTN); |
9267 | 0 | } |
9268 | | |
9269 | | TemplateName ASTContext::getSubstTemplateTemplateParm( |
9270 | | TemplateName Replacement, Decl *AssociatedDecl, unsigned Index, |
9271 | 0 | std::optional<unsigned> PackIndex) const { |
9272 | 0 | llvm::FoldingSetNodeID ID; |
9273 | 0 | SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl, |
9274 | 0 | Index, PackIndex); |
9275 | |
|
9276 | 0 | void *insertPos = nullptr; |
9277 | 0 | SubstTemplateTemplateParmStorage *subst |
9278 | 0 | = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); |
9279 | |
|
9280 | 0 | if (!subst) { |
9281 | 0 | subst = new (*this) SubstTemplateTemplateParmStorage( |
9282 | 0 | Replacement, AssociatedDecl, Index, PackIndex); |
9283 | 0 | SubstTemplateTemplateParms.InsertNode(subst, insertPos); |
9284 | 0 | } |
9285 | |
|
9286 | 0 | return TemplateName(subst); |
9287 | 0 | } |
9288 | | |
9289 | | TemplateName |
9290 | | ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack, |
9291 | | Decl *AssociatedDecl, |
9292 | 0 | unsigned Index, bool Final) const { |
9293 | 0 | auto &Self = const_cast<ASTContext &>(*this); |
9294 | 0 | llvm::FoldingSetNodeID ID; |
9295 | 0 | SubstTemplateTemplateParmPackStorage::Profile(ID, Self, ArgPack, |
9296 | 0 | AssociatedDecl, Index, Final); |
9297 | |
|
9298 | 0 | void *InsertPos = nullptr; |
9299 | 0 | SubstTemplateTemplateParmPackStorage *Subst |
9300 | 0 | = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); |
9301 | |
|
9302 | 0 | if (!Subst) { |
9303 | 0 | Subst = new (*this) SubstTemplateTemplateParmPackStorage( |
9304 | 0 | ArgPack.pack_elements(), AssociatedDecl, Index, Final); |
9305 | 0 | SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); |
9306 | 0 | } |
9307 | |
|
9308 | 0 | return TemplateName(Subst); |
9309 | 0 | } |
9310 | | |
9311 | | /// getFromTargetType - Given one of the integer types provided by |
9312 | | /// TargetInfo, produce the corresponding type. The unsigned @p Type |
9313 | | /// is actually a value of type @c TargetInfo::IntType. |
9314 | 214 | CanQualType ASTContext::getFromTargetType(unsigned Type) const { |
9315 | 214 | switch (Type) { |
9316 | 0 | case TargetInfo::NoInt: return {}; |
9317 | 0 | case TargetInfo::SignedChar: return SignedCharTy; |
9318 | 0 | case TargetInfo::UnsignedChar: return UnsignedCharTy; |
9319 | 0 | case TargetInfo::SignedShort: return ShortTy; |
9320 | 23 | case TargetInfo::UnsignedShort: return UnsignedShortTy; |
9321 | 23 | case TargetInfo::SignedInt: return IntTy; |
9322 | 69 | case TargetInfo::UnsignedInt: return UnsignedIntTy; |
9323 | 2 | case TargetInfo::SignedLong: return LongTy; |
9324 | 97 | case TargetInfo::UnsignedLong: return UnsignedLongTy; |
9325 | 0 | case TargetInfo::SignedLongLong: return LongLongTy; |
9326 | 0 | case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; |
9327 | 214 | } |
9328 | | |
9329 | 0 | llvm_unreachable("Unhandled TargetInfo::IntType value"); |
9330 | 0 | } |
9331 | | |
9332 | | //===----------------------------------------------------------------------===// |
9333 | | // Type Predicates. |
9334 | | //===----------------------------------------------------------------------===// |
9335 | | |
9336 | | /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's |
9337 | | /// garbage collection attribute. |
9338 | | /// |
9339 | 0 | Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { |
9340 | 0 | if (getLangOpts().getGC() == LangOptions::NonGC) |
9341 | 0 | return Qualifiers::GCNone; |
9342 | | |
9343 | 0 | assert(getLangOpts().ObjC); |
9344 | 0 | Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); |
9345 | | |
9346 | | // Default behaviour under objective-C's gc is for ObjC pointers |
9347 | | // (or pointers to them) be treated as though they were declared |
9348 | | // as __strong. |
9349 | 0 | if (GCAttrs == Qualifiers::GCNone) { |
9350 | 0 | if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) |
9351 | 0 | return Qualifiers::Strong; |
9352 | 0 | else if (Ty->isPointerType()) |
9353 | 0 | return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType()); |
9354 | 0 | } else { |
9355 | | // It's not valid to set GC attributes on anything that isn't a |
9356 | | // pointer. |
9357 | 0 | #ifndef NDEBUG |
9358 | 0 | QualType CT = Ty->getCanonicalTypeInternal(); |
9359 | 0 | while (const auto *AT = dyn_cast<ArrayType>(CT)) |
9360 | 0 | CT = AT->getElementType(); |
9361 | 0 | assert(CT->isAnyPointerType() || CT->isBlockPointerType()); |
9362 | 0 | #endif |
9363 | 0 | } |
9364 | 0 | return GCAttrs; |
9365 | 0 | } |
9366 | | |
9367 | | //===----------------------------------------------------------------------===// |
9368 | | // Type Compatibility Testing |
9369 | | //===----------------------------------------------------------------------===// |
9370 | | |
9371 | | /// areCompatVectorTypes - Return true if the two specified vector types are |
9372 | | /// compatible. |
9373 | | static bool areCompatVectorTypes(const VectorType *LHS, |
9374 | 0 | const VectorType *RHS) { |
9375 | 0 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
9376 | 0 | return LHS->getElementType() == RHS->getElementType() && |
9377 | 0 | LHS->getNumElements() == RHS->getNumElements(); |
9378 | 0 | } |
9379 | | |
9380 | | /// areCompatMatrixTypes - Return true if the two specified matrix types are |
9381 | | /// compatible. |
9382 | | static bool areCompatMatrixTypes(const ConstantMatrixType *LHS, |
9383 | 0 | const ConstantMatrixType *RHS) { |
9384 | 0 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); |
9385 | 0 | return LHS->getElementType() == RHS->getElementType() && |
9386 | 0 | LHS->getNumRows() == RHS->getNumRows() && |
9387 | 0 | LHS->getNumColumns() == RHS->getNumColumns(); |
9388 | 0 | } |
9389 | | |
9390 | | bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, |
9391 | 0 | QualType SecondVec) { |
9392 | 0 | assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); |
9393 | 0 | assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); |
9394 | | |
9395 | 0 | if (hasSameUnqualifiedType(FirstVec, SecondVec)) |
9396 | 0 | return true; |
9397 | | |
9398 | | // Treat Neon vector types and most AltiVec vector types as if they are the |
9399 | | // equivalent GCC vector types. |
9400 | 0 | const auto *First = FirstVec->castAs<VectorType>(); |
9401 | 0 | const auto *Second = SecondVec->castAs<VectorType>(); |
9402 | 0 | if (First->getNumElements() == Second->getNumElements() && |
9403 | 0 | hasSameType(First->getElementType(), Second->getElementType()) && |
9404 | 0 | First->getVectorKind() != VectorKind::AltiVecPixel && |
9405 | 0 | First->getVectorKind() != VectorKind::AltiVecBool && |
9406 | 0 | Second->getVectorKind() != VectorKind::AltiVecPixel && |
9407 | 0 | Second->getVectorKind() != VectorKind::AltiVecBool && |
9408 | 0 | First->getVectorKind() != VectorKind::SveFixedLengthData && |
9409 | 0 | First->getVectorKind() != VectorKind::SveFixedLengthPredicate && |
9410 | 0 | Second->getVectorKind() != VectorKind::SveFixedLengthData && |
9411 | 0 | Second->getVectorKind() != VectorKind::SveFixedLengthPredicate && |
9412 | 0 | First->getVectorKind() != VectorKind::RVVFixedLengthData && |
9413 | 0 | Second->getVectorKind() != VectorKind::RVVFixedLengthData) |
9414 | 0 | return true; |
9415 | | |
9416 | 0 | return false; |
9417 | 0 | } |
9418 | | |
9419 | | /// getSVETypeSize - Return SVE vector or predicate register size. |
9420 | 0 | static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) { |
9421 | 0 | assert(Ty->isSveVLSBuiltinType() && "Invalid SVE Type"); |
9422 | 0 | if (Ty->getKind() == BuiltinType::SveBool || |
9423 | 0 | Ty->getKind() == BuiltinType::SveCount) |
9424 | 0 | return (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth(); |
9425 | 0 | return Context.getLangOpts().VScaleMin * 128; |
9426 | 0 | } |
9427 | | |
9428 | | bool ASTContext::areCompatibleSveTypes(QualType FirstType, |
9429 | 0 | QualType SecondType) { |
9430 | 0 | assert( |
9431 | 0 | ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || |
9432 | 0 | (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && |
9433 | 0 | "Expected SVE builtin type and vector type!"); |
9434 | | |
9435 | 0 | auto IsValidCast = [this](QualType FirstType, QualType SecondType) { |
9436 | 0 | if (const auto *BT = FirstType->getAs<BuiltinType>()) { |
9437 | 0 | if (const auto *VT = SecondType->getAs<VectorType>()) { |
9438 | | // Predicates have the same representation as uint8 so we also have to |
9439 | | // check the kind to make these types incompatible. |
9440 | 0 | if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) |
9441 | 0 | return BT->getKind() == BuiltinType::SveBool; |
9442 | 0 | else if (VT->getVectorKind() == VectorKind::SveFixedLengthData) |
9443 | 0 | return VT->getElementType().getCanonicalType() == |
9444 | 0 | FirstType->getSveEltType(*this); |
9445 | 0 | else if (VT->getVectorKind() == VectorKind::Generic) |
9446 | 0 | return getTypeSize(SecondType) == getSVETypeSize(*this, BT) && |
9447 | 0 | hasSameType(VT->getElementType(), |
9448 | 0 | getBuiltinVectorTypeInfo(BT).ElementType); |
9449 | 0 | } |
9450 | 0 | } |
9451 | 0 | return false; |
9452 | 0 | }; |
9453 | |
|
9454 | 0 | return IsValidCast(FirstType, SecondType) || |
9455 | 0 | IsValidCast(SecondType, FirstType); |
9456 | 0 | } |
9457 | | |
9458 | | bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType, |
9459 | 0 | QualType SecondType) { |
9460 | 0 | assert( |
9461 | 0 | ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || |
9462 | 0 | (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && |
9463 | 0 | "Expected SVE builtin type and vector type!"); |
9464 | | |
9465 | 0 | auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { |
9466 | 0 | const auto *BT = FirstType->getAs<BuiltinType>(); |
9467 | 0 | if (!BT) |
9468 | 0 | return false; |
9469 | | |
9470 | 0 | const auto *VecTy = SecondType->getAs<VectorType>(); |
9471 | 0 | if (VecTy && (VecTy->getVectorKind() == VectorKind::SveFixedLengthData || |
9472 | 0 | VecTy->getVectorKind() == VectorKind::Generic)) { |
9473 | 0 | const LangOptions::LaxVectorConversionKind LVCKind = |
9474 | 0 | getLangOpts().getLaxVectorConversions(); |
9475 | | |
9476 | | // Can not convert between sve predicates and sve vectors because of |
9477 | | // different size. |
9478 | 0 | if (BT->getKind() == BuiltinType::SveBool && |
9479 | 0 | VecTy->getVectorKind() == VectorKind::SveFixedLengthData) |
9480 | 0 | return false; |
9481 | | |
9482 | | // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion. |
9483 | | // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly |
9484 | | // converts to VLAT and VLAT implicitly converts to GNUT." |
9485 | | // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and |
9486 | | // predicates. |
9487 | 0 | if (VecTy->getVectorKind() == VectorKind::Generic && |
9488 | 0 | getTypeSize(SecondType) != getSVETypeSize(*this, BT)) |
9489 | 0 | return false; |
9490 | | |
9491 | | // If -flax-vector-conversions=all is specified, the types are |
9492 | | // certainly compatible. |
9493 | 0 | if (LVCKind == LangOptions::LaxVectorConversionKind::All) |
9494 | 0 | return true; |
9495 | | |
9496 | | // If -flax-vector-conversions=integer is specified, the types are |
9497 | | // compatible if the elements are integer types. |
9498 | 0 | if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) |
9499 | 0 | return VecTy->getElementType().getCanonicalType()->isIntegerType() && |
9500 | 0 | FirstType->getSveEltType(*this)->isIntegerType(); |
9501 | 0 | } |
9502 | | |
9503 | 0 | return false; |
9504 | 0 | }; |
9505 | |
|
9506 | 0 | return IsLaxCompatible(FirstType, SecondType) || |
9507 | 0 | IsLaxCompatible(SecondType, FirstType); |
9508 | 0 | } |
9509 | | |
9510 | | /// getRVVTypeSize - Return RVV vector register size. |
9511 | 0 | static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) { |
9512 | 0 | assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type"); |
9513 | 0 | auto VScale = Context.getTargetInfo().getVScaleRange(Context.getLangOpts()); |
9514 | 0 | if (!VScale) |
9515 | 0 | return 0; |
9516 | | |
9517 | 0 | ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(Ty); |
9518 | |
|
9519 | 0 | uint64_t EltSize = Context.getTypeSize(Info.ElementType); |
9520 | 0 | uint64_t MinElts = Info.EC.getKnownMinValue(); |
9521 | 0 | return VScale->first * MinElts * EltSize; |
9522 | 0 | } |
9523 | | |
9524 | | bool ASTContext::areCompatibleRVVTypes(QualType FirstType, |
9525 | 0 | QualType SecondType) { |
9526 | 0 | assert( |
9527 | 0 | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || |
9528 | 0 | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && |
9529 | 0 | "Expected RVV builtin type and vector type!"); |
9530 | | |
9531 | 0 | auto IsValidCast = [this](QualType FirstType, QualType SecondType) { |
9532 | 0 | if (const auto *BT = FirstType->getAs<BuiltinType>()) { |
9533 | 0 | if (const auto *VT = SecondType->getAs<VectorType>()) { |
9534 | 0 | if (VT->getVectorKind() == VectorKind::RVVFixedLengthData || |
9535 | 0 | VT->getVectorKind() == VectorKind::Generic) |
9536 | 0 | return FirstType->isRVVVLSBuiltinType() && |
9537 | 0 | getTypeSize(SecondType) == getRVVTypeSize(*this, BT) && |
9538 | 0 | hasSameType(VT->getElementType(), |
9539 | 0 | getBuiltinVectorTypeInfo(BT).ElementType); |
9540 | 0 | } |
9541 | 0 | } |
9542 | 0 | return false; |
9543 | 0 | }; |
9544 | |
|
9545 | 0 | return IsValidCast(FirstType, SecondType) || |
9546 | 0 | IsValidCast(SecondType, FirstType); |
9547 | 0 | } |
9548 | | |
9549 | | bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType, |
9550 | 0 | QualType SecondType) { |
9551 | 0 | assert( |
9552 | 0 | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || |
9553 | 0 | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && |
9554 | 0 | "Expected RVV builtin type and vector type!"); |
9555 | | |
9556 | 0 | auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { |
9557 | 0 | const auto *BT = FirstType->getAs<BuiltinType>(); |
9558 | 0 | if (!BT) |
9559 | 0 | return false; |
9560 | | |
9561 | 0 | if (!BT->isRVVVLSBuiltinType()) |
9562 | 0 | return false; |
9563 | | |
9564 | 0 | const auto *VecTy = SecondType->getAs<VectorType>(); |
9565 | 0 | if (VecTy && VecTy->getVectorKind() == VectorKind::Generic) { |
9566 | 0 | const LangOptions::LaxVectorConversionKind LVCKind = |
9567 | 0 | getLangOpts().getLaxVectorConversions(); |
9568 | | |
9569 | | // If __riscv_v_fixed_vlen != N do not allow vector lax conversion. |
9570 | 0 | if (getTypeSize(SecondType) != getRVVTypeSize(*this, BT)) |
9571 | 0 | return false; |
9572 | | |
9573 | | // If -flax-vector-conversions=all is specified, the types are |
9574 | | // certainly compatible. |
9575 | 0 | if (LVCKind == LangOptions::LaxVectorConversionKind::All) |
9576 | 0 | return true; |
9577 | | |
9578 | | // If -flax-vector-conversions=integer is specified, the types are |
9579 | | // compatible if the elements are integer types. |
9580 | 0 | if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) |
9581 | 0 | return VecTy->getElementType().getCanonicalType()->isIntegerType() && |
9582 | 0 | FirstType->getRVVEltType(*this)->isIntegerType(); |
9583 | 0 | } |
9584 | | |
9585 | 0 | return false; |
9586 | 0 | }; |
9587 | |
|
9588 | 0 | return IsLaxCompatible(FirstType, SecondType) || |
9589 | 0 | IsLaxCompatible(SecondType, FirstType); |
9590 | 0 | } |
9591 | | |
9592 | 0 | bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const { |
9593 | 0 | while (true) { |
9594 | | // __strong id |
9595 | 0 | if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) { |
9596 | 0 | if (Attr->getAttrKind() == attr::ObjCOwnership) |
9597 | 0 | return true; |
9598 | | |
9599 | 0 | Ty = Attr->getModifiedType(); |
9600 | | |
9601 | | // X *__strong (...) |
9602 | 0 | } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) { |
9603 | 0 | Ty = Paren->getInnerType(); |
9604 | | |
9605 | | // We do not want to look through typedefs, typeof(expr), |
9606 | | // typeof(type), or any other way that the type is somehow |
9607 | | // abstracted. |
9608 | 0 | } else { |
9609 | 0 | return false; |
9610 | 0 | } |
9611 | 0 | } |
9612 | 0 | } |
9613 | | |
9614 | | //===----------------------------------------------------------------------===// |
9615 | | // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. |
9616 | | //===----------------------------------------------------------------------===// |
9617 | | |
9618 | | /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the |
9619 | | /// inheritance hierarchy of 'rProto'. |
9620 | | bool |
9621 | | ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, |
9622 | 0 | ObjCProtocolDecl *rProto) const { |
9623 | 0 | if (declaresSameEntity(lProto, rProto)) |
9624 | 0 | return true; |
9625 | 0 | for (auto *PI : rProto->protocols()) |
9626 | 0 | if (ProtocolCompatibleWithProtocol(lProto, PI)) |
9627 | 0 | return true; |
9628 | 0 | return false; |
9629 | 0 | } |
9630 | | |
9631 | | /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and |
9632 | | /// Class<pr1, ...>. |
9633 | | bool ASTContext::ObjCQualifiedClassTypesAreCompatible( |
9634 | 0 | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) { |
9635 | 0 | for (auto *lhsProto : lhs->quals()) { |
9636 | 0 | bool match = false; |
9637 | 0 | for (auto *rhsProto : rhs->quals()) { |
9638 | 0 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { |
9639 | 0 | match = true; |
9640 | 0 | break; |
9641 | 0 | } |
9642 | 0 | } |
9643 | 0 | if (!match) |
9644 | 0 | return false; |
9645 | 0 | } |
9646 | 0 | return true; |
9647 | 0 | } |
9648 | | |
9649 | | /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an |
9650 | | /// ObjCQualifiedIDType. |
9651 | | bool ASTContext::ObjCQualifiedIdTypesAreCompatible( |
9652 | | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs, |
9653 | 0 | bool compare) { |
9654 | | // Allow id<P..> and an 'id' in all cases. |
9655 | 0 | if (lhs->isObjCIdType() || rhs->isObjCIdType()) |
9656 | 0 | return true; |
9657 | | |
9658 | | // Don't allow id<P..> to convert to Class or Class<P..> in either direction. |
9659 | 0 | if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() || |
9660 | 0 | rhs->isObjCClassType() || rhs->isObjCQualifiedClassType()) |
9661 | 0 | return false; |
9662 | | |
9663 | 0 | if (lhs->isObjCQualifiedIdType()) { |
9664 | 0 | if (rhs->qual_empty()) { |
9665 | | // If the RHS is a unqualified interface pointer "NSString*", |
9666 | | // make sure we check the class hierarchy. |
9667 | 0 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
9668 | 0 | for (auto *I : lhs->quals()) { |
9669 | | // when comparing an id<P> on lhs with a static type on rhs, |
9670 | | // see if static class implements all of id's protocols, directly or |
9671 | | // through its super class and categories. |
9672 | 0 | if (!rhsID->ClassImplementsProtocol(I, true)) |
9673 | 0 | return false; |
9674 | 0 | } |
9675 | 0 | } |
9676 | | // If there are no qualifiers and no interface, we have an 'id'. |
9677 | 0 | return true; |
9678 | 0 | } |
9679 | | // Both the right and left sides have qualifiers. |
9680 | 0 | for (auto *lhsProto : lhs->quals()) { |
9681 | 0 | bool match = false; |
9682 | | |
9683 | | // when comparing an id<P> on lhs with a static type on rhs, |
9684 | | // see if static class implements all of id's protocols, directly or |
9685 | | // through its super class and categories. |
9686 | 0 | for (auto *rhsProto : rhs->quals()) { |
9687 | 0 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
9688 | 0 | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
9689 | 0 | match = true; |
9690 | 0 | break; |
9691 | 0 | } |
9692 | 0 | } |
9693 | | // If the RHS is a qualified interface pointer "NSString<P>*", |
9694 | | // make sure we check the class hierarchy. |
9695 | 0 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
9696 | 0 | for (auto *I : lhs->quals()) { |
9697 | | // when comparing an id<P> on lhs with a static type on rhs, |
9698 | | // see if static class implements all of id's protocols, directly or |
9699 | | // through its super class and categories. |
9700 | 0 | if (rhsID->ClassImplementsProtocol(I, true)) { |
9701 | 0 | match = true; |
9702 | 0 | break; |
9703 | 0 | } |
9704 | 0 | } |
9705 | 0 | } |
9706 | 0 | if (!match) |
9707 | 0 | return false; |
9708 | 0 | } |
9709 | | |
9710 | 0 | return true; |
9711 | 0 | } |
9712 | | |
9713 | 0 | assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>"); |
9714 | | |
9715 | 0 | if (lhs->getInterfaceType()) { |
9716 | | // If both the right and left sides have qualifiers. |
9717 | 0 | for (auto *lhsProto : lhs->quals()) { |
9718 | 0 | bool match = false; |
9719 | | |
9720 | | // when comparing an id<P> on rhs with a static type on lhs, |
9721 | | // see if static class implements all of id's protocols, directly or |
9722 | | // through its super class and categories. |
9723 | | // First, lhs protocols in the qualifier list must be found, direct |
9724 | | // or indirect in rhs's qualifier list or it is a mismatch. |
9725 | 0 | for (auto *rhsProto : rhs->quals()) { |
9726 | 0 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
9727 | 0 | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
9728 | 0 | match = true; |
9729 | 0 | break; |
9730 | 0 | } |
9731 | 0 | } |
9732 | 0 | if (!match) |
9733 | 0 | return false; |
9734 | 0 | } |
9735 | | |
9736 | | // Static class's protocols, or its super class or category protocols |
9737 | | // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. |
9738 | 0 | if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) { |
9739 | 0 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; |
9740 | 0 | CollectInheritedProtocols(lhsID, LHSInheritedProtocols); |
9741 | | // This is rather dubious but matches gcc's behavior. If lhs has |
9742 | | // no type qualifier and its class has no static protocol(s) |
9743 | | // assume that it is mismatch. |
9744 | 0 | if (LHSInheritedProtocols.empty() && lhs->qual_empty()) |
9745 | 0 | return false; |
9746 | 0 | for (auto *lhsProto : LHSInheritedProtocols) { |
9747 | 0 | bool match = false; |
9748 | 0 | for (auto *rhsProto : rhs->quals()) { |
9749 | 0 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
9750 | 0 | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
9751 | 0 | match = true; |
9752 | 0 | break; |
9753 | 0 | } |
9754 | 0 | } |
9755 | 0 | if (!match) |
9756 | 0 | return false; |
9757 | 0 | } |
9758 | 0 | } |
9759 | 0 | return true; |
9760 | 0 | } |
9761 | 0 | return false; |
9762 | 0 | } |
9763 | | |
9764 | | /// canAssignObjCInterfaces - Return true if the two interface types are |
9765 | | /// compatible for assignment from RHS to LHS. This handles validation of any |
9766 | | /// protocol qualifiers on the LHS or RHS. |
9767 | | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, |
9768 | 0 | const ObjCObjectPointerType *RHSOPT) { |
9769 | 0 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
9770 | 0 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
9771 | | |
9772 | | // If either type represents the built-in 'id' type, return true. |
9773 | 0 | if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId()) |
9774 | 0 | return true; |
9775 | | |
9776 | | // Function object that propagates a successful result or handles |
9777 | | // __kindof types. |
9778 | 0 | auto finish = [&](bool succeeded) -> bool { |
9779 | 0 | if (succeeded) |
9780 | 0 | return true; |
9781 | | |
9782 | 0 | if (!RHS->isKindOfType()) |
9783 | 0 | return false; |
9784 | | |
9785 | | // Strip off __kindof and protocol qualifiers, then check whether |
9786 | | // we can assign the other way. |
9787 | 0 | return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this), |
9788 | 0 | LHSOPT->stripObjCKindOfTypeAndQuals(*this)); |
9789 | 0 | }; |
9790 | | |
9791 | | // Casts from or to id<P> are allowed when the other side has compatible |
9792 | | // protocols. |
9793 | 0 | if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { |
9794 | 0 | return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false)); |
9795 | 0 | } |
9796 | | |
9797 | | // Verify protocol compatibility for casts from Class<P1> to Class<P2>. |
9798 | 0 | if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { |
9799 | 0 | return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT)); |
9800 | 0 | } |
9801 | | |
9802 | | // Casts from Class to Class<Foo>, or vice-versa, are allowed. |
9803 | 0 | if (LHS->isObjCClass() && RHS->isObjCClass()) { |
9804 | 0 | return true; |
9805 | 0 | } |
9806 | | |
9807 | | // If we have 2 user-defined types, fall into that path. |
9808 | 0 | if (LHS->getInterface() && RHS->getInterface()) { |
9809 | 0 | return finish(canAssignObjCInterfaces(LHS, RHS)); |
9810 | 0 | } |
9811 | | |
9812 | 0 | return false; |
9813 | 0 | } |
9814 | | |
9815 | | /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written |
9816 | | /// for providing type-safety for objective-c pointers used to pass/return |
9817 | | /// arguments in block literals. When passed as arguments, passing 'A*' where |
9818 | | /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is |
9819 | | /// not OK. For the return type, the opposite is not OK. |
9820 | | bool ASTContext::canAssignObjCInterfacesInBlockPointer( |
9821 | | const ObjCObjectPointerType *LHSOPT, |
9822 | | const ObjCObjectPointerType *RHSOPT, |
9823 | 0 | bool BlockReturnType) { |
9824 | | |
9825 | | // Function object that propagates a successful result or handles |
9826 | | // __kindof types. |
9827 | 0 | auto finish = [&](bool succeeded) -> bool { |
9828 | 0 | if (succeeded) |
9829 | 0 | return true; |
9830 | | |
9831 | 0 | const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; |
9832 | 0 | if (!Expected->isKindOfType()) |
9833 | 0 | return false; |
9834 | | |
9835 | | // Strip off __kindof and protocol qualifiers, then check whether |
9836 | | // we can assign the other way. |
9837 | 0 | return canAssignObjCInterfacesInBlockPointer( |
9838 | 0 | RHSOPT->stripObjCKindOfTypeAndQuals(*this), |
9839 | 0 | LHSOPT->stripObjCKindOfTypeAndQuals(*this), |
9840 | 0 | BlockReturnType); |
9841 | 0 | }; |
9842 | |
|
9843 | 0 | if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) |
9844 | 0 | return true; |
9845 | | |
9846 | 0 | if (LHSOPT->isObjCBuiltinType()) { |
9847 | 0 | return finish(RHSOPT->isObjCBuiltinType() || |
9848 | 0 | RHSOPT->isObjCQualifiedIdType()); |
9849 | 0 | } |
9850 | | |
9851 | 0 | if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) { |
9852 | 0 | if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking) |
9853 | | // Use for block parameters previous type checking for compatibility. |
9854 | 0 | return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) || |
9855 | | // Or corrected type checking as in non-compat mode. |
9856 | 0 | (!BlockReturnType && |
9857 | 0 | ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false))); |
9858 | 0 | else |
9859 | 0 | return finish(ObjCQualifiedIdTypesAreCompatible( |
9860 | 0 | (BlockReturnType ? LHSOPT : RHSOPT), |
9861 | 0 | (BlockReturnType ? RHSOPT : LHSOPT), false)); |
9862 | 0 | } |
9863 | | |
9864 | 0 | const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); |
9865 | 0 | const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); |
9866 | 0 | if (LHS && RHS) { // We have 2 user-defined types. |
9867 | 0 | if (LHS != RHS) { |
9868 | 0 | if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) |
9869 | 0 | return finish(BlockReturnType); |
9870 | 0 | if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) |
9871 | 0 | return finish(!BlockReturnType); |
9872 | 0 | } |
9873 | 0 | else |
9874 | 0 | return true; |
9875 | 0 | } |
9876 | 0 | return false; |
9877 | 0 | } |
9878 | | |
9879 | | /// Comparison routine for Objective-C protocols to be used with |
9880 | | /// llvm::array_pod_sort. |
9881 | | static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, |
9882 | 0 | ObjCProtocolDecl * const *rhs) { |
9883 | 0 | return (*lhs)->getName().compare((*rhs)->getName()); |
9884 | 0 | } |
9885 | | |
9886 | | /// getIntersectionOfProtocols - This routine finds the intersection of set |
9887 | | /// of protocols inherited from two distinct objective-c pointer objects with |
9888 | | /// the given common base. |
9889 | | /// It is used to build composite qualifier list of the composite type of |
9890 | | /// the conditional expression involving two objective-c pointer objects. |
9891 | | static |
9892 | | void getIntersectionOfProtocols(ASTContext &Context, |
9893 | | const ObjCInterfaceDecl *CommonBase, |
9894 | | const ObjCObjectPointerType *LHSOPT, |
9895 | | const ObjCObjectPointerType *RHSOPT, |
9896 | 0 | SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { |
9897 | |
|
9898 | 0 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
9899 | 0 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
9900 | 0 | assert(LHS->getInterface() && "LHS must have an interface base"); |
9901 | 0 | assert(RHS->getInterface() && "RHS must have an interface base"); |
9902 | | |
9903 | | // Add all of the protocols for the LHS. |
9904 | 0 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; |
9905 | | |
9906 | | // Start with the protocol qualifiers. |
9907 | 0 | for (auto *proto : LHS->quals()) { |
9908 | 0 | Context.CollectInheritedProtocols(proto, LHSProtocolSet); |
9909 | 0 | } |
9910 | | |
9911 | | // Also add the protocols associated with the LHS interface. |
9912 | 0 | Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); |
9913 | | |
9914 | | // Add all of the protocols for the RHS. |
9915 | 0 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; |
9916 | | |
9917 | | // Start with the protocol qualifiers. |
9918 | 0 | for (auto *proto : RHS->quals()) { |
9919 | 0 | Context.CollectInheritedProtocols(proto, RHSProtocolSet); |
9920 | 0 | } |
9921 | | |
9922 | | // Also add the protocols associated with the RHS interface. |
9923 | 0 | Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); |
9924 | | |
9925 | | // Compute the intersection of the collected protocol sets. |
9926 | 0 | for (auto *proto : LHSProtocolSet) { |
9927 | 0 | if (RHSProtocolSet.count(proto)) |
9928 | 0 | IntersectionSet.push_back(proto); |
9929 | 0 | } |
9930 | | |
9931 | | // Compute the set of protocols that is implied by either the common type or |
9932 | | // the protocols within the intersection. |
9933 | 0 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; |
9934 | 0 | Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); |
9935 | | |
9936 | | // Remove any implied protocols from the list of inherited protocols. |
9937 | 0 | if (!ImpliedProtocols.empty()) { |
9938 | 0 | llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool { |
9939 | 0 | return ImpliedProtocols.contains(proto); |
9940 | 0 | }); |
9941 | 0 | } |
9942 | | |
9943 | | // Sort the remaining protocols by name. |
9944 | 0 | llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(), |
9945 | 0 | compareObjCProtocolsByName); |
9946 | 0 | } |
9947 | | |
9948 | | /// Determine whether the first type is a subtype of the second. |
9949 | | static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, |
9950 | 0 | QualType rhs) { |
9951 | | // Common case: two object pointers. |
9952 | 0 | const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); |
9953 | 0 | const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
9954 | 0 | if (lhsOPT && rhsOPT) |
9955 | 0 | return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT); |
9956 | | |
9957 | | // Two block pointers. |
9958 | 0 | const auto *lhsBlock = lhs->getAs<BlockPointerType>(); |
9959 | 0 | const auto *rhsBlock = rhs->getAs<BlockPointerType>(); |
9960 | 0 | if (lhsBlock && rhsBlock) |
9961 | 0 | return ctx.typesAreBlockPointerCompatible(lhs, rhs); |
9962 | | |
9963 | | // If either is an unqualified 'id' and the other is a block, it's |
9964 | | // acceptable. |
9965 | 0 | if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || |
9966 | 0 | (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) |
9967 | 0 | return true; |
9968 | | |
9969 | 0 | return false; |
9970 | 0 | } |
9971 | | |
9972 | | // Check that the given Objective-C type argument lists are equivalent. |
9973 | | static bool sameObjCTypeArgs(ASTContext &ctx, |
9974 | | const ObjCInterfaceDecl *iface, |
9975 | | ArrayRef<QualType> lhsArgs, |
9976 | | ArrayRef<QualType> rhsArgs, |
9977 | 0 | bool stripKindOf) { |
9978 | 0 | if (lhsArgs.size() != rhsArgs.size()) |
9979 | 0 | return false; |
9980 | | |
9981 | 0 | ObjCTypeParamList *typeParams = iface->getTypeParamList(); |
9982 | 0 | if (!typeParams) |
9983 | 0 | return false; |
9984 | | |
9985 | 0 | for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { |
9986 | 0 | if (ctx.hasSameType(lhsArgs[i], rhsArgs[i])) |
9987 | 0 | continue; |
9988 | | |
9989 | 0 | switch (typeParams->begin()[i]->getVariance()) { |
9990 | 0 | case ObjCTypeParamVariance::Invariant: |
9991 | 0 | if (!stripKindOf || |
9992 | 0 | !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx), |
9993 | 0 | rhsArgs[i].stripObjCKindOfType(ctx))) { |
9994 | 0 | return false; |
9995 | 0 | } |
9996 | 0 | break; |
9997 | | |
9998 | 0 | case ObjCTypeParamVariance::Covariant: |
9999 | 0 | if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i])) |
10000 | 0 | return false; |
10001 | 0 | break; |
10002 | | |
10003 | 0 | case ObjCTypeParamVariance::Contravariant: |
10004 | 0 | if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i])) |
10005 | 0 | return false; |
10006 | 0 | break; |
10007 | 0 | } |
10008 | 0 | } |
10009 | | |
10010 | 0 | return true; |
10011 | 0 | } |
10012 | | |
10013 | | QualType ASTContext::areCommonBaseCompatible( |
10014 | | const ObjCObjectPointerType *Lptr, |
10015 | 0 | const ObjCObjectPointerType *Rptr) { |
10016 | 0 | const ObjCObjectType *LHS = Lptr->getObjectType(); |
10017 | 0 | const ObjCObjectType *RHS = Rptr->getObjectType(); |
10018 | 0 | const ObjCInterfaceDecl* LDecl = LHS->getInterface(); |
10019 | 0 | const ObjCInterfaceDecl* RDecl = RHS->getInterface(); |
10020 | |
|
10021 | 0 | if (!LDecl || !RDecl) |
10022 | 0 | return {}; |
10023 | | |
10024 | | // When either LHS or RHS is a kindof type, we should return a kindof type. |
10025 | | // For example, for common base of kindof(ASub1) and kindof(ASub2), we return |
10026 | | // kindof(A). |
10027 | 0 | bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); |
10028 | | |
10029 | | // Follow the left-hand side up the class hierarchy until we either hit a |
10030 | | // root or find the RHS. Record the ancestors in case we don't find it. |
10031 | 0 | llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> |
10032 | 0 | LHSAncestors; |
10033 | 0 | while (true) { |
10034 | | // Record this ancestor. We'll need this if the common type isn't in the |
10035 | | // path from the LHS to the root. |
10036 | 0 | LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; |
10037 | |
|
10038 | 0 | if (declaresSameEntity(LHS->getInterface(), RDecl)) { |
10039 | | // Get the type arguments. |
10040 | 0 | ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); |
10041 | 0 | bool anyChanges = false; |
10042 | 0 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
10043 | | // Both have type arguments, compare them. |
10044 | 0 | if (!sameObjCTypeArgs(*this, LHS->getInterface(), |
10045 | 0 | LHS->getTypeArgs(), RHS->getTypeArgs(), |
10046 | 0 | /*stripKindOf=*/true)) |
10047 | 0 | return {}; |
10048 | 0 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
10049 | | // If only one has type arguments, the result will not have type |
10050 | | // arguments. |
10051 | 0 | LHSTypeArgs = {}; |
10052 | 0 | anyChanges = true; |
10053 | 0 | } |
10054 | | |
10055 | | // Compute the intersection of protocols. |
10056 | 0 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
10057 | 0 | getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr, |
10058 | 0 | Protocols); |
10059 | 0 | if (!Protocols.empty()) |
10060 | 0 | anyChanges = true; |
10061 | | |
10062 | | // If anything in the LHS will have changed, build a new result type. |
10063 | | // If we need to return a kindof type but LHS is not a kindof type, we |
10064 | | // build a new result type. |
10065 | 0 | if (anyChanges || LHS->isKindOfType() != anyKindOf) { |
10066 | 0 | QualType Result = getObjCInterfaceType(LHS->getInterface()); |
10067 | 0 | Result = getObjCObjectType(Result, LHSTypeArgs, Protocols, |
10068 | 0 | anyKindOf || LHS->isKindOfType()); |
10069 | 0 | return getObjCObjectPointerType(Result); |
10070 | 0 | } |
10071 | | |
10072 | 0 | return getObjCObjectPointerType(QualType(LHS, 0)); |
10073 | 0 | } |
10074 | | |
10075 | | // Find the superclass. |
10076 | 0 | QualType LHSSuperType = LHS->getSuperClassType(); |
10077 | 0 | if (LHSSuperType.isNull()) |
10078 | 0 | break; |
10079 | | |
10080 | 0 | LHS = LHSSuperType->castAs<ObjCObjectType>(); |
10081 | 0 | } |
10082 | | |
10083 | | // We didn't find anything by following the LHS to its root; now check |
10084 | | // the RHS against the cached set of ancestors. |
10085 | 0 | while (true) { |
10086 | 0 | auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl()); |
10087 | 0 | if (KnownLHS != LHSAncestors.end()) { |
10088 | 0 | LHS = KnownLHS->second; |
10089 | | |
10090 | | // Get the type arguments. |
10091 | 0 | ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); |
10092 | 0 | bool anyChanges = false; |
10093 | 0 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
10094 | | // Both have type arguments, compare them. |
10095 | 0 | if (!sameObjCTypeArgs(*this, LHS->getInterface(), |
10096 | 0 | LHS->getTypeArgs(), RHS->getTypeArgs(), |
10097 | 0 | /*stripKindOf=*/true)) |
10098 | 0 | return {}; |
10099 | 0 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
10100 | | // If only one has type arguments, the result will not have type |
10101 | | // arguments. |
10102 | 0 | RHSTypeArgs = {}; |
10103 | 0 | anyChanges = true; |
10104 | 0 | } |
10105 | | |
10106 | | // Compute the intersection of protocols. |
10107 | 0 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
10108 | 0 | getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr, |
10109 | 0 | Protocols); |
10110 | 0 | if (!Protocols.empty()) |
10111 | 0 | anyChanges = true; |
10112 | | |
10113 | | // If we need to return a kindof type but RHS is not a kindof type, we |
10114 | | // build a new result type. |
10115 | 0 | if (anyChanges || RHS->isKindOfType() != anyKindOf) { |
10116 | 0 | QualType Result = getObjCInterfaceType(RHS->getInterface()); |
10117 | 0 | Result = getObjCObjectType(Result, RHSTypeArgs, Protocols, |
10118 | 0 | anyKindOf || RHS->isKindOfType()); |
10119 | 0 | return getObjCObjectPointerType(Result); |
10120 | 0 | } |
10121 | | |
10122 | 0 | return getObjCObjectPointerType(QualType(RHS, 0)); |
10123 | 0 | } |
10124 | | |
10125 | | // Find the superclass of the RHS. |
10126 | 0 | QualType RHSSuperType = RHS->getSuperClassType(); |
10127 | 0 | if (RHSSuperType.isNull()) |
10128 | 0 | break; |
10129 | | |
10130 | 0 | RHS = RHSSuperType->castAs<ObjCObjectType>(); |
10131 | 0 | } |
10132 | | |
10133 | 0 | return {}; |
10134 | 0 | } |
10135 | | |
10136 | | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, |
10137 | 0 | const ObjCObjectType *RHS) { |
10138 | 0 | assert(LHS->getInterface() && "LHS is not an interface type"); |
10139 | 0 | assert(RHS->getInterface() && "RHS is not an interface type"); |
10140 | | |
10141 | | // Verify that the base decls are compatible: the RHS must be a subclass of |
10142 | | // the LHS. |
10143 | 0 | ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); |
10144 | 0 | bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface()); |
10145 | 0 | if (!IsSuperClass) |
10146 | 0 | return false; |
10147 | | |
10148 | | // If the LHS has protocol qualifiers, determine whether all of them are |
10149 | | // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the |
10150 | | // LHS). |
10151 | 0 | if (LHS->getNumProtocols() > 0) { |
10152 | | // OK if conversion of LHS to SuperClass results in narrowing of types |
10153 | | // ; i.e., SuperClass may implement at least one of the protocols |
10154 | | // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. |
10155 | | // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. |
10156 | 0 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; |
10157 | 0 | CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); |
10158 | | // Also, if RHS has explicit quelifiers, include them for comparing with LHS's |
10159 | | // qualifiers. |
10160 | 0 | for (auto *RHSPI : RHS->quals()) |
10161 | 0 | CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); |
10162 | | // If there is no protocols associated with RHS, it is not a match. |
10163 | 0 | if (SuperClassInheritedProtocols.empty()) |
10164 | 0 | return false; |
10165 | | |
10166 | 0 | for (const auto *LHSProto : LHS->quals()) { |
10167 | 0 | bool SuperImplementsProtocol = false; |
10168 | 0 | for (auto *SuperClassProto : SuperClassInheritedProtocols) |
10169 | 0 | if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { |
10170 | 0 | SuperImplementsProtocol = true; |
10171 | 0 | break; |
10172 | 0 | } |
10173 | 0 | if (!SuperImplementsProtocol) |
10174 | 0 | return false; |
10175 | 0 | } |
10176 | 0 | } |
10177 | | |
10178 | | // If the LHS is specialized, we may need to check type arguments. |
10179 | 0 | if (LHS->isSpecialized()) { |
10180 | | // Follow the superclass chain until we've matched the LHS class in the |
10181 | | // hierarchy. This substitutes type arguments through. |
10182 | 0 | const ObjCObjectType *RHSSuper = RHS; |
10183 | 0 | while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) |
10184 | 0 | RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); |
10185 | | |
10186 | | // If the RHS is specializd, compare type arguments. |
10187 | 0 | if (RHSSuper->isSpecialized() && |
10188 | 0 | !sameObjCTypeArgs(*this, LHS->getInterface(), |
10189 | 0 | LHS->getTypeArgs(), RHSSuper->getTypeArgs(), |
10190 | 0 | /*stripKindOf=*/true)) { |
10191 | 0 | return false; |
10192 | 0 | } |
10193 | 0 | } |
10194 | | |
10195 | 0 | return true; |
10196 | 0 | } |
10197 | | |
10198 | 0 | bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { |
10199 | | // get the "pointed to" types |
10200 | 0 | const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); |
10201 | 0 | const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); |
10202 | |
|
10203 | 0 | if (!LHSOPT || !RHSOPT) |
10204 | 0 | return false; |
10205 | | |
10206 | 0 | return canAssignObjCInterfaces(LHSOPT, RHSOPT) || |
10207 | 0 | canAssignObjCInterfaces(RHSOPT, LHSOPT); |
10208 | 0 | } |
10209 | | |
10210 | 0 | bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { |
10211 | 0 | return canAssignObjCInterfaces( |
10212 | 0 | getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(), |
10213 | 0 | getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>()); |
10214 | 0 | } |
10215 | | |
10216 | | /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
10217 | | /// both shall have the identically qualified version of a compatible type. |
10218 | | /// C99 6.2.7p1: Two types have compatible types if their types are the |
10219 | | /// same. See 6.7.[2,3,5] for additional rules. |
10220 | | bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, |
10221 | 0 | bool CompareUnqualified) { |
10222 | 0 | if (getLangOpts().CPlusPlus) |
10223 | 0 | return hasSameType(LHS, RHS); |
10224 | | |
10225 | 0 | return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); |
10226 | 0 | } |
10227 | | |
10228 | 0 | bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { |
10229 | 0 | return typesAreCompatible(LHS, RHS); |
10230 | 0 | } |
10231 | | |
10232 | 0 | bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { |
10233 | 0 | return !mergeTypes(LHS, RHS, true).isNull(); |
10234 | 0 | } |
10235 | | |
10236 | | /// mergeTransparentUnionType - if T is a transparent union type and a member |
10237 | | /// of T is compatible with SubType, return the merged type, else return |
10238 | | /// QualType() |
10239 | | QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, |
10240 | | bool OfBlockPointer, |
10241 | 0 | bool Unqualified) { |
10242 | 0 | if (const RecordType *UT = T->getAsUnionType()) { |
10243 | 0 | RecordDecl *UD = UT->getDecl(); |
10244 | 0 | if (UD->hasAttr<TransparentUnionAttr>()) { |
10245 | 0 | for (const auto *I : UD->fields()) { |
10246 | 0 | QualType ET = I->getType().getUnqualifiedType(); |
10247 | 0 | QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); |
10248 | 0 | if (!MT.isNull()) |
10249 | 0 | return MT; |
10250 | 0 | } |
10251 | 0 | } |
10252 | 0 | } |
10253 | | |
10254 | 0 | return {}; |
10255 | 0 | } |
10256 | | |
10257 | | /// mergeFunctionParameterTypes - merge two types which appear as function |
10258 | | /// parameter types |
10259 | | QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, |
10260 | | bool OfBlockPointer, |
10261 | 0 | bool Unqualified) { |
10262 | | // GNU extension: two types are compatible if they appear as a function |
10263 | | // argument, one of the types is a transparent union type and the other |
10264 | | // type is compatible with a union member |
10265 | 0 | QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, |
10266 | 0 | Unqualified); |
10267 | 0 | if (!lmerge.isNull()) |
10268 | 0 | return lmerge; |
10269 | | |
10270 | 0 | QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, |
10271 | 0 | Unqualified); |
10272 | 0 | if (!rmerge.isNull()) |
10273 | 0 | return rmerge; |
10274 | | |
10275 | 0 | return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); |
10276 | 0 | } |
10277 | | |
10278 | | QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, |
10279 | | bool OfBlockPointer, bool Unqualified, |
10280 | | bool AllowCXX, |
10281 | 0 | bool IsConditionalOperator) { |
10282 | 0 | const auto *lbase = lhs->castAs<FunctionType>(); |
10283 | 0 | const auto *rbase = rhs->castAs<FunctionType>(); |
10284 | 0 | const auto *lproto = dyn_cast<FunctionProtoType>(lbase); |
10285 | 0 | const auto *rproto = dyn_cast<FunctionProtoType>(rbase); |
10286 | 0 | bool allLTypes = true; |
10287 | 0 | bool allRTypes = true; |
10288 | | |
10289 | | // Check return type |
10290 | 0 | QualType retType; |
10291 | 0 | if (OfBlockPointer) { |
10292 | 0 | QualType RHS = rbase->getReturnType(); |
10293 | 0 | QualType LHS = lbase->getReturnType(); |
10294 | 0 | bool UnqualifiedResult = Unqualified; |
10295 | 0 | if (!UnqualifiedResult) |
10296 | 0 | UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); |
10297 | 0 | retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); |
10298 | 0 | } |
10299 | 0 | else |
10300 | 0 | retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, |
10301 | 0 | Unqualified); |
10302 | 0 | if (retType.isNull()) |
10303 | 0 | return {}; |
10304 | | |
10305 | 0 | if (Unqualified) |
10306 | 0 | retType = retType.getUnqualifiedType(); |
10307 | |
|
10308 | 0 | CanQualType LRetType = getCanonicalType(lbase->getReturnType()); |
10309 | 0 | CanQualType RRetType = getCanonicalType(rbase->getReturnType()); |
10310 | 0 | if (Unqualified) { |
10311 | 0 | LRetType = LRetType.getUnqualifiedType(); |
10312 | 0 | RRetType = RRetType.getUnqualifiedType(); |
10313 | 0 | } |
10314 | |
|
10315 | 0 | if (getCanonicalType(retType) != LRetType) |
10316 | 0 | allLTypes = false; |
10317 | 0 | if (getCanonicalType(retType) != RRetType) |
10318 | 0 | allRTypes = false; |
10319 | | |
10320 | | // FIXME: double check this |
10321 | | // FIXME: should we error if lbase->getRegParmAttr() != 0 && |
10322 | | // rbase->getRegParmAttr() != 0 && |
10323 | | // lbase->getRegParmAttr() != rbase->getRegParmAttr()? |
10324 | 0 | FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); |
10325 | 0 | FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); |
10326 | | |
10327 | | // Compatible functions must have compatible calling conventions |
10328 | 0 | if (lbaseInfo.getCC() != rbaseInfo.getCC()) |
10329 | 0 | return {}; |
10330 | | |
10331 | | // Regparm is part of the calling convention. |
10332 | 0 | if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) |
10333 | 0 | return {}; |
10334 | 0 | if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) |
10335 | 0 | return {}; |
10336 | | |
10337 | 0 | if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) |
10338 | 0 | return {}; |
10339 | 0 | if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) |
10340 | 0 | return {}; |
10341 | 0 | if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) |
10342 | 0 | return {}; |
10343 | | |
10344 | | // When merging declarations, it's common for supplemental information like |
10345 | | // attributes to only be present in one of the declarations, and we generally |
10346 | | // want type merging to preserve the union of information. So a merged |
10347 | | // function type should be noreturn if it was noreturn in *either* operand |
10348 | | // type. |
10349 | | // |
10350 | | // But for the conditional operator, this is backwards. The result of the |
10351 | | // operator could be either operand, and its type should conservatively |
10352 | | // reflect that. So a function type in a composite type is noreturn only |
10353 | | // if it's noreturn in *both* operand types. |
10354 | | // |
10355 | | // Arguably, noreturn is a kind of subtype, and the conditional operator |
10356 | | // ought to produce the most specific common supertype of its operand types. |
10357 | | // That would differ from this rule in contravariant positions. However, |
10358 | | // neither C nor C++ generally uses this kind of subtype reasoning. Also, |
10359 | | // as a practical matter, it would only affect C code that does abstraction of |
10360 | | // higher-order functions (taking noreturn callbacks!), which is uncommon to |
10361 | | // say the least. So we use the simpler rule. |
10362 | 0 | bool NoReturn = IsConditionalOperator |
10363 | 0 | ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn() |
10364 | 0 | : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); |
10365 | 0 | if (lbaseInfo.getNoReturn() != NoReturn) |
10366 | 0 | allLTypes = false; |
10367 | 0 | if (rbaseInfo.getNoReturn() != NoReturn) |
10368 | 0 | allRTypes = false; |
10369 | |
|
10370 | 0 | FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); |
10371 | |
|
10372 | 0 | if (lproto && rproto) { // two C99 style function prototypes |
10373 | 0 | assert((AllowCXX || |
10374 | 0 | (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && |
10375 | 0 | "C++ shouldn't be here"); |
10376 | | // Compatible functions must have the same number of parameters |
10377 | 0 | if (lproto->getNumParams() != rproto->getNumParams()) |
10378 | 0 | return {}; |
10379 | | |
10380 | | // Variadic and non-variadic functions aren't compatible |
10381 | 0 | if (lproto->isVariadic() != rproto->isVariadic()) |
10382 | 0 | return {}; |
10383 | | |
10384 | 0 | if (lproto->getMethodQuals() != rproto->getMethodQuals()) |
10385 | 0 | return {}; |
10386 | | |
10387 | 0 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; |
10388 | 0 | bool canUseLeft, canUseRight; |
10389 | 0 | if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight, |
10390 | 0 | newParamInfos)) |
10391 | 0 | return {}; |
10392 | | |
10393 | 0 | if (!canUseLeft) |
10394 | 0 | allLTypes = false; |
10395 | 0 | if (!canUseRight) |
10396 | 0 | allRTypes = false; |
10397 | | |
10398 | | // Check parameter type compatibility |
10399 | 0 | SmallVector<QualType, 10> types; |
10400 | 0 | for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { |
10401 | 0 | QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); |
10402 | 0 | QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); |
10403 | 0 | QualType paramType = mergeFunctionParameterTypes( |
10404 | 0 | lParamType, rParamType, OfBlockPointer, Unqualified); |
10405 | 0 | if (paramType.isNull()) |
10406 | 0 | return {}; |
10407 | | |
10408 | 0 | if (Unqualified) |
10409 | 0 | paramType = paramType.getUnqualifiedType(); |
10410 | |
|
10411 | 0 | types.push_back(paramType); |
10412 | 0 | if (Unqualified) { |
10413 | 0 | lParamType = lParamType.getUnqualifiedType(); |
10414 | 0 | rParamType = rParamType.getUnqualifiedType(); |
10415 | 0 | } |
10416 | |
|
10417 | 0 | if (getCanonicalType(paramType) != getCanonicalType(lParamType)) |
10418 | 0 | allLTypes = false; |
10419 | 0 | if (getCanonicalType(paramType) != getCanonicalType(rParamType)) |
10420 | 0 | allRTypes = false; |
10421 | 0 | } |
10422 | | |
10423 | 0 | if (allLTypes) return lhs; |
10424 | 0 | if (allRTypes) return rhs; |
10425 | | |
10426 | 0 | FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); |
10427 | 0 | EPI.ExtInfo = einfo; |
10428 | 0 | EPI.ExtParameterInfos = |
10429 | 0 | newParamInfos.empty() ? nullptr : newParamInfos.data(); |
10430 | 0 | return getFunctionType(retType, types, EPI); |
10431 | 0 | } |
10432 | | |
10433 | 0 | if (lproto) allRTypes = false; |
10434 | 0 | if (rproto) allLTypes = false; |
10435 | |
|
10436 | 0 | const FunctionProtoType *proto = lproto ? lproto : rproto; |
10437 | 0 | if (proto) { |
10438 | 0 | assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here"); |
10439 | 0 | if (proto->isVariadic()) |
10440 | 0 | return {}; |
10441 | | // Check that the types are compatible with the types that |
10442 | | // would result from default argument promotions (C99 6.7.5.3p15). |
10443 | | // The only types actually affected are promotable integer |
10444 | | // types and floats, which would be passed as a different |
10445 | | // type depending on whether the prototype is visible. |
10446 | 0 | for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { |
10447 | 0 | QualType paramTy = proto->getParamType(i); |
10448 | | |
10449 | | // Look at the converted type of enum types, since that is the type used |
10450 | | // to pass enum values. |
10451 | 0 | if (const auto *Enum = paramTy->getAs<EnumType>()) { |
10452 | 0 | paramTy = Enum->getDecl()->getIntegerType(); |
10453 | 0 | if (paramTy.isNull()) |
10454 | 0 | return {}; |
10455 | 0 | } |
10456 | | |
10457 | 0 | if (isPromotableIntegerType(paramTy) || |
10458 | 0 | getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) |
10459 | 0 | return {}; |
10460 | 0 | } |
10461 | | |
10462 | 0 | if (allLTypes) return lhs; |
10463 | 0 | if (allRTypes) return rhs; |
10464 | | |
10465 | 0 | FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); |
10466 | 0 | EPI.ExtInfo = einfo; |
10467 | 0 | return getFunctionType(retType, proto->getParamTypes(), EPI); |
10468 | 0 | } |
10469 | | |
10470 | 0 | if (allLTypes) return lhs; |
10471 | 0 | if (allRTypes) return rhs; |
10472 | 0 | return getFunctionNoProtoType(retType, einfo); |
10473 | 0 | } |
10474 | | |
10475 | | /// Given that we have an enum type and a non-enum type, try to merge them. |
10476 | | static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, |
10477 | 0 | QualType other, bool isBlockReturnType) { |
10478 | | // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
10479 | | // a signed integer type, or an unsigned integer type. |
10480 | | // Compatibility is based on the underlying type, not the promotion |
10481 | | // type. |
10482 | 0 | QualType underlyingType = ET->getDecl()->getIntegerType(); |
10483 | 0 | if (underlyingType.isNull()) |
10484 | 0 | return {}; |
10485 | 0 | if (Context.hasSameType(underlyingType, other)) |
10486 | 0 | return other; |
10487 | | |
10488 | | // In block return types, we're more permissive and accept any |
10489 | | // integral type of the same size. |
10490 | 0 | if (isBlockReturnType && other->isIntegerType() && |
10491 | 0 | Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) |
10492 | 0 | return other; |
10493 | | |
10494 | 0 | return {}; |
10495 | 0 | } |
10496 | | |
10497 | | QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer, |
10498 | | bool Unqualified, bool BlockReturnType, |
10499 | 64 | bool IsConditionalOperator) { |
10500 | | // For C++ we will not reach this code with reference types (see below), |
10501 | | // for OpenMP variant call overloading we might. |
10502 | | // |
10503 | | // C++ [expr]: If an expression initially has the type "reference to T", the |
10504 | | // type is adjusted to "T" prior to any further analysis, the expression |
10505 | | // designates the object or function denoted by the reference, and the |
10506 | | // expression is an lvalue unless the reference is an rvalue reference and |
10507 | | // the expression is a function call (possibly inside parentheses). |
10508 | 64 | auto *LHSRefTy = LHS->getAs<ReferenceType>(); |
10509 | 64 | auto *RHSRefTy = RHS->getAs<ReferenceType>(); |
10510 | 64 | if (LangOpts.OpenMP && LHSRefTy && RHSRefTy && |
10511 | 64 | LHS->getTypeClass() == RHS->getTypeClass()) |
10512 | 0 | return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(), |
10513 | 0 | OfBlockPointer, Unqualified, BlockReturnType); |
10514 | 64 | if (LHSRefTy || RHSRefTy) |
10515 | 0 | return {}; |
10516 | | |
10517 | 64 | if (Unqualified) { |
10518 | 0 | LHS = LHS.getUnqualifiedType(); |
10519 | 0 | RHS = RHS.getUnqualifiedType(); |
10520 | 0 | } |
10521 | | |
10522 | 64 | QualType LHSCan = getCanonicalType(LHS), |
10523 | 64 | RHSCan = getCanonicalType(RHS); |
10524 | | |
10525 | | // If two types are identical, they are compatible. |
10526 | 64 | if (LHSCan == RHSCan) |
10527 | 54 | return LHS; |
10528 | | |
10529 | | // If the qualifiers are different, the types aren't compatible... mostly. |
10530 | 10 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
10531 | 10 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
10532 | 10 | if (LQuals != RQuals) { |
10533 | | // If any of these qualifiers are different, we have a type |
10534 | | // mismatch. |
10535 | 0 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
10536 | 0 | LQuals.getAddressSpace() != RQuals.getAddressSpace() || |
10537 | 0 | LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || |
10538 | 0 | LQuals.hasUnaligned() != RQuals.hasUnaligned()) |
10539 | 0 | return {}; |
10540 | | |
10541 | | // Exactly one GC qualifier difference is allowed: __strong is |
10542 | | // okay if the other type has no GC qualifier but is an Objective |
10543 | | // C object pointer (i.e. implicitly strong by default). We fix |
10544 | | // this by pretending that the unqualified type was actually |
10545 | | // qualified __strong. |
10546 | 0 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
10547 | 0 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
10548 | 0 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); |
10549 | | |
10550 | 0 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
10551 | 0 | return {}; |
10552 | | |
10553 | 0 | if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { |
10554 | 0 | return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); |
10555 | 0 | } |
10556 | 0 | if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { |
10557 | 0 | return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); |
10558 | 0 | } |
10559 | 0 | return {}; |
10560 | 0 | } |
10561 | | |
10562 | | // Okay, qualifiers are equal. |
10563 | | |
10564 | 10 | Type::TypeClass LHSClass = LHSCan->getTypeClass(); |
10565 | 10 | Type::TypeClass RHSClass = RHSCan->getTypeClass(); |
10566 | | |
10567 | | // We want to consider the two function types to be the same for these |
10568 | | // comparisons, just force one to the other. |
10569 | 10 | if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
10570 | 10 | if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
10571 | | |
10572 | | // Same as above for arrays |
10573 | 10 | if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) |
10574 | 0 | LHSClass = Type::ConstantArray; |
10575 | 10 | if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) |
10576 | 0 | RHSClass = Type::ConstantArray; |
10577 | | |
10578 | | // ObjCInterfaces are just specialized ObjCObjects. |
10579 | 10 | if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; |
10580 | 10 | if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; |
10581 | | |
10582 | | // Canonicalize ExtVector -> Vector. |
10583 | 10 | if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; |
10584 | 10 | if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; |
10585 | | |
10586 | | // If the canonical type classes don't match. |
10587 | 10 | if (LHSClass != RHSClass) { |
10588 | | // Note that we only have special rules for turning block enum |
10589 | | // returns into block int returns, not vice-versa. |
10590 | 10 | if (const auto *ETy = LHS->getAs<EnumType>()) { |
10591 | 0 | return mergeEnumWithInteger(*this, ETy, RHS, false); |
10592 | 0 | } |
10593 | 10 | if (const EnumType* ETy = RHS->getAs<EnumType>()) { |
10594 | 0 | return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); |
10595 | 0 | } |
10596 | | // allow block pointer type to match an 'id' type. |
10597 | 10 | if (OfBlockPointer && !BlockReturnType) { |
10598 | 0 | if (LHS->isObjCIdType() && RHS->isBlockPointerType()) |
10599 | 0 | return LHS; |
10600 | 0 | if (RHS->isObjCIdType() && LHS->isBlockPointerType()) |
10601 | 0 | return RHS; |
10602 | 0 | } |
10603 | | // Allow __auto_type to match anything; it merges to the type with more |
10604 | | // information. |
10605 | 10 | if (const auto *AT = LHS->getAs<AutoType>()) { |
10606 | 0 | if (!AT->isDeduced() && AT->isGNUAutoType()) |
10607 | 0 | return RHS; |
10608 | 0 | } |
10609 | 10 | if (const auto *AT = RHS->getAs<AutoType>()) { |
10610 | 0 | if (!AT->isDeduced() && AT->isGNUAutoType()) |
10611 | 0 | return LHS; |
10612 | 0 | } |
10613 | 10 | return {}; |
10614 | 10 | } |
10615 | | |
10616 | | // The canonical type classes match. |
10617 | 0 | switch (LHSClass) { |
10618 | 0 | #define TYPE(Class, Base) |
10619 | 0 | #define ABSTRACT_TYPE(Class, Base) |
10620 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
10621 | 0 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
10622 | 0 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
10623 | 0 | #include "clang/AST/TypeNodes.inc" |
10624 | 0 | llvm_unreachable("Non-canonical and dependent types shouldn't get here"); |
10625 | |
|
10626 | 0 | case Type::Auto: |
10627 | 0 | case Type::DeducedTemplateSpecialization: |
10628 | 0 | case Type::LValueReference: |
10629 | 0 | case Type::RValueReference: |
10630 | 0 | case Type::MemberPointer: |
10631 | 0 | llvm_unreachable("C++ should never be in mergeTypes"); |
10632 | |
|
10633 | 0 | case Type::ObjCInterface: |
10634 | 0 | case Type::IncompleteArray: |
10635 | 0 | case Type::VariableArray: |
10636 | 0 | case Type::FunctionProto: |
10637 | 0 | case Type::ExtVector: |
10638 | 0 | llvm_unreachable("Types are eliminated above"); |
10639 | |
|
10640 | 0 | case Type::Pointer: |
10641 | 0 | { |
10642 | | // Merge two pointer types, while trying to preserve typedef info |
10643 | 0 | QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType(); |
10644 | 0 | QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType(); |
10645 | 0 | if (Unqualified) { |
10646 | 0 | LHSPointee = LHSPointee.getUnqualifiedType(); |
10647 | 0 | RHSPointee = RHSPointee.getUnqualifiedType(); |
10648 | 0 | } |
10649 | 0 | QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, |
10650 | 0 | Unqualified); |
10651 | 0 | if (ResultType.isNull()) |
10652 | 0 | return {}; |
10653 | 0 | if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
10654 | 0 | return LHS; |
10655 | 0 | if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
10656 | 0 | return RHS; |
10657 | 0 | return getPointerType(ResultType); |
10658 | 0 | } |
10659 | 0 | case Type::BlockPointer: |
10660 | 0 | { |
10661 | | // Merge two block pointer types, while trying to preserve typedef info |
10662 | 0 | QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType(); |
10663 | 0 | QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType(); |
10664 | 0 | if (Unqualified) { |
10665 | 0 | LHSPointee = LHSPointee.getUnqualifiedType(); |
10666 | 0 | RHSPointee = RHSPointee.getUnqualifiedType(); |
10667 | 0 | } |
10668 | 0 | if (getLangOpts().OpenCL) { |
10669 | 0 | Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); |
10670 | 0 | Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); |
10671 | | // Blocks can't be an expression in a ternary operator (OpenCL v2.0 |
10672 | | // 6.12.5) thus the following check is asymmetric. |
10673 | 0 | if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual)) |
10674 | 0 | return {}; |
10675 | 0 | LHSPteeQual.removeAddressSpace(); |
10676 | 0 | RHSPteeQual.removeAddressSpace(); |
10677 | 0 | LHSPointee = |
10678 | 0 | QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); |
10679 | 0 | RHSPointee = |
10680 | 0 | QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); |
10681 | 0 | } |
10682 | 0 | QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, |
10683 | 0 | Unqualified); |
10684 | 0 | if (ResultType.isNull()) |
10685 | 0 | return {}; |
10686 | 0 | if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
10687 | 0 | return LHS; |
10688 | 0 | if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
10689 | 0 | return RHS; |
10690 | 0 | return getBlockPointerType(ResultType); |
10691 | 0 | } |
10692 | 0 | case Type::Atomic: |
10693 | 0 | { |
10694 | | // Merge two pointer types, while trying to preserve typedef info |
10695 | 0 | QualType LHSValue = LHS->castAs<AtomicType>()->getValueType(); |
10696 | 0 | QualType RHSValue = RHS->castAs<AtomicType>()->getValueType(); |
10697 | 0 | if (Unqualified) { |
10698 | 0 | LHSValue = LHSValue.getUnqualifiedType(); |
10699 | 0 | RHSValue = RHSValue.getUnqualifiedType(); |
10700 | 0 | } |
10701 | 0 | QualType ResultType = mergeTypes(LHSValue, RHSValue, false, |
10702 | 0 | Unqualified); |
10703 | 0 | if (ResultType.isNull()) |
10704 | 0 | return {}; |
10705 | 0 | if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) |
10706 | 0 | return LHS; |
10707 | 0 | if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) |
10708 | 0 | return RHS; |
10709 | 0 | return getAtomicType(ResultType); |
10710 | 0 | } |
10711 | 0 | case Type::ConstantArray: |
10712 | 0 | { |
10713 | 0 | const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); |
10714 | 0 | const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); |
10715 | 0 | if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) |
10716 | 0 | return {}; |
10717 | | |
10718 | 0 | QualType LHSElem = getAsArrayType(LHS)->getElementType(); |
10719 | 0 | QualType RHSElem = getAsArrayType(RHS)->getElementType(); |
10720 | 0 | if (Unqualified) { |
10721 | 0 | LHSElem = LHSElem.getUnqualifiedType(); |
10722 | 0 | RHSElem = RHSElem.getUnqualifiedType(); |
10723 | 0 | } |
10724 | |
|
10725 | 0 | QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); |
10726 | 0 | if (ResultType.isNull()) |
10727 | 0 | return {}; |
10728 | | |
10729 | 0 | const VariableArrayType* LVAT = getAsVariableArrayType(LHS); |
10730 | 0 | const VariableArrayType* RVAT = getAsVariableArrayType(RHS); |
10731 | | |
10732 | | // If either side is a variable array, and both are complete, check whether |
10733 | | // the current dimension is definite. |
10734 | 0 | if (LVAT || RVAT) { |
10735 | 0 | auto SizeFetch = [this](const VariableArrayType* VAT, |
10736 | 0 | const ConstantArrayType* CAT) |
10737 | 0 | -> std::pair<bool,llvm::APInt> { |
10738 | 0 | if (VAT) { |
10739 | 0 | std::optional<llvm::APSInt> TheInt; |
10740 | 0 | Expr *E = VAT->getSizeExpr(); |
10741 | 0 | if (E && (TheInt = E->getIntegerConstantExpr(*this))) |
10742 | 0 | return std::make_pair(true, *TheInt); |
10743 | 0 | return std::make_pair(false, llvm::APSInt()); |
10744 | 0 | } |
10745 | 0 | if (CAT) |
10746 | 0 | return std::make_pair(true, CAT->getSize()); |
10747 | 0 | return std::make_pair(false, llvm::APInt()); |
10748 | 0 | }; |
10749 | |
|
10750 | 0 | bool HaveLSize, HaveRSize; |
10751 | 0 | llvm::APInt LSize, RSize; |
10752 | 0 | std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT); |
10753 | 0 | std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT); |
10754 | 0 | if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize)) |
10755 | 0 | return {}; // Definite, but unequal, array dimension |
10756 | 0 | } |
10757 | | |
10758 | 0 | if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
10759 | 0 | return LHS; |
10760 | 0 | if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
10761 | 0 | return RHS; |
10762 | 0 | if (LCAT) |
10763 | 0 | return getConstantArrayType(ResultType, LCAT->getSize(), |
10764 | 0 | LCAT->getSizeExpr(), ArraySizeModifier(), 0); |
10765 | 0 | if (RCAT) |
10766 | 0 | return getConstantArrayType(ResultType, RCAT->getSize(), |
10767 | 0 | RCAT->getSizeExpr(), ArraySizeModifier(), 0); |
10768 | 0 | if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
10769 | 0 | return LHS; |
10770 | 0 | if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
10771 | 0 | return RHS; |
10772 | 0 | if (LVAT) { |
10773 | | // FIXME: This isn't correct! But tricky to implement because |
10774 | | // the array's size has to be the size of LHS, but the type |
10775 | | // has to be different. |
10776 | 0 | return LHS; |
10777 | 0 | } |
10778 | 0 | if (RVAT) { |
10779 | | // FIXME: This isn't correct! But tricky to implement because |
10780 | | // the array's size has to be the size of RHS, but the type |
10781 | | // has to be different. |
10782 | 0 | return RHS; |
10783 | 0 | } |
10784 | 0 | if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; |
10785 | 0 | if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; |
10786 | 0 | return getIncompleteArrayType(ResultType, ArraySizeModifier(), 0); |
10787 | 0 | } |
10788 | 0 | case Type::FunctionNoProto: |
10789 | 0 | return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified, |
10790 | 0 | /*AllowCXX=*/false, IsConditionalOperator); |
10791 | 0 | case Type::Record: |
10792 | 0 | case Type::Enum: |
10793 | 0 | return {}; |
10794 | 0 | case Type::Builtin: |
10795 | | // Only exactly equal builtin types are compatible, which is tested above. |
10796 | 0 | return {}; |
10797 | 0 | case Type::Complex: |
10798 | | // Distinct complex types are incompatible. |
10799 | 0 | return {}; |
10800 | 0 | case Type::Vector: |
10801 | | // FIXME: The merged type should be an ExtVector! |
10802 | 0 | if (areCompatVectorTypes(LHSCan->castAs<VectorType>(), |
10803 | 0 | RHSCan->castAs<VectorType>())) |
10804 | 0 | return LHS; |
10805 | 0 | return {}; |
10806 | 0 | case Type::ConstantMatrix: |
10807 | 0 | if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(), |
10808 | 0 | RHSCan->castAs<ConstantMatrixType>())) |
10809 | 0 | return LHS; |
10810 | 0 | return {}; |
10811 | 0 | case Type::ObjCObject: { |
10812 | | // Check if the types are assignment compatible. |
10813 | | // FIXME: This should be type compatibility, e.g. whether |
10814 | | // "LHS x; RHS x;" at global scope is legal. |
10815 | 0 | if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(), |
10816 | 0 | RHS->castAs<ObjCObjectType>())) |
10817 | 0 | return LHS; |
10818 | 0 | return {}; |
10819 | 0 | } |
10820 | 0 | case Type::ObjCObjectPointer: |
10821 | 0 | if (OfBlockPointer) { |
10822 | 0 | if (canAssignObjCInterfacesInBlockPointer( |
10823 | 0 | LHS->castAs<ObjCObjectPointerType>(), |
10824 | 0 | RHS->castAs<ObjCObjectPointerType>(), BlockReturnType)) |
10825 | 0 | return LHS; |
10826 | 0 | return {}; |
10827 | 0 | } |
10828 | 0 | if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(), |
10829 | 0 | RHS->castAs<ObjCObjectPointerType>())) |
10830 | 0 | return LHS; |
10831 | 0 | return {}; |
10832 | 0 | case Type::Pipe: |
10833 | 0 | assert(LHS != RHS && |
10834 | 0 | "Equivalent pipe types should have already been handled!"); |
10835 | 0 | return {}; |
10836 | 0 | case Type::BitInt: { |
10837 | | // Merge two bit-precise int types, while trying to preserve typedef info. |
10838 | 0 | bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned(); |
10839 | 0 | bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned(); |
10840 | 0 | unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits(); |
10841 | 0 | unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits(); |
10842 | | |
10843 | | // Like unsigned/int, shouldn't have a type if they don't match. |
10844 | 0 | if (LHSUnsigned != RHSUnsigned) |
10845 | 0 | return {}; |
10846 | | |
10847 | 0 | if (LHSBits != RHSBits) |
10848 | 0 | return {}; |
10849 | 0 | return LHS; |
10850 | 0 | } |
10851 | 0 | } |
10852 | | |
10853 | 0 | llvm_unreachable("Invalid Type::Class!"); |
10854 | 0 | } |
10855 | | |
10856 | | bool ASTContext::mergeExtParameterInfo( |
10857 | | const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, |
10858 | | bool &CanUseFirst, bool &CanUseSecond, |
10859 | 0 | SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { |
10860 | 0 | assert(NewParamInfos.empty() && "param info list not empty"); |
10861 | 0 | CanUseFirst = CanUseSecond = true; |
10862 | 0 | bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); |
10863 | 0 | bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); |
10864 | | |
10865 | | // Fast path: if the first type doesn't have ext parameter infos, |
10866 | | // we match if and only if the second type also doesn't have them. |
10867 | 0 | if (!FirstHasInfo && !SecondHasInfo) |
10868 | 0 | return true; |
10869 | | |
10870 | 0 | bool NeedParamInfo = false; |
10871 | 0 | size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() |
10872 | 0 | : SecondFnType->getExtParameterInfos().size(); |
10873 | |
|
10874 | 0 | for (size_t I = 0; I < E; ++I) { |
10875 | 0 | FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; |
10876 | 0 | if (FirstHasInfo) |
10877 | 0 | FirstParam = FirstFnType->getExtParameterInfo(I); |
10878 | 0 | if (SecondHasInfo) |
10879 | 0 | SecondParam = SecondFnType->getExtParameterInfo(I); |
10880 | | |
10881 | | // Cannot merge unless everything except the noescape flag matches. |
10882 | 0 | if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false)) |
10883 | 0 | return false; |
10884 | | |
10885 | 0 | bool FirstNoEscape = FirstParam.isNoEscape(); |
10886 | 0 | bool SecondNoEscape = SecondParam.isNoEscape(); |
10887 | 0 | bool IsNoEscape = FirstNoEscape && SecondNoEscape; |
10888 | 0 | NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape)); |
10889 | 0 | if (NewParamInfos.back().getOpaqueValue()) |
10890 | 0 | NeedParamInfo = true; |
10891 | 0 | if (FirstNoEscape != IsNoEscape) |
10892 | 0 | CanUseFirst = false; |
10893 | 0 | if (SecondNoEscape != IsNoEscape) |
10894 | 0 | CanUseSecond = false; |
10895 | 0 | } |
10896 | | |
10897 | 0 | if (!NeedParamInfo) |
10898 | 0 | NewParamInfos.clear(); |
10899 | |
|
10900 | 0 | return true; |
10901 | 0 | } |
10902 | | |
10903 | 0 | void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) { |
10904 | 0 | ObjCLayouts[CD] = nullptr; |
10905 | 0 | } |
10906 | | |
10907 | | /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and |
10908 | | /// 'RHS' attributes and returns the merged version; including for function |
10909 | | /// return types. |
10910 | 0 | QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { |
10911 | 0 | QualType LHSCan = getCanonicalType(LHS), |
10912 | 0 | RHSCan = getCanonicalType(RHS); |
10913 | | // If two types are identical, they are compatible. |
10914 | 0 | if (LHSCan == RHSCan) |
10915 | 0 | return LHS; |
10916 | 0 | if (RHSCan->isFunctionType()) { |
10917 | 0 | if (!LHSCan->isFunctionType()) |
10918 | 0 | return {}; |
10919 | 0 | QualType OldReturnType = |
10920 | 0 | cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); |
10921 | 0 | QualType NewReturnType = |
10922 | 0 | cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); |
10923 | 0 | QualType ResReturnType = |
10924 | 0 | mergeObjCGCQualifiers(NewReturnType, OldReturnType); |
10925 | 0 | if (ResReturnType.isNull()) |
10926 | 0 | return {}; |
10927 | 0 | if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { |
10928 | | // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); |
10929 | | // In either case, use OldReturnType to build the new function type. |
10930 | 0 | const auto *F = LHS->castAs<FunctionType>(); |
10931 | 0 | if (const auto *FPT = cast<FunctionProtoType>(F)) { |
10932 | 0 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
10933 | 0 | EPI.ExtInfo = getFunctionExtInfo(LHS); |
10934 | 0 | QualType ResultType = |
10935 | 0 | getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); |
10936 | 0 | return ResultType; |
10937 | 0 | } |
10938 | 0 | } |
10939 | 0 | return {}; |
10940 | 0 | } |
10941 | | |
10942 | | // If the qualifiers are different, the types can still be merged. |
10943 | 0 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
10944 | 0 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
10945 | 0 | if (LQuals != RQuals) { |
10946 | | // If any of these qualifiers are different, we have a type mismatch. |
10947 | 0 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
10948 | 0 | LQuals.getAddressSpace() != RQuals.getAddressSpace()) |
10949 | 0 | return {}; |
10950 | | |
10951 | | // Exactly one GC qualifier difference is allowed: __strong is |
10952 | | // okay if the other type has no GC qualifier but is an Objective |
10953 | | // C object pointer (i.e. implicitly strong by default). We fix |
10954 | | // this by pretending that the unqualified type was actually |
10955 | | // qualified __strong. |
10956 | 0 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
10957 | 0 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
10958 | 0 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); |
10959 | | |
10960 | 0 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
10961 | 0 | return {}; |
10962 | | |
10963 | 0 | if (GC_L == Qualifiers::Strong) |
10964 | 0 | return LHS; |
10965 | 0 | if (GC_R == Qualifiers::Strong) |
10966 | 0 | return RHS; |
10967 | 0 | return {}; |
10968 | 0 | } |
10969 | | |
10970 | 0 | if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { |
10971 | 0 | QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
10972 | 0 | QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
10973 | 0 | QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); |
10974 | 0 | if (ResQT == LHSBaseQT) |
10975 | 0 | return LHS; |
10976 | 0 | if (ResQT == RHSBaseQT) |
10977 | 0 | return RHS; |
10978 | 0 | } |
10979 | 0 | return {}; |
10980 | 0 | } |
10981 | | |
10982 | | //===----------------------------------------------------------------------===// |
10983 | | // Integer Predicates |
10984 | | //===----------------------------------------------------------------------===// |
10985 | | |
10986 | 53 | unsigned ASTContext::getIntWidth(QualType T) const { |
10987 | 53 | if (const auto *ET = T->getAs<EnumType>()) |
10988 | 0 | T = ET->getDecl()->getIntegerType(); |
10989 | 53 | if (T->isBooleanType()) |
10990 | 0 | return 1; |
10991 | 53 | if (const auto *EIT = T->getAs<BitIntType>()) |
10992 | 0 | return EIT->getNumBits(); |
10993 | | // For builtin types, just use the standard type sizing method |
10994 | 53 | return (unsigned)getTypeSize(T); |
10995 | 53 | } |
10996 | | |
10997 | 0 | QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { |
10998 | 0 | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || |
10999 | 0 | T->isFixedPointType()) && |
11000 | 0 | "Unexpected type"); |
11001 | | |
11002 | | // Turn <4 x signed int> -> <4 x unsigned int> |
11003 | 0 | if (const auto *VTy = T->getAs<VectorType>()) |
11004 | 0 | return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), |
11005 | 0 | VTy->getNumElements(), VTy->getVectorKind()); |
11006 | | |
11007 | | // For _BitInt, return an unsigned _BitInt with same width. |
11008 | 0 | if (const auto *EITy = T->getAs<BitIntType>()) |
11009 | 0 | return getBitIntType(/*Unsigned=*/true, EITy->getNumBits()); |
11010 | | |
11011 | | // For enums, get the underlying integer type of the enum, and let the general |
11012 | | // integer type signchanging code handle it. |
11013 | 0 | if (const auto *ETy = T->getAs<EnumType>()) |
11014 | 0 | T = ETy->getDecl()->getIntegerType(); |
11015 | |
|
11016 | 0 | switch (T->castAs<BuiltinType>()->getKind()) { |
11017 | 0 | case BuiltinType::Char_U: |
11018 | | // Plain `char` is mapped to `unsigned char` even if it's already unsigned |
11019 | 0 | case BuiltinType::Char_S: |
11020 | 0 | case BuiltinType::SChar: |
11021 | 0 | case BuiltinType::Char8: |
11022 | 0 | return UnsignedCharTy; |
11023 | 0 | case BuiltinType::Short: |
11024 | 0 | return UnsignedShortTy; |
11025 | 0 | case BuiltinType::Int: |
11026 | 0 | return UnsignedIntTy; |
11027 | 0 | case BuiltinType::Long: |
11028 | 0 | return UnsignedLongTy; |
11029 | 0 | case BuiltinType::LongLong: |
11030 | 0 | return UnsignedLongLongTy; |
11031 | 0 | case BuiltinType::Int128: |
11032 | 0 | return UnsignedInt128Ty; |
11033 | | // wchar_t is special. It is either signed or not, but when it's signed, |
11034 | | // there's no matching "unsigned wchar_t". Therefore we return the unsigned |
11035 | | // version of its underlying type instead. |
11036 | 0 | case BuiltinType::WChar_S: |
11037 | 0 | return getUnsignedWCharType(); |
11038 | | |
11039 | 0 | case BuiltinType::ShortAccum: |
11040 | 0 | return UnsignedShortAccumTy; |
11041 | 0 | case BuiltinType::Accum: |
11042 | 0 | return UnsignedAccumTy; |
11043 | 0 | case BuiltinType::LongAccum: |
11044 | 0 | return UnsignedLongAccumTy; |
11045 | 0 | case BuiltinType::SatShortAccum: |
11046 | 0 | return SatUnsignedShortAccumTy; |
11047 | 0 | case BuiltinType::SatAccum: |
11048 | 0 | return SatUnsignedAccumTy; |
11049 | 0 | case BuiltinType::SatLongAccum: |
11050 | 0 | return SatUnsignedLongAccumTy; |
11051 | 0 | case BuiltinType::ShortFract: |
11052 | 0 | return UnsignedShortFractTy; |
11053 | 0 | case BuiltinType::Fract: |
11054 | 0 | return UnsignedFractTy; |
11055 | 0 | case BuiltinType::LongFract: |
11056 | 0 | return UnsignedLongFractTy; |
11057 | 0 | case BuiltinType::SatShortFract: |
11058 | 0 | return SatUnsignedShortFractTy; |
11059 | 0 | case BuiltinType::SatFract: |
11060 | 0 | return SatUnsignedFractTy; |
11061 | 0 | case BuiltinType::SatLongFract: |
11062 | 0 | return SatUnsignedLongFractTy; |
11063 | 0 | default: |
11064 | 0 | assert((T->hasUnsignedIntegerRepresentation() || |
11065 | 0 | T->isUnsignedFixedPointType()) && |
11066 | 0 | "Unexpected signed integer or fixed point type"); |
11067 | 0 | return T; |
11068 | 0 | } |
11069 | 0 | } |
11070 | | |
11071 | 0 | QualType ASTContext::getCorrespondingSignedType(QualType T) const { |
11072 | 0 | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || |
11073 | 0 | T->isFixedPointType()) && |
11074 | 0 | "Unexpected type"); |
11075 | | |
11076 | | // Turn <4 x unsigned int> -> <4 x signed int> |
11077 | 0 | if (const auto *VTy = T->getAs<VectorType>()) |
11078 | 0 | return getVectorType(getCorrespondingSignedType(VTy->getElementType()), |
11079 | 0 | VTy->getNumElements(), VTy->getVectorKind()); |
11080 | | |
11081 | | // For _BitInt, return a signed _BitInt with same width. |
11082 | 0 | if (const auto *EITy = T->getAs<BitIntType>()) |
11083 | 0 | return getBitIntType(/*Unsigned=*/false, EITy->getNumBits()); |
11084 | | |
11085 | | // For enums, get the underlying integer type of the enum, and let the general |
11086 | | // integer type signchanging code handle it. |
11087 | 0 | if (const auto *ETy = T->getAs<EnumType>()) |
11088 | 0 | T = ETy->getDecl()->getIntegerType(); |
11089 | |
|
11090 | 0 | switch (T->castAs<BuiltinType>()->getKind()) { |
11091 | 0 | case BuiltinType::Char_S: |
11092 | | // Plain `char` is mapped to `signed char` even if it's already signed |
11093 | 0 | case BuiltinType::Char_U: |
11094 | 0 | case BuiltinType::UChar: |
11095 | 0 | case BuiltinType::Char8: |
11096 | 0 | return SignedCharTy; |
11097 | 0 | case BuiltinType::UShort: |
11098 | 0 | return ShortTy; |
11099 | 0 | case BuiltinType::UInt: |
11100 | 0 | return IntTy; |
11101 | 0 | case BuiltinType::ULong: |
11102 | 0 | return LongTy; |
11103 | 0 | case BuiltinType::ULongLong: |
11104 | 0 | return LongLongTy; |
11105 | 0 | case BuiltinType::UInt128: |
11106 | 0 | return Int128Ty; |
11107 | | // wchar_t is special. It is either unsigned or not, but when it's unsigned, |
11108 | | // there's no matching "signed wchar_t". Therefore we return the signed |
11109 | | // version of its underlying type instead. |
11110 | 0 | case BuiltinType::WChar_U: |
11111 | 0 | return getSignedWCharType(); |
11112 | | |
11113 | 0 | case BuiltinType::UShortAccum: |
11114 | 0 | return ShortAccumTy; |
11115 | 0 | case BuiltinType::UAccum: |
11116 | 0 | return AccumTy; |
11117 | 0 | case BuiltinType::ULongAccum: |
11118 | 0 | return LongAccumTy; |
11119 | 0 | case BuiltinType::SatUShortAccum: |
11120 | 0 | return SatShortAccumTy; |
11121 | 0 | case BuiltinType::SatUAccum: |
11122 | 0 | return SatAccumTy; |
11123 | 0 | case BuiltinType::SatULongAccum: |
11124 | 0 | return SatLongAccumTy; |
11125 | 0 | case BuiltinType::UShortFract: |
11126 | 0 | return ShortFractTy; |
11127 | 0 | case BuiltinType::UFract: |
11128 | 0 | return FractTy; |
11129 | 0 | case BuiltinType::ULongFract: |
11130 | 0 | return LongFractTy; |
11131 | 0 | case BuiltinType::SatUShortFract: |
11132 | 0 | return SatShortFractTy; |
11133 | 0 | case BuiltinType::SatUFract: |
11134 | 0 | return SatFractTy; |
11135 | 0 | case BuiltinType::SatULongFract: |
11136 | 0 | return SatLongFractTy; |
11137 | 0 | default: |
11138 | 0 | assert( |
11139 | 0 | (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && |
11140 | 0 | "Unexpected signed integer or fixed point type"); |
11141 | 0 | return T; |
11142 | 0 | } |
11143 | 0 | } |
11144 | | |
11145 | 0 | ASTMutationListener::~ASTMutationListener() = default; |
11146 | | |
11147 | | void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, |
11148 | 0 | QualType ReturnType) {} |
11149 | | |
11150 | | //===----------------------------------------------------------------------===// |
11151 | | // Builtin Type Computation |
11152 | | //===----------------------------------------------------------------------===// |
11153 | | |
11154 | | /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the |
11155 | | /// pointer over the consumed characters. This returns the resultant type. If |
11156 | | /// AllowTypeModifiers is false then modifier like * are not parsed, just basic |
11157 | | /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of |
11158 | | /// a vector of "i*". |
11159 | | /// |
11160 | | /// RequiresICE is filled in on return to indicate whether the value is required |
11161 | | /// to be an Integer Constant Expression. |
11162 | | static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, |
11163 | | ASTContext::GetBuiltinTypeError &Error, |
11164 | | bool &RequiresICE, |
11165 | 0 | bool AllowTypeModifiers) { |
11166 | | // Modifiers. |
11167 | 0 | int HowLong = 0; |
11168 | 0 | bool Signed = false, Unsigned = false; |
11169 | 0 | RequiresICE = false; |
11170 | | |
11171 | | // Read the prefixed modifiers first. |
11172 | 0 | bool Done = false; |
11173 | 0 | #ifndef NDEBUG |
11174 | 0 | bool IsSpecial = false; |
11175 | 0 | #endif |
11176 | 0 | while (!Done) { |
11177 | 0 | switch (*Str++) { |
11178 | 0 | default: Done = true; --Str; break; |
11179 | 0 | case 'I': |
11180 | 0 | RequiresICE = true; |
11181 | 0 | break; |
11182 | 0 | case 'S': |
11183 | 0 | assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); |
11184 | 0 | assert(!Signed && "Can't use 'S' modifier multiple times!"); |
11185 | 0 | Signed = true; |
11186 | 0 | break; |
11187 | 0 | case 'U': |
11188 | 0 | assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); |
11189 | 0 | assert(!Unsigned && "Can't use 'U' modifier multiple times!"); |
11190 | 0 | Unsigned = true; |
11191 | 0 | break; |
11192 | 0 | case 'L': |
11193 | 0 | assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers"); |
11194 | 0 | assert(HowLong <= 2 && "Can't have LLLL modifier"); |
11195 | 0 | ++HowLong; |
11196 | 0 | break; |
11197 | 0 | case 'N': |
11198 | | // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. |
11199 | 0 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); |
11200 | 0 | assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!"); |
11201 | 0 | #ifndef NDEBUG |
11202 | 0 | IsSpecial = true; |
11203 | 0 | #endif |
11204 | 0 | if (Context.getTargetInfo().getLongWidth() == 32) |
11205 | 0 | ++HowLong; |
11206 | 0 | break; |
11207 | 0 | case 'W': |
11208 | | // This modifier represents int64 type. |
11209 | 0 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); |
11210 | 0 | assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); |
11211 | 0 | #ifndef NDEBUG |
11212 | 0 | IsSpecial = true; |
11213 | 0 | #endif |
11214 | 0 | switch (Context.getTargetInfo().getInt64Type()) { |
11215 | 0 | default: |
11216 | 0 | llvm_unreachable("Unexpected integer type"); |
11217 | 0 | case TargetInfo::SignedLong: |
11218 | 0 | HowLong = 1; |
11219 | 0 | break; |
11220 | 0 | case TargetInfo::SignedLongLong: |
11221 | 0 | HowLong = 2; |
11222 | 0 | break; |
11223 | 0 | } |
11224 | 0 | break; |
11225 | 0 | case 'Z': |
11226 | | // This modifier represents int32 type. |
11227 | 0 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); |
11228 | 0 | assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!"); |
11229 | 0 | #ifndef NDEBUG |
11230 | 0 | IsSpecial = true; |
11231 | 0 | #endif |
11232 | 0 | switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) { |
11233 | 0 | default: |
11234 | 0 | llvm_unreachable("Unexpected integer type"); |
11235 | 0 | case TargetInfo::SignedInt: |
11236 | 0 | HowLong = 0; |
11237 | 0 | break; |
11238 | 0 | case TargetInfo::SignedLong: |
11239 | 0 | HowLong = 1; |
11240 | 0 | break; |
11241 | 0 | case TargetInfo::SignedLongLong: |
11242 | 0 | HowLong = 2; |
11243 | 0 | break; |
11244 | 0 | } |
11245 | 0 | break; |
11246 | 0 | case 'O': |
11247 | 0 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); |
11248 | 0 | assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!"); |
11249 | 0 | #ifndef NDEBUG |
11250 | 0 | IsSpecial = true; |
11251 | 0 | #endif |
11252 | 0 | if (Context.getLangOpts().OpenCL) |
11253 | 0 | HowLong = 1; |
11254 | 0 | else |
11255 | 0 | HowLong = 2; |
11256 | 0 | break; |
11257 | 0 | } |
11258 | 0 | } |
11259 | | |
11260 | 0 | QualType Type; |
11261 | | |
11262 | | // Read the base type. |
11263 | 0 | switch (*Str++) { |
11264 | 0 | default: llvm_unreachable("Unknown builtin type letter!"); |
11265 | 0 | case 'x': |
11266 | 0 | assert(HowLong == 0 && !Signed && !Unsigned && |
11267 | 0 | "Bad modifiers used with 'x'!"); |
11268 | 0 | Type = Context.Float16Ty; |
11269 | 0 | break; |
11270 | 0 | case 'y': |
11271 | 0 | assert(HowLong == 0 && !Signed && !Unsigned && |
11272 | 0 | "Bad modifiers used with 'y'!"); |
11273 | 0 | Type = Context.BFloat16Ty; |
11274 | 0 | break; |
11275 | 0 | case 'v': |
11276 | 0 | assert(HowLong == 0 && !Signed && !Unsigned && |
11277 | 0 | "Bad modifiers used with 'v'!"); |
11278 | 0 | Type = Context.VoidTy; |
11279 | 0 | break; |
11280 | 0 | case 'h': |
11281 | 0 | assert(HowLong == 0 && !Signed && !Unsigned && |
11282 | 0 | "Bad modifiers used with 'h'!"); |
11283 | 0 | Type = Context.HalfTy; |
11284 | 0 | break; |
11285 | 0 | case 'f': |
11286 | 0 | assert(HowLong == 0 && !Signed && !Unsigned && |
11287 | 0 | "Bad modifiers used with 'f'!"); |
11288 | 0 | Type = Context.FloatTy; |
11289 | 0 | break; |
11290 | 0 | case 'd': |
11291 | 0 | assert(HowLong < 3 && !Signed && !Unsigned && |
11292 | 0 | "Bad modifiers used with 'd'!"); |
11293 | 0 | if (HowLong == 1) |
11294 | 0 | Type = Context.LongDoubleTy; |
11295 | 0 | else if (HowLong == 2) |
11296 | 0 | Type = Context.Float128Ty; |
11297 | 0 | else |
11298 | 0 | Type = Context.DoubleTy; |
11299 | 0 | break; |
11300 | 0 | case 's': |
11301 | 0 | assert(HowLong == 0 && "Bad modifiers used with 's'!"); |
11302 | 0 | if (Unsigned) |
11303 | 0 | Type = Context.UnsignedShortTy; |
11304 | 0 | else |
11305 | 0 | Type = Context.ShortTy; |
11306 | 0 | break; |
11307 | 0 | case 'i': |
11308 | 0 | if (HowLong == 3) |
11309 | 0 | Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; |
11310 | 0 | else if (HowLong == 2) |
11311 | 0 | Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; |
11312 | 0 | else if (HowLong == 1) |
11313 | 0 | Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; |
11314 | 0 | else |
11315 | 0 | Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; |
11316 | 0 | break; |
11317 | 0 | case 'c': |
11318 | 0 | assert(HowLong == 0 && "Bad modifiers used with 'c'!"); |
11319 | 0 | if (Signed) |
11320 | 0 | Type = Context.SignedCharTy; |
11321 | 0 | else if (Unsigned) |
11322 | 0 | Type = Context.UnsignedCharTy; |
11323 | 0 | else |
11324 | 0 | Type = Context.CharTy; |
11325 | 0 | break; |
11326 | 0 | case 'b': // boolean |
11327 | 0 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); |
11328 | 0 | Type = Context.BoolTy; |
11329 | 0 | break; |
11330 | 0 | case 'z': // size_t. |
11331 | 0 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); |
11332 | 0 | Type = Context.getSizeType(); |
11333 | 0 | break; |
11334 | 0 | case 'w': // wchar_t. |
11335 | 0 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!"); |
11336 | 0 | Type = Context.getWideCharType(); |
11337 | 0 | break; |
11338 | 0 | case 'F': |
11339 | 0 | Type = Context.getCFConstantStringType(); |
11340 | 0 | break; |
11341 | 0 | case 'G': |
11342 | 0 | Type = Context.getObjCIdType(); |
11343 | 0 | break; |
11344 | 0 | case 'H': |
11345 | 0 | Type = Context.getObjCSelType(); |
11346 | 0 | break; |
11347 | 0 | case 'M': |
11348 | 0 | Type = Context.getObjCSuperType(); |
11349 | 0 | break; |
11350 | 0 | case 'a': |
11351 | 0 | Type = Context.getBuiltinVaListType(); |
11352 | 0 | assert(!Type.isNull() && "builtin va list type not initialized!"); |
11353 | 0 | break; |
11354 | 0 | case 'A': |
11355 | | // This is a "reference" to a va_list; however, what exactly |
11356 | | // this means depends on how va_list is defined. There are two |
11357 | | // different kinds of va_list: ones passed by value, and ones |
11358 | | // passed by reference. An example of a by-value va_list is |
11359 | | // x86, where va_list is a char*. An example of by-ref va_list |
11360 | | // is x86-64, where va_list is a __va_list_tag[1]. For x86, |
11361 | | // we want this argument to be a char*&; for x86-64, we want |
11362 | | // it to be a __va_list_tag*. |
11363 | 0 | Type = Context.getBuiltinVaListType(); |
11364 | 0 | assert(!Type.isNull() && "builtin va list type not initialized!"); |
11365 | 0 | if (Type->isArrayType()) |
11366 | 0 | Type = Context.getArrayDecayedType(Type); |
11367 | 0 | else |
11368 | 0 | Type = Context.getLValueReferenceType(Type); |
11369 | 0 | break; |
11370 | 0 | case 'q': { |
11371 | 0 | char *End; |
11372 | 0 | unsigned NumElements = strtoul(Str, &End, 10); |
11373 | 0 | assert(End != Str && "Missing vector size"); |
11374 | 0 | Str = End; |
11375 | |
|
11376 | 0 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
11377 | 0 | RequiresICE, false); |
11378 | 0 | assert(!RequiresICE && "Can't require vector ICE"); |
11379 | | |
11380 | 0 | Type = Context.getScalableVectorType(ElementType, NumElements); |
11381 | 0 | break; |
11382 | 0 | } |
11383 | 0 | case 'Q': { |
11384 | 0 | switch (*Str++) { |
11385 | 0 | case 'a': { |
11386 | 0 | Type = Context.SveCountTy; |
11387 | 0 | break; |
11388 | 0 | } |
11389 | 0 | default: |
11390 | 0 | llvm_unreachable("Unexpected target builtin type"); |
11391 | 0 | } |
11392 | 0 | break; |
11393 | 0 | } |
11394 | 0 | case 'V': { |
11395 | 0 | char *End; |
11396 | 0 | unsigned NumElements = strtoul(Str, &End, 10); |
11397 | 0 | assert(End != Str && "Missing vector size"); |
11398 | 0 | Str = End; |
11399 | |
|
11400 | 0 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
11401 | 0 | RequiresICE, false); |
11402 | 0 | assert(!RequiresICE && "Can't require vector ICE"); |
11403 | | |
11404 | | // TODO: No way to make AltiVec vectors in builtins yet. |
11405 | 0 | Type = Context.getVectorType(ElementType, NumElements, VectorKind::Generic); |
11406 | 0 | break; |
11407 | 0 | } |
11408 | 0 | case 'E': { |
11409 | 0 | char *End; |
11410 | |
|
11411 | 0 | unsigned NumElements = strtoul(Str, &End, 10); |
11412 | 0 | assert(End != Str && "Missing vector size"); |
11413 | | |
11414 | 0 | Str = End; |
11415 | |
|
11416 | 0 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
11417 | 0 | false); |
11418 | 0 | Type = Context.getExtVectorType(ElementType, NumElements); |
11419 | 0 | break; |
11420 | 0 | } |
11421 | 0 | case 'X': { |
11422 | 0 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
11423 | 0 | false); |
11424 | 0 | assert(!RequiresICE && "Can't require complex ICE"); |
11425 | 0 | Type = Context.getComplexType(ElementType); |
11426 | 0 | break; |
11427 | 0 | } |
11428 | 0 | case 'Y': |
11429 | 0 | Type = Context.getPointerDiffType(); |
11430 | 0 | break; |
11431 | 0 | case 'P': |
11432 | 0 | Type = Context.getFILEType(); |
11433 | 0 | if (Type.isNull()) { |
11434 | 0 | Error = ASTContext::GE_Missing_stdio; |
11435 | 0 | return {}; |
11436 | 0 | } |
11437 | 0 | break; |
11438 | 0 | case 'J': |
11439 | 0 | if (Signed) |
11440 | 0 | Type = Context.getsigjmp_bufType(); |
11441 | 0 | else |
11442 | 0 | Type = Context.getjmp_bufType(); |
11443 | |
|
11444 | 0 | if (Type.isNull()) { |
11445 | 0 | Error = ASTContext::GE_Missing_setjmp; |
11446 | 0 | return {}; |
11447 | 0 | } |
11448 | 0 | break; |
11449 | 0 | case 'K': |
11450 | 0 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); |
11451 | 0 | Type = Context.getucontext_tType(); |
11452 | |
|
11453 | 0 | if (Type.isNull()) { |
11454 | 0 | Error = ASTContext::GE_Missing_ucontext; |
11455 | 0 | return {}; |
11456 | 0 | } |
11457 | 0 | break; |
11458 | 0 | case 'p': |
11459 | 0 | Type = Context.getProcessIDType(); |
11460 | 0 | break; |
11461 | 0 | } |
11462 | | |
11463 | | // If there are modifiers and if we're allowed to parse them, go for it. |
11464 | 0 | Done = !AllowTypeModifiers; |
11465 | 0 | while (!Done) { |
11466 | 0 | switch (char c = *Str++) { |
11467 | 0 | default: Done = true; --Str; break; |
11468 | 0 | case '*': |
11469 | 0 | case '&': { |
11470 | | // Both pointers and references can have their pointee types |
11471 | | // qualified with an address space. |
11472 | 0 | char *End; |
11473 | 0 | unsigned AddrSpace = strtoul(Str, &End, 10); |
11474 | 0 | if (End != Str) { |
11475 | | // Note AddrSpace == 0 is not the same as an unspecified address space. |
11476 | 0 | Type = Context.getAddrSpaceQualType( |
11477 | 0 | Type, |
11478 | 0 | Context.getLangASForBuiltinAddressSpace(AddrSpace)); |
11479 | 0 | Str = End; |
11480 | 0 | } |
11481 | 0 | if (c == '*') |
11482 | 0 | Type = Context.getPointerType(Type); |
11483 | 0 | else |
11484 | 0 | Type = Context.getLValueReferenceType(Type); |
11485 | 0 | break; |
11486 | 0 | } |
11487 | | // FIXME: There's no way to have a built-in with an rvalue ref arg. |
11488 | 0 | case 'C': |
11489 | 0 | Type = Type.withConst(); |
11490 | 0 | break; |
11491 | 0 | case 'D': |
11492 | 0 | Type = Context.getVolatileType(Type); |
11493 | 0 | break; |
11494 | 0 | case 'R': |
11495 | 0 | Type = Type.withRestrict(); |
11496 | 0 | break; |
11497 | 0 | } |
11498 | 0 | } |
11499 | | |
11500 | 0 | assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && |
11501 | 0 | "Integer constant 'I' type must be an integer"); |
11502 | | |
11503 | 0 | return Type; |
11504 | 0 | } |
11505 | | |
11506 | | // On some targets such as PowerPC, some of the builtins are defined with custom |
11507 | | // type descriptors for target-dependent types. These descriptors are decoded in |
11508 | | // other functions, but it may be useful to be able to fall back to default |
11509 | | // descriptor decoding to define builtins mixing target-dependent and target- |
11510 | | // independent types. This function allows decoding one type descriptor with |
11511 | | // default decoding. |
11512 | | QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context, |
11513 | | GetBuiltinTypeError &Error, bool &RequireICE, |
11514 | 0 | bool AllowTypeModifiers) const { |
11515 | 0 | return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers); |
11516 | 0 | } |
11517 | | |
11518 | | /// GetBuiltinType - Return the type for the specified builtin. |
11519 | | QualType ASTContext::GetBuiltinType(unsigned Id, |
11520 | | GetBuiltinTypeError &Error, |
11521 | 0 | unsigned *IntegerConstantArgs) const { |
11522 | 0 | const char *TypeStr = BuiltinInfo.getTypeString(Id); |
11523 | 0 | if (TypeStr[0] == '\0') { |
11524 | 0 | Error = GE_Missing_type; |
11525 | 0 | return {}; |
11526 | 0 | } |
11527 | | |
11528 | 0 | SmallVector<QualType, 8> ArgTypes; |
11529 | |
|
11530 | 0 | bool RequiresICE = false; |
11531 | 0 | Error = GE_None; |
11532 | 0 | QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, |
11533 | 0 | RequiresICE, true); |
11534 | 0 | if (Error != GE_None) |
11535 | 0 | return {}; |
11536 | | |
11537 | 0 | assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); |
11538 | | |
11539 | 0 | while (TypeStr[0] && TypeStr[0] != '.') { |
11540 | 0 | QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); |
11541 | 0 | if (Error != GE_None) |
11542 | 0 | return {}; |
11543 | | |
11544 | | // If this argument is required to be an IntegerConstantExpression and the |
11545 | | // caller cares, fill in the bitmask we return. |
11546 | 0 | if (RequiresICE && IntegerConstantArgs) |
11547 | 0 | *IntegerConstantArgs |= 1 << ArgTypes.size(); |
11548 | | |
11549 | | // Do array -> pointer decay. The builtin should use the decayed type. |
11550 | 0 | if (Ty->isArrayType()) |
11551 | 0 | Ty = getArrayDecayedType(Ty); |
11552 | |
|
11553 | 0 | ArgTypes.push_back(Ty); |
11554 | 0 | } |
11555 | | |
11556 | 0 | if (Id == Builtin::BI__GetExceptionInfo) |
11557 | 0 | return {}; |
11558 | | |
11559 | 0 | assert((TypeStr[0] != '.' || TypeStr[1] == 0) && |
11560 | 0 | "'.' should only occur at end of builtin type list!"); |
11561 | | |
11562 | 0 | bool Variadic = (TypeStr[0] == '.'); |
11563 | |
|
11564 | 0 | FunctionType::ExtInfo EI(getDefaultCallingConvention( |
11565 | 0 | Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); |
11566 | 0 | if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); |
11567 | | |
11568 | | |
11569 | | // We really shouldn't be making a no-proto type here. |
11570 | 0 | if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes()) |
11571 | 0 | return getFunctionNoProtoType(ResType, EI); |
11572 | | |
11573 | 0 | FunctionProtoType::ExtProtoInfo EPI; |
11574 | 0 | EPI.ExtInfo = EI; |
11575 | 0 | EPI.Variadic = Variadic; |
11576 | 0 | if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id)) |
11577 | 0 | EPI.ExceptionSpec.Type = |
11578 | 0 | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; |
11579 | |
|
11580 | 0 | return getFunctionType(ResType, ArgTypes, EPI); |
11581 | 0 | } |
11582 | | |
11583 | | static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, |
11584 | 0 | const FunctionDecl *FD) { |
11585 | 0 | if (!FD->isExternallyVisible()) |
11586 | 0 | return GVA_Internal; |
11587 | | |
11588 | | // Non-user-provided functions get emitted as weak definitions with every |
11589 | | // use, no matter whether they've been explicitly instantiated etc. |
11590 | 0 | if (!FD->isUserProvided()) |
11591 | 0 | return GVA_DiscardableODR; |
11592 | | |
11593 | 0 | GVALinkage External; |
11594 | 0 | switch (FD->getTemplateSpecializationKind()) { |
11595 | 0 | case TSK_Undeclared: |
11596 | 0 | case TSK_ExplicitSpecialization: |
11597 | 0 | External = GVA_StrongExternal; |
11598 | 0 | break; |
11599 | | |
11600 | 0 | case TSK_ExplicitInstantiationDefinition: |
11601 | 0 | return GVA_StrongODR; |
11602 | | |
11603 | | // C++11 [temp.explicit]p10: |
11604 | | // [ Note: The intent is that an inline function that is the subject of |
11605 | | // an explicit instantiation declaration will still be implicitly |
11606 | | // instantiated when used so that the body can be considered for |
11607 | | // inlining, but that no out-of-line copy of the inline function would be |
11608 | | // generated in the translation unit. -- end note ] |
11609 | 0 | case TSK_ExplicitInstantiationDeclaration: |
11610 | 0 | return GVA_AvailableExternally; |
11611 | | |
11612 | 0 | case TSK_ImplicitInstantiation: |
11613 | 0 | External = GVA_DiscardableODR; |
11614 | 0 | break; |
11615 | 0 | } |
11616 | | |
11617 | 0 | if (!FD->isInlined()) |
11618 | 0 | return External; |
11619 | | |
11620 | 0 | if ((!Context.getLangOpts().CPlusPlus && |
11621 | 0 | !Context.getTargetInfo().getCXXABI().isMicrosoft() && |
11622 | 0 | !FD->hasAttr<DLLExportAttr>()) || |
11623 | 0 | FD->hasAttr<GNUInlineAttr>()) { |
11624 | | // FIXME: This doesn't match gcc's behavior for dllexport inline functions. |
11625 | | |
11626 | | // GNU or C99 inline semantics. Determine whether this symbol should be |
11627 | | // externally visible. |
11628 | 0 | if (FD->isInlineDefinitionExternallyVisible()) |
11629 | 0 | return External; |
11630 | | |
11631 | | // C99 inline semantics, where the symbol is not externally visible. |
11632 | 0 | return GVA_AvailableExternally; |
11633 | 0 | } |
11634 | | |
11635 | | // Functions specified with extern and inline in -fms-compatibility mode |
11636 | | // forcibly get emitted. While the body of the function cannot be later |
11637 | | // replaced, the function definition cannot be discarded. |
11638 | 0 | if (FD->isMSExternInline()) |
11639 | 0 | return GVA_StrongODR; |
11640 | | |
11641 | 0 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
11642 | 0 | isa<CXXConstructorDecl>(FD) && |
11643 | 0 | cast<CXXConstructorDecl>(FD)->isInheritingConstructor()) |
11644 | | // Our approach to inheriting constructors is fundamentally different from |
11645 | | // that used by the MS ABI, so keep our inheriting constructor thunks |
11646 | | // internal rather than trying to pick an unambiguous mangling for them. |
11647 | 0 | return GVA_Internal; |
11648 | | |
11649 | 0 | return GVA_DiscardableODR; |
11650 | 0 | } |
11651 | | |
11652 | | static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, |
11653 | 889 | const Decl *D, GVALinkage L) { |
11654 | | // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx |
11655 | | // dllexport/dllimport on inline functions. |
11656 | 889 | if (D->hasAttr<DLLImportAttr>()) { |
11657 | 0 | if (L == GVA_DiscardableODR || L == GVA_StrongODR) |
11658 | 0 | return GVA_AvailableExternally; |
11659 | 889 | } else if (D->hasAttr<DLLExportAttr>()) { |
11660 | 0 | if (L == GVA_DiscardableODR) |
11661 | 0 | return GVA_StrongODR; |
11662 | 889 | } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) { |
11663 | | // Device-side functions with __global__ attribute must always be |
11664 | | // visible externally so they can be launched from host. |
11665 | 0 | if (D->hasAttr<CUDAGlobalAttr>() && |
11666 | 0 | (L == GVA_DiscardableODR || L == GVA_Internal)) |
11667 | 0 | return GVA_StrongODR; |
11668 | | // Single source offloading languages like CUDA/HIP need to be able to |
11669 | | // access static device variables from host code of the same compilation |
11670 | | // unit. This is done by externalizing the static variable with a shared |
11671 | | // name between the host and device compilation which is the same for the |
11672 | | // same compilation unit whereas different among different compilation |
11673 | | // units. |
11674 | 0 | if (Context.shouldExternalize(D)) |
11675 | 0 | return GVA_StrongExternal; |
11676 | 0 | } |
11677 | 889 | return L; |
11678 | 889 | } |
11679 | | |
11680 | | /// Adjust the GVALinkage for a declaration based on what an external AST source |
11681 | | /// knows about whether there can be other definitions of this declaration. |
11682 | | static GVALinkage |
11683 | | adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, |
11684 | 889 | GVALinkage L) { |
11685 | 889 | ExternalASTSource *Source = Ctx.getExternalSource(); |
11686 | 889 | if (!Source) |
11687 | 889 | return L; |
11688 | | |
11689 | 0 | switch (Source->hasExternalDefinitions(D)) { |
11690 | 0 | case ExternalASTSource::EK_Never: |
11691 | | // Other translation units rely on us to provide the definition. |
11692 | 0 | if (L == GVA_DiscardableODR) |
11693 | 0 | return GVA_StrongODR; |
11694 | 0 | break; |
11695 | | |
11696 | 0 | case ExternalASTSource::EK_Always: |
11697 | 0 | return GVA_AvailableExternally; |
11698 | | |
11699 | 0 | case ExternalASTSource::EK_ReplyHazy: |
11700 | 0 | break; |
11701 | 0 | } |
11702 | 0 | return L; |
11703 | 0 | } |
11704 | | |
11705 | 0 | GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { |
11706 | 0 | return adjustGVALinkageForExternalDefinitionKind(*this, FD, |
11707 | 0 | adjustGVALinkageForAttributes(*this, FD, |
11708 | 0 | basicGVALinkageForFunction(*this, FD))); |
11709 | 0 | } |
11710 | | |
11711 | | static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, |
11712 | 889 | const VarDecl *VD) { |
11713 | | // As an extension for interactive REPLs, make sure constant variables are |
11714 | | // only emitted once instead of LinkageComputer::getLVForNamespaceScopeDecl |
11715 | | // marking them as internal. |
11716 | 889 | if (Context.getLangOpts().CPlusPlus && |
11717 | 889 | Context.getLangOpts().IncrementalExtensions && |
11718 | 889 | VD->getType().isConstQualified() && |
11719 | 889 | !VD->getType().isVolatileQualified() && !VD->isInline() && |
11720 | 889 | !isa<VarTemplateSpecializationDecl>(VD) && !VD->getDescribedVarTemplate()) |
11721 | 0 | return GVA_DiscardableODR; |
11722 | | |
11723 | 889 | if (!VD->isExternallyVisible()) |
11724 | 0 | return GVA_Internal; |
11725 | | |
11726 | 889 | if (VD->isStaticLocal()) { |
11727 | 0 | const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); |
11728 | 0 | while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) |
11729 | 0 | LexicalContext = LexicalContext->getLexicalParent(); |
11730 | | |
11731 | | // ObjC Blocks can create local variables that don't have a FunctionDecl |
11732 | | // LexicalContext. |
11733 | 0 | if (!LexicalContext) |
11734 | 0 | return GVA_DiscardableODR; |
11735 | | |
11736 | | // Otherwise, let the static local variable inherit its linkage from the |
11737 | | // nearest enclosing function. |
11738 | 0 | auto StaticLocalLinkage = |
11739 | 0 | Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); |
11740 | | |
11741 | | // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must |
11742 | | // be emitted in any object with references to the symbol for the object it |
11743 | | // contains, whether inline or out-of-line." |
11744 | | // Similar behavior is observed with MSVC. An alternative ABI could use |
11745 | | // StrongODR/AvailableExternally to match the function, but none are |
11746 | | // known/supported currently. |
11747 | 0 | if (StaticLocalLinkage == GVA_StrongODR || |
11748 | 0 | StaticLocalLinkage == GVA_AvailableExternally) |
11749 | 0 | return GVA_DiscardableODR; |
11750 | 0 | return StaticLocalLinkage; |
11751 | 0 | } |
11752 | | |
11753 | | // MSVC treats in-class initialized static data members as definitions. |
11754 | | // By giving them non-strong linkage, out-of-line definitions won't |
11755 | | // cause link errors. |
11756 | 889 | if (Context.isMSStaticDataMemberInlineDefinition(VD)) |
11757 | 0 | return GVA_DiscardableODR; |
11758 | | |
11759 | | // Most non-template variables have strong linkage; inline variables are |
11760 | | // linkonce_odr or (occasionally, for compatibility) weak_odr. |
11761 | 889 | GVALinkage StrongLinkage; |
11762 | 889 | switch (Context.getInlineVariableDefinitionKind(VD)) { |
11763 | 889 | case ASTContext::InlineVariableDefinitionKind::None: |
11764 | 889 | StrongLinkage = GVA_StrongExternal; |
11765 | 889 | break; |
11766 | 0 | case ASTContext::InlineVariableDefinitionKind::Weak: |
11767 | 0 | case ASTContext::InlineVariableDefinitionKind::WeakUnknown: |
11768 | 0 | StrongLinkage = GVA_DiscardableODR; |
11769 | 0 | break; |
11770 | 0 | case ASTContext::InlineVariableDefinitionKind::Strong: |
11771 | 0 | StrongLinkage = GVA_StrongODR; |
11772 | 0 | break; |
11773 | 889 | } |
11774 | | |
11775 | 889 | switch (VD->getTemplateSpecializationKind()) { |
11776 | 889 | case TSK_Undeclared: |
11777 | 889 | return StrongLinkage; |
11778 | | |
11779 | 0 | case TSK_ExplicitSpecialization: |
11780 | 0 | return Context.getTargetInfo().getCXXABI().isMicrosoft() && |
11781 | 0 | VD->isStaticDataMember() |
11782 | 0 | ? GVA_StrongODR |
11783 | 0 | : StrongLinkage; |
11784 | | |
11785 | 0 | case TSK_ExplicitInstantiationDefinition: |
11786 | 0 | return GVA_StrongODR; |
11787 | | |
11788 | 0 | case TSK_ExplicitInstantiationDeclaration: |
11789 | 0 | return GVA_AvailableExternally; |
11790 | | |
11791 | 0 | case TSK_ImplicitInstantiation: |
11792 | 0 | return GVA_DiscardableODR; |
11793 | 889 | } |
11794 | | |
11795 | 0 | llvm_unreachable("Invalid Linkage!"); |
11796 | 0 | } |
11797 | | |
11798 | 889 | GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const { |
11799 | 889 | return adjustGVALinkageForExternalDefinitionKind(*this, VD, |
11800 | 889 | adjustGVALinkageForAttributes(*this, VD, |
11801 | 889 | basicGVALinkageForVariable(*this, VD))); |
11802 | 889 | } |
11803 | | |
11804 | 889 | bool ASTContext::DeclMustBeEmitted(const Decl *D) { |
11805 | 889 | if (const auto *VD = dyn_cast<VarDecl>(D)) { |
11806 | 889 | if (!VD->isFileVarDecl()) |
11807 | 0 | return false; |
11808 | | // Global named register variables (GNU extension) are never emitted. |
11809 | 889 | if (VD->getStorageClass() == SC_Register) |
11810 | 0 | return false; |
11811 | 889 | if (VD->getDescribedVarTemplate() || |
11812 | 889 | isa<VarTemplatePartialSpecializationDecl>(VD)) |
11813 | 0 | return false; |
11814 | 889 | } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
11815 | | // We never need to emit an uninstantiated function template. |
11816 | 0 | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
11817 | 0 | return false; |
11818 | 0 | } else if (isa<PragmaCommentDecl>(D)) |
11819 | 0 | return true; |
11820 | 0 | else if (isa<PragmaDetectMismatchDecl>(D)) |
11821 | 0 | return true; |
11822 | 0 | else if (isa<OMPRequiresDecl>(D)) |
11823 | 0 | return true; |
11824 | 0 | else if (isa<OMPThreadPrivateDecl>(D)) |
11825 | 0 | return !D->getDeclContext()->isDependentContext(); |
11826 | 0 | else if (isa<OMPAllocateDecl>(D)) |
11827 | 0 | return !D->getDeclContext()->isDependentContext(); |
11828 | 0 | else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D)) |
11829 | 0 | return !D->getDeclContext()->isDependentContext(); |
11830 | 0 | else if (isa<ImportDecl>(D)) |
11831 | 0 | return true; |
11832 | 0 | else |
11833 | 0 | return false; |
11834 | | |
11835 | | // If this is a member of a class template, we do not need to emit it. |
11836 | 889 | if (D->getDeclContext()->isDependentContext()) |
11837 | 0 | return false; |
11838 | | |
11839 | | // Weak references don't produce any output by themselves. |
11840 | 889 | if (D->hasAttr<WeakRefAttr>()) |
11841 | 0 | return false; |
11842 | | |
11843 | | // Aliases and used decls are required. |
11844 | 889 | if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) |
11845 | 0 | return true; |
11846 | | |
11847 | 889 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
11848 | | // Forward declarations aren't required. |
11849 | 0 | if (!FD->doesThisDeclarationHaveABody()) |
11850 | 0 | return FD->doesDeclarationForceExternallyVisibleDefinition(); |
11851 | | |
11852 | | // Constructors and destructors are required. |
11853 | 0 | if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) |
11854 | 0 | return true; |
11855 | | |
11856 | | // The key function for a class is required. This rule only comes |
11857 | | // into play when inline functions can be key functions, though. |
11858 | 0 | if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { |
11859 | 0 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
11860 | 0 | const CXXRecordDecl *RD = MD->getParent(); |
11861 | 0 | if (MD->isOutOfLine() && RD->isDynamicClass()) { |
11862 | 0 | const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); |
11863 | 0 | if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) |
11864 | 0 | return true; |
11865 | 0 | } |
11866 | 0 | } |
11867 | 0 | } |
11868 | | |
11869 | 0 | GVALinkage Linkage = GetGVALinkageForFunction(FD); |
11870 | | |
11871 | | // static, static inline, always_inline, and extern inline functions can |
11872 | | // always be deferred. Normal inline functions can be deferred in C99/C++. |
11873 | | // Implicit template instantiations can also be deferred in C++. |
11874 | 0 | return !isDiscardableGVALinkage(Linkage); |
11875 | 0 | } |
11876 | | |
11877 | 889 | const auto *VD = cast<VarDecl>(D); |
11878 | 889 | assert(VD->isFileVarDecl() && "Expected file scoped var"); |
11879 | | |
11880 | | // If the decl is marked as `declare target to`, it should be emitted for the |
11881 | | // host and for the device. |
11882 | 889 | if (LangOpts.OpenMP && |
11883 | 889 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
11884 | 0 | return true; |
11885 | | |
11886 | 889 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && |
11887 | 889 | !isMSStaticDataMemberInlineDefinition(VD)) |
11888 | 0 | return false; |
11889 | | |
11890 | | // Variables in other module units shouldn't be forced to be emitted. |
11891 | 889 | if (VD->isInAnotherModuleUnit()) |
11892 | 0 | return false; |
11893 | | |
11894 | | // Variables that can be needed in other TUs are required. |
11895 | 889 | auto Linkage = GetGVALinkageForVariable(VD); |
11896 | 889 | if (!isDiscardableGVALinkage(Linkage)) |
11897 | 889 | return true; |
11898 | | |
11899 | | // We never need to emit a variable that is available in another TU. |
11900 | 0 | if (Linkage == GVA_AvailableExternally) |
11901 | 0 | return false; |
11902 | | |
11903 | | // Variables that have destruction with side-effects are required. |
11904 | 0 | if (VD->needsDestruction(*this)) |
11905 | 0 | return true; |
11906 | | |
11907 | | // Variables that have initialization with side-effects are required. |
11908 | 0 | if (VD->getInit() && VD->getInit()->HasSideEffects(*this) && |
11909 | | // We can get a value-dependent initializer during error recovery. |
11910 | 0 | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) |
11911 | 0 | return true; |
11912 | | |
11913 | | // Likewise, variables with tuple-like bindings are required if their |
11914 | | // bindings have side-effects. |
11915 | 0 | if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) |
11916 | 0 | for (const auto *BD : DD->bindings()) |
11917 | 0 | if (const auto *BindingVD = BD->getHoldingVar()) |
11918 | 0 | if (DeclMustBeEmitted(BindingVD)) |
11919 | 0 | return true; |
11920 | | |
11921 | 0 | return false; |
11922 | 0 | } |
11923 | | |
11924 | | void ASTContext::forEachMultiversionedFunctionVersion( |
11925 | | const FunctionDecl *FD, |
11926 | 0 | llvm::function_ref<void(FunctionDecl *)> Pred) const { |
11927 | 0 | assert(FD->isMultiVersion() && "Only valid for multiversioned functions"); |
11928 | 0 | llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; |
11929 | 0 | FD = FD->getMostRecentDecl(); |
11930 | | // FIXME: The order of traversal here matters and depends on the order of |
11931 | | // lookup results, which happens to be (mostly) oldest-to-newest, but we |
11932 | | // shouldn't rely on that. |
11933 | 0 | for (auto *CurDecl : |
11934 | 0 | FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) { |
11935 | 0 | FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl(); |
11936 | 0 | if (CurFD && hasSameType(CurFD->getType(), FD->getType()) && |
11937 | 0 | !SeenDecls.contains(CurFD)) { |
11938 | 0 | SeenDecls.insert(CurFD); |
11939 | 0 | Pred(CurFD); |
11940 | 0 | } |
11941 | 0 | } |
11942 | 0 | } |
11943 | | |
11944 | | CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, |
11945 | | bool IsCXXMethod, |
11946 | 24 | bool IsBuiltin) const { |
11947 | | // Pass through to the C++ ABI object |
11948 | 24 | if (IsCXXMethod) |
11949 | 0 | return ABI->getDefaultMethodCallConv(IsVariadic); |
11950 | | |
11951 | | // Builtins ignore user-specified default calling convention and remain the |
11952 | | // Target's default calling convention. |
11953 | 24 | if (!IsBuiltin) { |
11954 | 24 | switch (LangOpts.getDefaultCallingConv()) { |
11955 | 24 | case LangOptions::DCC_None: |
11956 | 24 | break; |
11957 | 0 | case LangOptions::DCC_CDecl: |
11958 | 0 | return CC_C; |
11959 | 0 | case LangOptions::DCC_FastCall: |
11960 | 0 | if (getTargetInfo().hasFeature("sse2") && !IsVariadic) |
11961 | 0 | return CC_X86FastCall; |
11962 | 0 | break; |
11963 | 0 | case LangOptions::DCC_StdCall: |
11964 | 0 | if (!IsVariadic) |
11965 | 0 | return CC_X86StdCall; |
11966 | 0 | break; |
11967 | 0 | case LangOptions::DCC_VectorCall: |
11968 | | // __vectorcall cannot be applied to variadic functions. |
11969 | 0 | if (!IsVariadic) |
11970 | 0 | return CC_X86VectorCall; |
11971 | 0 | break; |
11972 | 0 | case LangOptions::DCC_RegCall: |
11973 | | // __regcall cannot be applied to variadic functions. |
11974 | 0 | if (!IsVariadic) |
11975 | 0 | return CC_X86RegCall; |
11976 | 0 | break; |
11977 | 0 | case LangOptions::DCC_RtdCall: |
11978 | 0 | if (!IsVariadic) |
11979 | 0 | return CC_M68kRTD; |
11980 | 0 | break; |
11981 | 24 | } |
11982 | 24 | } |
11983 | 24 | return Target->getDefaultCallingConv(); |
11984 | 24 | } |
11985 | | |
11986 | 0 | bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { |
11987 | | // Pass through to the C++ ABI object |
11988 | 0 | return ABI->isNearlyEmpty(RD); |
11989 | 0 | } |
11990 | | |
11991 | 46 | VTableContextBase *ASTContext::getVTableContext() { |
11992 | 46 | if (!VTContext.get()) { |
11993 | 46 | auto ABI = Target->getCXXABI(); |
11994 | 46 | if (ABI.isMicrosoft()) |
11995 | 0 | VTContext.reset(new MicrosoftVTableContext(*this)); |
11996 | 46 | else { |
11997 | 46 | auto ComponentLayout = getLangOpts().RelativeCXXABIVTables |
11998 | 46 | ? ItaniumVTableContext::Relative |
11999 | 46 | : ItaniumVTableContext::Pointer; |
12000 | 46 | VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout)); |
12001 | 46 | } |
12002 | 46 | } |
12003 | 46 | return VTContext.get(); |
12004 | 46 | } |
12005 | | |
12006 | 69 | MangleContext *ASTContext::createMangleContext(const TargetInfo *T) { |
12007 | 69 | if (!T) |
12008 | 69 | T = Target; |
12009 | 69 | switch (T->getCXXABI().getKind()) { |
12010 | 0 | case TargetCXXABI::AppleARM64: |
12011 | 0 | case TargetCXXABI::Fuchsia: |
12012 | 0 | case TargetCXXABI::GenericAArch64: |
12013 | 69 | case TargetCXXABI::GenericItanium: |
12014 | 69 | case TargetCXXABI::GenericARM: |
12015 | 69 | case TargetCXXABI::GenericMIPS: |
12016 | 69 | case TargetCXXABI::iOS: |
12017 | 69 | case TargetCXXABI::WebAssembly: |
12018 | 69 | case TargetCXXABI::WatchOS: |
12019 | 69 | case TargetCXXABI::XL: |
12020 | 69 | return ItaniumMangleContext::create(*this, getDiagnostics()); |
12021 | 0 | case TargetCXXABI::Microsoft: |
12022 | 0 | return MicrosoftMangleContext::create(*this, getDiagnostics()); |
12023 | 69 | } |
12024 | 0 | llvm_unreachable("Unsupported ABI"); |
12025 | 0 | } |
12026 | | |
12027 | 0 | MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) { |
12028 | 0 | assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft && |
12029 | 0 | "Device mangle context does not support Microsoft mangling."); |
12030 | 0 | switch (T.getCXXABI().getKind()) { |
12031 | 0 | case TargetCXXABI::AppleARM64: |
12032 | 0 | case TargetCXXABI::Fuchsia: |
12033 | 0 | case TargetCXXABI::GenericAArch64: |
12034 | 0 | case TargetCXXABI::GenericItanium: |
12035 | 0 | case TargetCXXABI::GenericARM: |
12036 | 0 | case TargetCXXABI::GenericMIPS: |
12037 | 0 | case TargetCXXABI::iOS: |
12038 | 0 | case TargetCXXABI::WebAssembly: |
12039 | 0 | case TargetCXXABI::WatchOS: |
12040 | 0 | case TargetCXXABI::XL: |
12041 | 0 | return ItaniumMangleContext::create( |
12042 | 0 | *this, getDiagnostics(), |
12043 | 0 | [](ASTContext &, const NamedDecl *ND) -> std::optional<unsigned> { |
12044 | 0 | if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) |
12045 | 0 | return RD->getDeviceLambdaManglingNumber(); |
12046 | 0 | return std::nullopt; |
12047 | 0 | }, |
12048 | 0 | /*IsAux=*/true); |
12049 | 0 | case TargetCXXABI::Microsoft: |
12050 | 0 | return MicrosoftMangleContext::create(*this, getDiagnostics(), |
12051 | 0 | /*IsAux=*/true); |
12052 | 0 | } |
12053 | 0 | llvm_unreachable("Unsupported ABI"); |
12054 | 0 | } |
12055 | | |
12056 | 23 | CXXABI::~CXXABI() = default; |
12057 | | |
12058 | 0 | size_t ASTContext::getSideTableAllocatedMemory() const { |
12059 | 0 | return ASTRecordLayouts.getMemorySize() + |
12060 | 0 | llvm::capacity_in_bytes(ObjCLayouts) + |
12061 | 0 | llvm::capacity_in_bytes(KeyFunctions) + |
12062 | 0 | llvm::capacity_in_bytes(ObjCImpls) + |
12063 | 0 | llvm::capacity_in_bytes(BlockVarCopyInits) + |
12064 | 0 | llvm::capacity_in_bytes(DeclAttrs) + |
12065 | 0 | llvm::capacity_in_bytes(TemplateOrInstantiation) + |
12066 | 0 | llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + |
12067 | 0 | llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + |
12068 | 0 | llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + |
12069 | 0 | llvm::capacity_in_bytes(OverriddenMethods) + |
12070 | 0 | llvm::capacity_in_bytes(Types) + |
12071 | 0 | llvm::capacity_in_bytes(VariableArrayTypes); |
12072 | 0 | } |
12073 | | |
12074 | | /// getIntTypeForBitwidth - |
12075 | | /// sets integer QualTy according to specified details: |
12076 | | /// bitwidth, signed/unsigned. |
12077 | | /// Returns empty type if there is no appropriate target types. |
12078 | | QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, |
12079 | 0 | unsigned Signed) const { |
12080 | 0 | TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); |
12081 | 0 | CanQualType QualTy = getFromTargetType(Ty); |
12082 | 0 | if (!QualTy && DestWidth == 128) |
12083 | 0 | return Signed ? Int128Ty : UnsignedInt128Ty; |
12084 | 0 | return QualTy; |
12085 | 0 | } |
12086 | | |
12087 | | /// getRealTypeForBitwidth - |
12088 | | /// sets floating point QualTy according to specified bitwidth. |
12089 | | /// Returns empty type if there is no appropriate target types. |
12090 | | QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth, |
12091 | 0 | FloatModeKind ExplicitType) const { |
12092 | 0 | FloatModeKind Ty = |
12093 | 0 | getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType); |
12094 | 0 | switch (Ty) { |
12095 | 0 | case FloatModeKind::Half: |
12096 | 0 | return HalfTy; |
12097 | 0 | case FloatModeKind::Float: |
12098 | 0 | return FloatTy; |
12099 | 0 | case FloatModeKind::Double: |
12100 | 0 | return DoubleTy; |
12101 | 0 | case FloatModeKind::LongDouble: |
12102 | 0 | return LongDoubleTy; |
12103 | 0 | case FloatModeKind::Float128: |
12104 | 0 | return Float128Ty; |
12105 | 0 | case FloatModeKind::Ibm128: |
12106 | 0 | return Ibm128Ty; |
12107 | 0 | case FloatModeKind::NoFloat: |
12108 | 0 | return {}; |
12109 | 0 | } |
12110 | | |
12111 | 0 | llvm_unreachable("Unhandled TargetInfo::RealType value"); |
12112 | 0 | } |
12113 | | |
12114 | 0 | void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { |
12115 | 0 | if (Number > 1) |
12116 | 0 | MangleNumbers[ND] = Number; |
12117 | 0 | } |
12118 | | |
12119 | | unsigned ASTContext::getManglingNumber(const NamedDecl *ND, |
12120 | 0 | bool ForAuxTarget) const { |
12121 | 0 | auto I = MangleNumbers.find(ND); |
12122 | 0 | unsigned Res = I != MangleNumbers.end() ? I->second : 1; |
12123 | | // CUDA/HIP host compilation encodes host and device mangling numbers |
12124 | | // as lower and upper half of 32 bit integer. |
12125 | 0 | if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) { |
12126 | 0 | Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF; |
12127 | 0 | } else { |
12128 | 0 | assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling " |
12129 | 0 | "number for aux target"); |
12130 | 0 | } |
12131 | 0 | return Res > 1 ? Res : 1; |
12132 | 0 | } |
12133 | | |
12134 | 0 | void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { |
12135 | 0 | if (Number > 1) |
12136 | 0 | StaticLocalNumbers[VD] = Number; |
12137 | 0 | } |
12138 | | |
12139 | 0 | unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { |
12140 | 0 | auto I = StaticLocalNumbers.find(VD); |
12141 | 0 | return I != StaticLocalNumbers.end() ? I->second : 1; |
12142 | 0 | } |
12143 | | |
12144 | | MangleNumberingContext & |
12145 | 0 | ASTContext::getManglingNumberContext(const DeclContext *DC) { |
12146 | 0 | assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. |
12147 | 0 | std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; |
12148 | 0 | if (!MCtx) |
12149 | 0 | MCtx = createMangleNumberingContext(); |
12150 | 0 | return *MCtx; |
12151 | 0 | } |
12152 | | |
12153 | | MangleNumberingContext & |
12154 | 0 | ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) { |
12155 | 0 | assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. |
12156 | 0 | std::unique_ptr<MangleNumberingContext> &MCtx = |
12157 | 0 | ExtraMangleNumberingContexts[D]; |
12158 | 0 | if (!MCtx) |
12159 | 0 | MCtx = createMangleNumberingContext(); |
12160 | 0 | return *MCtx; |
12161 | 0 | } |
12162 | | |
12163 | | std::unique_ptr<MangleNumberingContext> |
12164 | 0 | ASTContext::createMangleNumberingContext() const { |
12165 | 0 | return ABI->createMangleNumberingContext(); |
12166 | 0 | } |
12167 | | |
12168 | | const CXXConstructorDecl * |
12169 | 0 | ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { |
12170 | 0 | return ABI->getCopyConstructorForExceptionObject( |
12171 | 0 | cast<CXXRecordDecl>(RD->getFirstDecl())); |
12172 | 0 | } |
12173 | | |
12174 | | void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, |
12175 | 0 | CXXConstructorDecl *CD) { |
12176 | 0 | return ABI->addCopyConstructorForExceptionObject( |
12177 | 0 | cast<CXXRecordDecl>(RD->getFirstDecl()), |
12178 | 0 | cast<CXXConstructorDecl>(CD->getFirstDecl())); |
12179 | 0 | } |
12180 | | |
12181 | | void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, |
12182 | 0 | TypedefNameDecl *DD) { |
12183 | 0 | return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); |
12184 | 0 | } |
12185 | | |
12186 | | TypedefNameDecl * |
12187 | 0 | ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { |
12188 | 0 | return ABI->getTypedefNameForUnnamedTagDecl(TD); |
12189 | 0 | } |
12190 | | |
12191 | | void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, |
12192 | 0 | DeclaratorDecl *DD) { |
12193 | 0 | return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); |
12194 | 0 | } |
12195 | | |
12196 | 0 | DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { |
12197 | 0 | return ABI->getDeclaratorForUnnamedTagDecl(TD); |
12198 | 0 | } |
12199 | | |
12200 | 0 | void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { |
12201 | 0 | ParamIndices[D] = index; |
12202 | 0 | } |
12203 | | |
12204 | 0 | unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { |
12205 | 0 | ParameterIndexTable::const_iterator I = ParamIndices.find(D); |
12206 | 0 | assert(I != ParamIndices.end() && |
12207 | 0 | "ParmIndices lacks entry set by ParmVarDecl"); |
12208 | 0 | return I->second; |
12209 | 0 | } |
12210 | | |
12211 | | QualType ASTContext::getStringLiteralArrayType(QualType EltTy, |
12212 | 1 | unsigned Length) const { |
12213 | | // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
12214 | 1 | if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) |
12215 | 1 | EltTy = EltTy.withConst(); |
12216 | | |
12217 | 1 | EltTy = adjustStringLiteralBaseType(EltTy); |
12218 | | |
12219 | | // Get an array type for the string, according to C99 6.4.5. This includes |
12220 | | // the null terminator character. |
12221 | 1 | return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr, |
12222 | 1 | ArraySizeModifier::Normal, /*IndexTypeQuals*/ 0); |
12223 | 1 | } |
12224 | | |
12225 | | StringLiteral * |
12226 | 0 | ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const { |
12227 | 0 | StringLiteral *&Result = StringLiteralCache[Key]; |
12228 | 0 | if (!Result) |
12229 | 0 | Result = StringLiteral::Create( |
12230 | 0 | *this, Key, StringLiteralKind::Ordinary, |
12231 | 0 | /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()), |
12232 | 0 | SourceLocation()); |
12233 | 0 | return Result; |
12234 | 0 | } |
12235 | | |
12236 | | MSGuidDecl * |
12237 | 0 | ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const { |
12238 | 0 | assert(MSGuidTagDecl && "building MS GUID without MS extensions?"); |
12239 | | |
12240 | 0 | llvm::FoldingSetNodeID ID; |
12241 | 0 | MSGuidDecl::Profile(ID, Parts); |
12242 | |
|
12243 | 0 | void *InsertPos; |
12244 | 0 | if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos)) |
12245 | 0 | return Existing; |
12246 | | |
12247 | 0 | QualType GUIDType = getMSGuidType().withConst(); |
12248 | 0 | MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts); |
12249 | 0 | MSGuidDecls.InsertNode(New, InsertPos); |
12250 | 0 | return New; |
12251 | 0 | } |
12252 | | |
12253 | | UnnamedGlobalConstantDecl * |
12254 | | ASTContext::getUnnamedGlobalConstantDecl(QualType Ty, |
12255 | 0 | const APValue &APVal) const { |
12256 | 0 | llvm::FoldingSetNodeID ID; |
12257 | 0 | UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal); |
12258 | |
|
12259 | 0 | void *InsertPos; |
12260 | 0 | if (UnnamedGlobalConstantDecl *Existing = |
12261 | 0 | UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos)) |
12262 | 0 | return Existing; |
12263 | | |
12264 | 0 | UnnamedGlobalConstantDecl *New = |
12265 | 0 | UnnamedGlobalConstantDecl::Create(*this, Ty, APVal); |
12266 | 0 | UnnamedGlobalConstantDecls.InsertNode(New, InsertPos); |
12267 | 0 | return New; |
12268 | 0 | } |
12269 | | |
12270 | | TemplateParamObjectDecl * |
12271 | 0 | ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const { |
12272 | 0 | assert(T->isRecordType() && "template param object of unexpected type"); |
12273 | | |
12274 | | // C++ [temp.param]p8: |
12275 | | // [...] a static storage duration object of type 'const T' [...] |
12276 | 0 | T.addConst(); |
12277 | |
|
12278 | 0 | llvm::FoldingSetNodeID ID; |
12279 | 0 | TemplateParamObjectDecl::Profile(ID, T, V); |
12280 | |
|
12281 | 0 | void *InsertPos; |
12282 | 0 | if (TemplateParamObjectDecl *Existing = |
12283 | 0 | TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos)) |
12284 | 0 | return Existing; |
12285 | | |
12286 | 0 | TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V); |
12287 | 0 | TemplateParamObjectDecls.InsertNode(New, InsertPos); |
12288 | 0 | return New; |
12289 | 0 | } |
12290 | | |
12291 | 0 | bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { |
12292 | 0 | const llvm::Triple &T = getTargetInfo().getTriple(); |
12293 | 0 | if (!T.isOSDarwin()) |
12294 | 0 | return false; |
12295 | | |
12296 | 0 | if (!(T.isiOS() && T.isOSVersionLT(7)) && |
12297 | 0 | !(T.isMacOSX() && T.isOSVersionLT(10, 9))) |
12298 | 0 | return false; |
12299 | | |
12300 | 0 | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
12301 | 0 | CharUnits sizeChars = getTypeSizeInChars(AtomicTy); |
12302 | 0 | uint64_t Size = sizeChars.getQuantity(); |
12303 | 0 | CharUnits alignChars = getTypeAlignInChars(AtomicTy); |
12304 | 0 | unsigned Align = alignChars.getQuantity(); |
12305 | 0 | unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); |
12306 | 0 | return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); |
12307 | 0 | } |
12308 | | |
12309 | | bool |
12310 | | ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, |
12311 | 0 | const ObjCMethodDecl *MethodImpl) { |
12312 | | // No point trying to match an unavailable/deprecated mothod. |
12313 | 0 | if (MethodDecl->hasAttr<UnavailableAttr>() |
12314 | 0 | || MethodDecl->hasAttr<DeprecatedAttr>()) |
12315 | 0 | return false; |
12316 | 0 | if (MethodDecl->getObjCDeclQualifier() != |
12317 | 0 | MethodImpl->getObjCDeclQualifier()) |
12318 | 0 | return false; |
12319 | 0 | if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) |
12320 | 0 | return false; |
12321 | | |
12322 | 0 | if (MethodDecl->param_size() != MethodImpl->param_size()) |
12323 | 0 | return false; |
12324 | | |
12325 | 0 | for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), |
12326 | 0 | IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), |
12327 | 0 | EF = MethodDecl->param_end(); |
12328 | 0 | IM != EM && IF != EF; ++IM, ++IF) { |
12329 | 0 | const ParmVarDecl *DeclVar = (*IF); |
12330 | 0 | const ParmVarDecl *ImplVar = (*IM); |
12331 | 0 | if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) |
12332 | 0 | return false; |
12333 | 0 | if (!hasSameType(DeclVar->getType(), ImplVar->getType())) |
12334 | 0 | return false; |
12335 | 0 | } |
12336 | | |
12337 | 0 | return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); |
12338 | 0 | } |
12339 | | |
12340 | 46 | uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { |
12341 | 46 | LangAS AS; |
12342 | 46 | if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) |
12343 | 0 | AS = LangAS::Default; |
12344 | 46 | else |
12345 | 46 | AS = QT->getPointeeType().getAddressSpace(); |
12346 | | |
12347 | 46 | return getTargetInfo().getNullPointerValue(AS); |
12348 | 46 | } |
12349 | | |
12350 | 92 | unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { |
12351 | 92 | return getTargetInfo().getTargetAddressSpace(AS); |
12352 | 92 | } |
12353 | | |
12354 | 0 | bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const { |
12355 | 0 | if (X == Y) |
12356 | 0 | return true; |
12357 | 0 | if (!X || !Y) |
12358 | 0 | return false; |
12359 | 0 | llvm::FoldingSetNodeID IDX, IDY; |
12360 | 0 | X->Profile(IDX, *this, /*Canonical=*/true); |
12361 | 0 | Y->Profile(IDY, *this, /*Canonical=*/true); |
12362 | 0 | return IDX == IDY; |
12363 | 0 | } |
12364 | | |
12365 | | // The getCommon* helpers return, for given 'same' X and Y entities given as |
12366 | | // inputs, another entity which is also the 'same' as the inputs, but which |
12367 | | // is closer to the canonical form of the inputs, each according to a given |
12368 | | // criteria. |
12369 | | // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of |
12370 | | // the regular ones. |
12371 | | |
12372 | 0 | static Decl *getCommonDecl(Decl *X, Decl *Y) { |
12373 | 0 | if (!declaresSameEntity(X, Y)) |
12374 | 0 | return nullptr; |
12375 | 0 | for (const Decl *DX : X->redecls()) { |
12376 | | // If we reach Y before reaching the first decl, that means X is older. |
12377 | 0 | if (DX == Y) |
12378 | 0 | return X; |
12379 | | // If we reach the first decl, then Y is older. |
12380 | 0 | if (DX->isFirstDecl()) |
12381 | 0 | return Y; |
12382 | 0 | } |
12383 | 0 | llvm_unreachable("Corrupt redecls chain"); |
12384 | 0 | } |
12385 | | |
12386 | | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> |
12387 | 0 | static T *getCommonDecl(T *X, T *Y) { |
12388 | 0 | return cast_or_null<T>( |
12389 | 0 | getCommonDecl(const_cast<Decl *>(cast_or_null<Decl>(X)), |
12390 | 0 | const_cast<Decl *>(cast_or_null<Decl>(Y)))); |
12391 | 0 | } Unexecuted instantiation: ASTContext.cpp:clang::TemplateTypeParmDecl* getCommonDecl<clang::TemplateTypeParmDecl, true>(clang::TemplateTypeParmDecl*, clang::TemplateTypeParmDecl*) Unexecuted instantiation: ASTContext.cpp:clang::ConceptDecl* getCommonDecl<clang::ConceptDecl, true>(clang::ConceptDecl*, clang::ConceptDecl*) Unexecuted instantiation: ASTContext.cpp:clang::TagDecl* getCommonDecl<clang::TagDecl, true>(clang::TagDecl*, clang::TagDecl*) Unexecuted instantiation: ASTContext.cpp:clang::TypedefNameDecl* getCommonDecl<clang::TypedefNameDecl, true>(clang::TypedefNameDecl*, clang::TypedefNameDecl*) Unexecuted instantiation: ASTContext.cpp:clang::UsingShadowDecl* getCommonDecl<clang::UsingShadowDecl, true>(clang::UsingShadowDecl*, clang::UsingShadowDecl*) |
12392 | | |
12393 | | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> |
12394 | 0 | static T *getCommonDeclChecked(T *X, T *Y) { |
12395 | 0 | return cast<T>(getCommonDecl(const_cast<Decl *>(cast<Decl>(X)), |
12396 | 0 | const_cast<Decl *>(cast<Decl>(Y)))); |
12397 | 0 | } Unexecuted instantiation: ASTContext.cpp:clang::ConceptDecl* getCommonDeclChecked<clang::ConceptDecl, true>(clang::ConceptDecl*, clang::ConceptDecl*) Unexecuted instantiation: ASTContext.cpp:clang::CXXRecordDecl* getCommonDeclChecked<clang::CXXRecordDecl, true>(clang::CXXRecordDecl*, clang::CXXRecordDecl*) |
12398 | | |
12399 | | static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X, |
12400 | 0 | TemplateName Y) { |
12401 | 0 | if (X.getAsVoidPointer() == Y.getAsVoidPointer()) |
12402 | 0 | return X; |
12403 | | // FIXME: There are cases here where we could find a common template name |
12404 | | // with more sugar. For example one could be a SubstTemplateTemplate* |
12405 | | // replacing the other. |
12406 | 0 | TemplateName CX = Ctx.getCanonicalTemplateName(X); |
12407 | 0 | if (CX.getAsVoidPointer() != |
12408 | 0 | Ctx.getCanonicalTemplateName(Y).getAsVoidPointer()) |
12409 | 0 | return TemplateName(); |
12410 | 0 | return CX; |
12411 | 0 | } |
12412 | | |
12413 | | static TemplateName |
12414 | 0 | getCommonTemplateNameChecked(ASTContext &Ctx, TemplateName X, TemplateName Y) { |
12415 | 0 | TemplateName R = getCommonTemplateName(Ctx, X, Y); |
12416 | 0 | assert(R.getAsVoidPointer() != nullptr); |
12417 | 0 | return R; |
12418 | 0 | } |
12419 | | |
12420 | | static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs, |
12421 | 0 | ArrayRef<QualType> Ys, bool Unqualified = false) { |
12422 | 0 | assert(Xs.size() == Ys.size()); |
12423 | 0 | SmallVector<QualType, 8> Rs(Xs.size()); |
12424 | 0 | for (size_t I = 0; I < Rs.size(); ++I) |
12425 | 0 | Rs[I] = Ctx.getCommonSugaredType(Xs[I], Ys[I], Unqualified); |
12426 | 0 | return Rs; |
12427 | 0 | } |
12428 | | |
12429 | | template <class T> |
12430 | 0 | static SourceLocation getCommonAttrLoc(const T *X, const T *Y) { |
12431 | 0 | return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc() |
12432 | 0 | : SourceLocation(); |
12433 | 0 | } Unexecuted instantiation: ASTContext.cpp:clang::SourceLocation getCommonAttrLoc<clang::DependentAddressSpaceType>(clang::DependentAddressSpaceType const*, clang::DependentAddressSpaceType const*) Unexecuted instantiation: ASTContext.cpp:clang::SourceLocation getCommonAttrLoc<clang::DependentSizedMatrixType>(clang::DependentSizedMatrixType const*, clang::DependentSizedMatrixType const*) Unexecuted instantiation: ASTContext.cpp:clang::SourceLocation getCommonAttrLoc<clang::DependentSizedExtVectorType>(clang::DependentSizedExtVectorType const*, clang::DependentSizedExtVectorType const*) Unexecuted instantiation: ASTContext.cpp:clang::SourceLocation getCommonAttrLoc<clang::DependentVectorType>(clang::DependentVectorType const*, clang::DependentVectorType const*) |
12434 | | |
12435 | | static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx, |
12436 | | const TemplateArgument &X, |
12437 | 0 | const TemplateArgument &Y) { |
12438 | 0 | if (X.getKind() != Y.getKind()) |
12439 | 0 | return TemplateArgument(); |
12440 | | |
12441 | 0 | switch (X.getKind()) { |
12442 | 0 | case TemplateArgument::ArgKind::Type: |
12443 | 0 | if (!Ctx.hasSameType(X.getAsType(), Y.getAsType())) |
12444 | 0 | return TemplateArgument(); |
12445 | 0 | return TemplateArgument( |
12446 | 0 | Ctx.getCommonSugaredType(X.getAsType(), Y.getAsType())); |
12447 | 0 | case TemplateArgument::ArgKind::NullPtr: |
12448 | 0 | if (!Ctx.hasSameType(X.getNullPtrType(), Y.getNullPtrType())) |
12449 | 0 | return TemplateArgument(); |
12450 | 0 | return TemplateArgument( |
12451 | 0 | Ctx.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()), |
12452 | 0 | /*Unqualified=*/true); |
12453 | 0 | case TemplateArgument::ArgKind::Expression: |
12454 | 0 | if (!Ctx.hasSameType(X.getAsExpr()->getType(), Y.getAsExpr()->getType())) |
12455 | 0 | return TemplateArgument(); |
12456 | | // FIXME: Try to keep the common sugar. |
12457 | 0 | return X; |
12458 | 0 | case TemplateArgument::ArgKind::Template: { |
12459 | 0 | TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate(); |
12460 | 0 | TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY); |
12461 | 0 | if (!CTN.getAsVoidPointer()) |
12462 | 0 | return TemplateArgument(); |
12463 | 0 | return TemplateArgument(CTN); |
12464 | 0 | } |
12465 | 0 | case TemplateArgument::ArgKind::TemplateExpansion: { |
12466 | 0 | TemplateName TX = X.getAsTemplateOrTemplatePattern(), |
12467 | 0 | TY = Y.getAsTemplateOrTemplatePattern(); |
12468 | 0 | TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY); |
12469 | 0 | if (!CTN.getAsVoidPointer()) |
12470 | 0 | return TemplateName(); |
12471 | 0 | auto NExpX = X.getNumTemplateExpansions(); |
12472 | 0 | assert(NExpX == Y.getNumTemplateExpansions()); |
12473 | 0 | return TemplateArgument(CTN, NExpX); |
12474 | 0 | } |
12475 | 0 | default: |
12476 | | // FIXME: Handle the other argument kinds. |
12477 | 0 | return X; |
12478 | 0 | } |
12479 | 0 | } |
12480 | | |
12481 | | static bool getCommonTemplateArguments(ASTContext &Ctx, |
12482 | | SmallVectorImpl<TemplateArgument> &R, |
12483 | | ArrayRef<TemplateArgument> Xs, |
12484 | 0 | ArrayRef<TemplateArgument> Ys) { |
12485 | 0 | if (Xs.size() != Ys.size()) |
12486 | 0 | return true; |
12487 | 0 | R.resize(Xs.size()); |
12488 | 0 | for (size_t I = 0; I < R.size(); ++I) { |
12489 | 0 | R[I] = getCommonTemplateArgument(Ctx, Xs[I], Ys[I]); |
12490 | 0 | if (R[I].isNull()) |
12491 | 0 | return true; |
12492 | 0 | } |
12493 | 0 | return false; |
12494 | 0 | } |
12495 | | |
12496 | | static auto getCommonTemplateArguments(ASTContext &Ctx, |
12497 | | ArrayRef<TemplateArgument> Xs, |
12498 | 0 | ArrayRef<TemplateArgument> Ys) { |
12499 | 0 | SmallVector<TemplateArgument, 8> R; |
12500 | 0 | bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys); |
12501 | 0 | assert(!Different); |
12502 | 0 | (void)Different; |
12503 | 0 | return R; |
12504 | 0 | } |
12505 | | |
12506 | | template <class T> |
12507 | 0 | static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) { |
12508 | 0 | return X->getKeyword() == Y->getKeyword() ? X->getKeyword() |
12509 | 0 | : ElaboratedTypeKeyword::None; |
12510 | 0 | } Unexecuted instantiation: ASTContext.cpp:clang::ElaboratedTypeKeyword getCommonTypeKeyword<clang::DependentNameType>(clang::DependentNameType const*, clang::DependentNameType const*) Unexecuted instantiation: ASTContext.cpp:clang::ElaboratedTypeKeyword getCommonTypeKeyword<clang::DependentTemplateSpecializationType>(clang::DependentTemplateSpecializationType const*, clang::DependentTemplateSpecializationType const*) Unexecuted instantiation: ASTContext.cpp:clang::ElaboratedTypeKeyword getCommonTypeKeyword<clang::ElaboratedType>(clang::ElaboratedType const*, clang::ElaboratedType const*) |
12511 | | |
12512 | | template <class T> |
12513 | | static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, const T *X, |
12514 | 0 | const T *Y) { |
12515 | | // FIXME: Try to keep the common NNS sugar. |
12516 | 0 | return X->getQualifier() == Y->getQualifier() |
12517 | 0 | ? X->getQualifier() |
12518 | 0 | : Ctx.getCanonicalNestedNameSpecifier(X->getQualifier()); |
12519 | 0 | } Unexecuted instantiation: ASTContext.cpp:clang::NestedNameSpecifier* getCommonNNS<clang::DependentNameType>(clang::ASTContext&, clang::DependentNameType const*, clang::DependentNameType const*) Unexecuted instantiation: ASTContext.cpp:clang::NestedNameSpecifier* getCommonNNS<clang::DependentTemplateSpecializationType>(clang::ASTContext&, clang::DependentTemplateSpecializationType const*, clang::DependentTemplateSpecializationType const*) Unexecuted instantiation: ASTContext.cpp:clang::NestedNameSpecifier* getCommonNNS<clang::ElaboratedType>(clang::ASTContext&, clang::ElaboratedType const*, clang::ElaboratedType const*) |
12520 | | |
12521 | | template <class T> |
12522 | 0 | static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) { |
12523 | 0 | return Ctx.getCommonSugaredType(X->getElementType(), Y->getElementType()); |
12524 | 0 | } Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonElementType<clang::ConstantMatrixType>(clang::ASTContext&, clang::ConstantMatrixType const*, clang::ConstantMatrixType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonElementType<clang::DependentSizedMatrixType>(clang::ASTContext&, clang::DependentSizedMatrixType const*, clang::DependentSizedMatrixType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonElementType<clang::VectorType>(clang::ASTContext&, clang::VectorType const*, clang::VectorType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonElementType<clang::ExtVectorType>(clang::ASTContext&, clang::ExtVectorType const*, clang::ExtVectorType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonElementType<clang::DependentSizedExtVectorType>(clang::ASTContext&, clang::DependentSizedExtVectorType const*, clang::DependentSizedExtVectorType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonElementType<clang::DependentVectorType>(clang::ASTContext&, clang::DependentVectorType const*, clang::DependentVectorType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonElementType<clang::PipeType>(clang::ASTContext&, clang::PipeType const*, clang::PipeType const*) |
12525 | | |
12526 | | template <class T> |
12527 | | static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X, |
12528 | | Qualifiers &QX, const T *Y, |
12529 | 0 | Qualifiers &QY) { |
12530 | 0 | QualType EX = X->getElementType(), EY = Y->getElementType(); |
12531 | 0 | QualType R = Ctx.getCommonSugaredType(EX, EY, |
12532 | 0 | /*Unqualified=*/true); |
12533 | 0 | Qualifiers RQ = R.getQualifiers(); |
12534 | 0 | QX += EX.getQualifiers() - RQ; |
12535 | 0 | QY += EY.getQualifiers() - RQ; |
12536 | 0 | return R; |
12537 | 0 | } Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonArrayElementType<clang::IncompleteArrayType>(clang::ASTContext&, clang::IncompleteArrayType const*, clang::Qualifiers&, clang::IncompleteArrayType const*, clang::Qualifiers&) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonArrayElementType<clang::DependentSizedArrayType>(clang::ASTContext&, clang::DependentSizedArrayType const*, clang::Qualifiers&, clang::DependentSizedArrayType const*, clang::Qualifiers&) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonArrayElementType<clang::ConstantArrayType>(clang::ASTContext&, clang::ConstantArrayType const*, clang::Qualifiers&, clang::ConstantArrayType const*, clang::Qualifiers&) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonArrayElementType<clang::ComplexType>(clang::ASTContext&, clang::ComplexType const*, clang::Qualifiers&, clang::ComplexType const*, clang::Qualifiers&) |
12538 | | |
12539 | | template <class T> |
12540 | 0 | static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) { |
12541 | 0 | return Ctx.getCommonSugaredType(X->getPointeeType(), Y->getPointeeType()); |
12542 | 0 | } Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonPointeeType<clang::PointerType>(clang::ASTContext&, clang::PointerType const*, clang::PointerType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonPointeeType<clang::BlockPointerType>(clang::ASTContext&, clang::BlockPointerType const*, clang::BlockPointerType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonPointeeType<clang::ObjCObjectPointerType>(clang::ASTContext&, clang::ObjCObjectPointerType const*, clang::ObjCObjectPointerType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonPointeeType<clang::MemberPointerType>(clang::ASTContext&, clang::MemberPointerType const*, clang::MemberPointerType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonPointeeType<clang::LValueReferenceType>(clang::ASTContext&, clang::LValueReferenceType const*, clang::LValueReferenceType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonPointeeType<clang::RValueReferenceType>(clang::ASTContext&, clang::RValueReferenceType const*, clang::RValueReferenceType const*) Unexecuted instantiation: ASTContext.cpp:clang::QualType getCommonPointeeType<clang::DependentAddressSpaceType>(clang::ASTContext&, clang::DependentAddressSpaceType const*, clang::DependentAddressSpaceType const*) |
12543 | | |
12544 | 0 | template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) { |
12545 | 0 | assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr())); |
12546 | 0 | return X->getSizeExpr(); |
12547 | 0 | } Unexecuted instantiation: ASTContext.cpp:auto* getCommonSizeExpr<clang::DependentSizedArrayType const>(clang::ASTContext&, clang::DependentSizedArrayType const*, clang::DependentSizedArrayType const*) Unexecuted instantiation: ASTContext.cpp:auto* getCommonSizeExpr<clang::DependentSizedExtVectorType const>(clang::ASTContext&, clang::DependentSizedExtVectorType const*, clang::DependentSizedExtVectorType const*) Unexecuted instantiation: ASTContext.cpp:auto* getCommonSizeExpr<clang::DependentVectorType const>(clang::ASTContext&, clang::DependentVectorType const*, clang::DependentVectorType const*) |
12548 | | |
12549 | 0 | static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) { |
12550 | 0 | assert(X->getSizeModifier() == Y->getSizeModifier()); |
12551 | 0 | return X->getSizeModifier(); |
12552 | 0 | } |
12553 | | |
12554 | | static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X, |
12555 | 0 | const ArrayType *Y) { |
12556 | 0 | assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers()); |
12557 | 0 | return X->getIndexTypeCVRQualifiers(); |
12558 | 0 | } |
12559 | | |
12560 | | // Merges two type lists such that the resulting vector will contain |
12561 | | // each type (in a canonical sense) only once, in the order they appear |
12562 | | // from X to Y. If they occur in both X and Y, the result will contain |
12563 | | // the common sugared type between them. |
12564 | | static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out, |
12565 | 0 | ArrayRef<QualType> X, ArrayRef<QualType> Y) { |
12566 | 0 | llvm::DenseMap<QualType, unsigned> Found; |
12567 | 0 | for (auto Ts : {X, Y}) { |
12568 | 0 | for (QualType T : Ts) { |
12569 | 0 | auto Res = Found.try_emplace(Ctx.getCanonicalType(T), Out.size()); |
12570 | 0 | if (!Res.second) { |
12571 | 0 | QualType &U = Out[Res.first->second]; |
12572 | 0 | U = Ctx.getCommonSugaredType(U, T); |
12573 | 0 | } else { |
12574 | 0 | Out.emplace_back(T); |
12575 | 0 | } |
12576 | 0 | } |
12577 | 0 | } |
12578 | 0 | } |
12579 | | |
12580 | | FunctionProtoType::ExceptionSpecInfo |
12581 | | ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1, |
12582 | | FunctionProtoType::ExceptionSpecInfo ESI2, |
12583 | | SmallVectorImpl<QualType> &ExceptionTypeStorage, |
12584 | 0 | bool AcceptDependent) { |
12585 | 0 | ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type; |
12586 | | |
12587 | | // If either of them can throw anything, that is the result. |
12588 | 0 | for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) { |
12589 | 0 | if (EST1 == I) |
12590 | 0 | return ESI1; |
12591 | 0 | if (EST2 == I) |
12592 | 0 | return ESI2; |
12593 | 0 | } |
12594 | | |
12595 | | // If either of them is non-throwing, the result is the other. |
12596 | 0 | for (auto I : |
12597 | 0 | {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) { |
12598 | 0 | if (EST1 == I) |
12599 | 0 | return ESI2; |
12600 | 0 | if (EST2 == I) |
12601 | 0 | return ESI1; |
12602 | 0 | } |
12603 | | |
12604 | | // If we're left with value-dependent computed noexcept expressions, we're |
12605 | | // stuck. Before C++17, we can just drop the exception specification entirely, |
12606 | | // since it's not actually part of the canonical type. And this should never |
12607 | | // happen in C++17, because it would mean we were computing the composite |
12608 | | // pointer type of dependent types, which should never happen. |
12609 | 0 | if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { |
12610 | 0 | assert(AcceptDependent && |
12611 | 0 | "computing composite pointer type of dependent types"); |
12612 | 0 | return FunctionProtoType::ExceptionSpecInfo(); |
12613 | 0 | } |
12614 | | |
12615 | | // Switch over the possibilities so that people adding new values know to |
12616 | | // update this function. |
12617 | 0 | switch (EST1) { |
12618 | 0 | case EST_None: |
12619 | 0 | case EST_DynamicNone: |
12620 | 0 | case EST_MSAny: |
12621 | 0 | case EST_BasicNoexcept: |
12622 | 0 | case EST_DependentNoexcept: |
12623 | 0 | case EST_NoexceptFalse: |
12624 | 0 | case EST_NoexceptTrue: |
12625 | 0 | case EST_NoThrow: |
12626 | 0 | llvm_unreachable("These ESTs should be handled above"); |
12627 | |
|
12628 | 0 | case EST_Dynamic: { |
12629 | | // This is the fun case: both exception specifications are dynamic. Form |
12630 | | // the union of the two lists. |
12631 | 0 | assert(EST2 == EST_Dynamic && "other cases should already be handled"); |
12632 | 0 | mergeTypeLists(*this, ExceptionTypeStorage, ESI1.Exceptions, |
12633 | 0 | ESI2.Exceptions); |
12634 | 0 | FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); |
12635 | 0 | Result.Exceptions = ExceptionTypeStorage; |
12636 | 0 | return Result; |
12637 | 0 | } |
12638 | | |
12639 | 0 | case EST_Unevaluated: |
12640 | 0 | case EST_Uninstantiated: |
12641 | 0 | case EST_Unparsed: |
12642 | 0 | llvm_unreachable("shouldn't see unresolved exception specifications here"); |
12643 | 0 | } |
12644 | | |
12645 | 0 | llvm_unreachable("invalid ExceptionSpecificationType"); |
12646 | 0 | } |
12647 | | |
12648 | | static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X, |
12649 | | Qualifiers &QX, const Type *Y, |
12650 | 0 | Qualifiers &QY) { |
12651 | 0 | Type::TypeClass TC = X->getTypeClass(); |
12652 | 0 | assert(TC == Y->getTypeClass()); |
12653 | 0 | switch (TC) { |
12654 | 0 | #define UNEXPECTED_TYPE(Class, Kind) \ |
12655 | 0 | case Type::Class: \ |
12656 | 0 | llvm_unreachable("Unexpected " Kind ": " #Class); |
12657 | | |
12658 | 0 | #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical") |
12659 | 0 | #define TYPE(Class, Base) |
12660 | 0 | #include "clang/AST/TypeNodes.inc" |
12661 | |
|
12662 | 0 | #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free") |
12663 | 0 | SUGAR_FREE_TYPE(Builtin) |
12664 | 0 | SUGAR_FREE_TYPE(DeducedTemplateSpecialization) |
12665 | 0 | SUGAR_FREE_TYPE(DependentBitInt) |
12666 | 0 | SUGAR_FREE_TYPE(Enum) |
12667 | 0 | SUGAR_FREE_TYPE(BitInt) |
12668 | 0 | SUGAR_FREE_TYPE(ObjCInterface) |
12669 | 0 | SUGAR_FREE_TYPE(Record) |
12670 | 0 | SUGAR_FREE_TYPE(SubstTemplateTypeParmPack) |
12671 | 0 | SUGAR_FREE_TYPE(UnresolvedUsing) |
12672 | 0 | #undef SUGAR_FREE_TYPE |
12673 | 0 | #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique") |
12674 | 0 | NON_UNIQUE_TYPE(TypeOfExpr) |
12675 | 0 | NON_UNIQUE_TYPE(VariableArray) |
12676 | 0 | #undef NON_UNIQUE_TYPE |
12677 | |
|
12678 | 0 | UNEXPECTED_TYPE(TypeOf, "sugar") |
12679 | |
|
12680 | 0 | #undef UNEXPECTED_TYPE |
12681 | |
|
12682 | 0 | case Type::Auto: { |
12683 | 0 | const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y); |
12684 | 0 | assert(AX->getDeducedType().isNull()); |
12685 | 0 | assert(AY->getDeducedType().isNull()); |
12686 | 0 | assert(AX->getKeyword() == AY->getKeyword()); |
12687 | 0 | assert(AX->isInstantiationDependentType() == |
12688 | 0 | AY->isInstantiationDependentType()); |
12689 | 0 | auto As = getCommonTemplateArguments(Ctx, AX->getTypeConstraintArguments(), |
12690 | 0 | AY->getTypeConstraintArguments()); |
12691 | 0 | return Ctx.getAutoType(QualType(), AX->getKeyword(), |
12692 | 0 | AX->isInstantiationDependentType(), |
12693 | 0 | AX->containsUnexpandedParameterPack(), |
12694 | 0 | getCommonDeclChecked(AX->getTypeConstraintConcept(), |
12695 | 0 | AY->getTypeConstraintConcept()), |
12696 | 0 | As); |
12697 | 0 | } |
12698 | 0 | case Type::IncompleteArray: { |
12699 | 0 | const auto *AX = cast<IncompleteArrayType>(X), |
12700 | 0 | *AY = cast<IncompleteArrayType>(Y); |
12701 | 0 | return Ctx.getIncompleteArrayType( |
12702 | 0 | getCommonArrayElementType(Ctx, AX, QX, AY, QY), |
12703 | 0 | getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY)); |
12704 | 0 | } |
12705 | 0 | case Type::DependentSizedArray: { |
12706 | 0 | const auto *AX = cast<DependentSizedArrayType>(X), |
12707 | 0 | *AY = cast<DependentSizedArrayType>(Y); |
12708 | 0 | return Ctx.getDependentSizedArrayType( |
12709 | 0 | getCommonArrayElementType(Ctx, AX, QX, AY, QY), |
12710 | 0 | getCommonSizeExpr(Ctx, AX, AY), getCommonSizeModifier(AX, AY), |
12711 | 0 | getCommonIndexTypeCVRQualifiers(AX, AY), |
12712 | 0 | AX->getBracketsRange() == AY->getBracketsRange() |
12713 | 0 | ? AX->getBracketsRange() |
12714 | 0 | : SourceRange()); |
12715 | 0 | } |
12716 | 0 | case Type::ConstantArray: { |
12717 | 0 | const auto *AX = cast<ConstantArrayType>(X), |
12718 | 0 | *AY = cast<ConstantArrayType>(Y); |
12719 | 0 | assert(AX->getSize() == AY->getSize()); |
12720 | 0 | const Expr *SizeExpr = Ctx.hasSameExpr(AX->getSizeExpr(), AY->getSizeExpr()) |
12721 | 0 | ? AX->getSizeExpr() |
12722 | 0 | : nullptr; |
12723 | 0 | return Ctx.getConstantArrayType( |
12724 | 0 | getCommonArrayElementType(Ctx, AX, QX, AY, QY), AX->getSize(), SizeExpr, |
12725 | 0 | getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY)); |
12726 | 0 | } |
12727 | 0 | case Type::Atomic: { |
12728 | 0 | const auto *AX = cast<AtomicType>(X), *AY = cast<AtomicType>(Y); |
12729 | 0 | return Ctx.getAtomicType( |
12730 | 0 | Ctx.getCommonSugaredType(AX->getValueType(), AY->getValueType())); |
12731 | 0 | } |
12732 | 0 | case Type::Complex: { |
12733 | 0 | const auto *CX = cast<ComplexType>(X), *CY = cast<ComplexType>(Y); |
12734 | 0 | return Ctx.getComplexType(getCommonArrayElementType(Ctx, CX, QX, CY, QY)); |
12735 | 0 | } |
12736 | 0 | case Type::Pointer: { |
12737 | 0 | const auto *PX = cast<PointerType>(X), *PY = cast<PointerType>(Y); |
12738 | 0 | return Ctx.getPointerType(getCommonPointeeType(Ctx, PX, PY)); |
12739 | 0 | } |
12740 | 0 | case Type::BlockPointer: { |
12741 | 0 | const auto *PX = cast<BlockPointerType>(X), *PY = cast<BlockPointerType>(Y); |
12742 | 0 | return Ctx.getBlockPointerType(getCommonPointeeType(Ctx, PX, PY)); |
12743 | 0 | } |
12744 | 0 | case Type::ObjCObjectPointer: { |
12745 | 0 | const auto *PX = cast<ObjCObjectPointerType>(X), |
12746 | 0 | *PY = cast<ObjCObjectPointerType>(Y); |
12747 | 0 | return Ctx.getObjCObjectPointerType(getCommonPointeeType(Ctx, PX, PY)); |
12748 | 0 | } |
12749 | 0 | case Type::MemberPointer: { |
12750 | 0 | const auto *PX = cast<MemberPointerType>(X), |
12751 | 0 | *PY = cast<MemberPointerType>(Y); |
12752 | 0 | return Ctx.getMemberPointerType( |
12753 | 0 | getCommonPointeeType(Ctx, PX, PY), |
12754 | 0 | Ctx.getCommonSugaredType(QualType(PX->getClass(), 0), |
12755 | 0 | QualType(PY->getClass(), 0)) |
12756 | 0 | .getTypePtr()); |
12757 | 0 | } |
12758 | 0 | case Type::LValueReference: { |
12759 | 0 | const auto *PX = cast<LValueReferenceType>(X), |
12760 | 0 | *PY = cast<LValueReferenceType>(Y); |
12761 | | // FIXME: Preserve PointeeTypeAsWritten. |
12762 | 0 | return Ctx.getLValueReferenceType(getCommonPointeeType(Ctx, PX, PY), |
12763 | 0 | PX->isSpelledAsLValue() || |
12764 | 0 | PY->isSpelledAsLValue()); |
12765 | 0 | } |
12766 | 0 | case Type::RValueReference: { |
12767 | 0 | const auto *PX = cast<RValueReferenceType>(X), |
12768 | 0 | *PY = cast<RValueReferenceType>(Y); |
12769 | | // FIXME: Preserve PointeeTypeAsWritten. |
12770 | 0 | return Ctx.getRValueReferenceType(getCommonPointeeType(Ctx, PX, PY)); |
12771 | 0 | } |
12772 | 0 | case Type::DependentAddressSpace: { |
12773 | 0 | const auto *PX = cast<DependentAddressSpaceType>(X), |
12774 | 0 | *PY = cast<DependentAddressSpaceType>(Y); |
12775 | 0 | assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr())); |
12776 | 0 | return Ctx.getDependentAddressSpaceType(getCommonPointeeType(Ctx, PX, PY), |
12777 | 0 | PX->getAddrSpaceExpr(), |
12778 | 0 | getCommonAttrLoc(PX, PY)); |
12779 | 0 | } |
12780 | 0 | case Type::FunctionNoProto: { |
12781 | 0 | const auto *FX = cast<FunctionNoProtoType>(X), |
12782 | 0 | *FY = cast<FunctionNoProtoType>(Y); |
12783 | 0 | assert(FX->getExtInfo() == FY->getExtInfo()); |
12784 | 0 | return Ctx.getFunctionNoProtoType( |
12785 | 0 | Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()), |
12786 | 0 | FX->getExtInfo()); |
12787 | 0 | } |
12788 | 0 | case Type::FunctionProto: { |
12789 | 0 | const auto *FX = cast<FunctionProtoType>(X), |
12790 | 0 | *FY = cast<FunctionProtoType>(Y); |
12791 | 0 | FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(), |
12792 | 0 | EPIY = FY->getExtProtoInfo(); |
12793 | 0 | assert(EPIX.ExtInfo == EPIY.ExtInfo); |
12794 | 0 | assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos); |
12795 | 0 | assert(EPIX.RefQualifier == EPIY.RefQualifier); |
12796 | 0 | assert(EPIX.TypeQuals == EPIY.TypeQuals); |
12797 | 0 | assert(EPIX.Variadic == EPIY.Variadic); |
12798 | | |
12799 | | // FIXME: Can we handle an empty EllipsisLoc? |
12800 | | // Use emtpy EllipsisLoc if X and Y differ. |
12801 | | |
12802 | 0 | EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn; |
12803 | |
|
12804 | 0 | QualType R = |
12805 | 0 | Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()); |
12806 | 0 | auto P = getCommonTypes(Ctx, FX->param_types(), FY->param_types(), |
12807 | 0 | /*Unqualified=*/true); |
12808 | |
|
12809 | 0 | SmallVector<QualType, 8> Exceptions; |
12810 | 0 | EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs( |
12811 | 0 | EPIX.ExceptionSpec, EPIY.ExceptionSpec, Exceptions, true); |
12812 | 0 | return Ctx.getFunctionType(R, P, EPIX); |
12813 | 0 | } |
12814 | 0 | case Type::ObjCObject: { |
12815 | 0 | const auto *OX = cast<ObjCObjectType>(X), *OY = cast<ObjCObjectType>(Y); |
12816 | 0 | assert( |
12817 | 0 | std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), |
12818 | 0 | OY->getProtocols().begin(), OY->getProtocols().end(), |
12819 | 0 | [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { |
12820 | 0 | return P0->getCanonicalDecl() == P1->getCanonicalDecl(); |
12821 | 0 | }) && |
12822 | 0 | "protocol lists must be the same"); |
12823 | 0 | auto TAs = getCommonTypes(Ctx, OX->getTypeArgsAsWritten(), |
12824 | 0 | OY->getTypeArgsAsWritten()); |
12825 | 0 | return Ctx.getObjCObjectType( |
12826 | 0 | Ctx.getCommonSugaredType(OX->getBaseType(), OY->getBaseType()), TAs, |
12827 | 0 | OX->getProtocols(), |
12828 | 0 | OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten()); |
12829 | 0 | } |
12830 | 0 | case Type::ConstantMatrix: { |
12831 | 0 | const auto *MX = cast<ConstantMatrixType>(X), |
12832 | 0 | *MY = cast<ConstantMatrixType>(Y); |
12833 | 0 | assert(MX->getNumRows() == MY->getNumRows()); |
12834 | 0 | assert(MX->getNumColumns() == MY->getNumColumns()); |
12835 | 0 | return Ctx.getConstantMatrixType(getCommonElementType(Ctx, MX, MY), |
12836 | 0 | MX->getNumRows(), MX->getNumColumns()); |
12837 | 0 | } |
12838 | 0 | case Type::DependentSizedMatrix: { |
12839 | 0 | const auto *MX = cast<DependentSizedMatrixType>(X), |
12840 | 0 | *MY = cast<DependentSizedMatrixType>(Y); |
12841 | 0 | assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr())); |
12842 | 0 | assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr())); |
12843 | 0 | return Ctx.getDependentSizedMatrixType( |
12844 | 0 | getCommonElementType(Ctx, MX, MY), MX->getRowExpr(), |
12845 | 0 | MX->getColumnExpr(), getCommonAttrLoc(MX, MY)); |
12846 | 0 | } |
12847 | 0 | case Type::Vector: { |
12848 | 0 | const auto *VX = cast<VectorType>(X), *VY = cast<VectorType>(Y); |
12849 | 0 | assert(VX->getNumElements() == VY->getNumElements()); |
12850 | 0 | assert(VX->getVectorKind() == VY->getVectorKind()); |
12851 | 0 | return Ctx.getVectorType(getCommonElementType(Ctx, VX, VY), |
12852 | 0 | VX->getNumElements(), VX->getVectorKind()); |
12853 | 0 | } |
12854 | 0 | case Type::ExtVector: { |
12855 | 0 | const auto *VX = cast<ExtVectorType>(X), *VY = cast<ExtVectorType>(Y); |
12856 | 0 | assert(VX->getNumElements() == VY->getNumElements()); |
12857 | 0 | return Ctx.getExtVectorType(getCommonElementType(Ctx, VX, VY), |
12858 | 0 | VX->getNumElements()); |
12859 | 0 | } |
12860 | 0 | case Type::DependentSizedExtVector: { |
12861 | 0 | const auto *VX = cast<DependentSizedExtVectorType>(X), |
12862 | 0 | *VY = cast<DependentSizedExtVectorType>(Y); |
12863 | 0 | return Ctx.getDependentSizedExtVectorType(getCommonElementType(Ctx, VX, VY), |
12864 | 0 | getCommonSizeExpr(Ctx, VX, VY), |
12865 | 0 | getCommonAttrLoc(VX, VY)); |
12866 | 0 | } |
12867 | 0 | case Type::DependentVector: { |
12868 | 0 | const auto *VX = cast<DependentVectorType>(X), |
12869 | 0 | *VY = cast<DependentVectorType>(Y); |
12870 | 0 | assert(VX->getVectorKind() == VY->getVectorKind()); |
12871 | 0 | return Ctx.getDependentVectorType( |
12872 | 0 | getCommonElementType(Ctx, VX, VY), getCommonSizeExpr(Ctx, VX, VY), |
12873 | 0 | getCommonAttrLoc(VX, VY), VX->getVectorKind()); |
12874 | 0 | } |
12875 | 0 | case Type::InjectedClassName: { |
12876 | 0 | const auto *IX = cast<InjectedClassNameType>(X), |
12877 | 0 | *IY = cast<InjectedClassNameType>(Y); |
12878 | 0 | return Ctx.getInjectedClassNameType( |
12879 | 0 | getCommonDeclChecked(IX->getDecl(), IY->getDecl()), |
12880 | 0 | Ctx.getCommonSugaredType(IX->getInjectedSpecializationType(), |
12881 | 0 | IY->getInjectedSpecializationType())); |
12882 | 0 | } |
12883 | 0 | case Type::TemplateSpecialization: { |
12884 | 0 | const auto *TX = cast<TemplateSpecializationType>(X), |
12885 | 0 | *TY = cast<TemplateSpecializationType>(Y); |
12886 | 0 | auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(), |
12887 | 0 | TY->template_arguments()); |
12888 | 0 | return Ctx.getTemplateSpecializationType( |
12889 | 0 | ::getCommonTemplateNameChecked(Ctx, TX->getTemplateName(), |
12890 | 0 | TY->getTemplateName()), |
12891 | 0 | As, X->getCanonicalTypeInternal()); |
12892 | 0 | } |
12893 | 0 | case Type::Decltype: { |
12894 | 0 | const auto *DX = cast<DecltypeType>(X); |
12895 | 0 | [[maybe_unused]] const auto *DY = cast<DecltypeType>(Y); |
12896 | 0 | assert(DX->isDependentType()); |
12897 | 0 | assert(DY->isDependentType()); |
12898 | 0 | assert(Ctx.hasSameExpr(DX->getUnderlyingExpr(), DY->getUnderlyingExpr())); |
12899 | | // As Decltype is not uniqued, building a common type would be wasteful. |
12900 | 0 | return QualType(DX, 0); |
12901 | 0 | } |
12902 | 0 | case Type::DependentName: { |
12903 | 0 | const auto *NX = cast<DependentNameType>(X), |
12904 | 0 | *NY = cast<DependentNameType>(Y); |
12905 | 0 | assert(NX->getIdentifier() == NY->getIdentifier()); |
12906 | 0 | return Ctx.getDependentNameType( |
12907 | 0 | getCommonTypeKeyword(NX, NY), getCommonNNS(Ctx, NX, NY), |
12908 | 0 | NX->getIdentifier(), NX->getCanonicalTypeInternal()); |
12909 | 0 | } |
12910 | 0 | case Type::DependentTemplateSpecialization: { |
12911 | 0 | const auto *TX = cast<DependentTemplateSpecializationType>(X), |
12912 | 0 | *TY = cast<DependentTemplateSpecializationType>(Y); |
12913 | 0 | assert(TX->getIdentifier() == TY->getIdentifier()); |
12914 | 0 | auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(), |
12915 | 0 | TY->template_arguments()); |
12916 | 0 | return Ctx.getDependentTemplateSpecializationType( |
12917 | 0 | getCommonTypeKeyword(TX, TY), getCommonNNS(Ctx, TX, TY), |
12918 | 0 | TX->getIdentifier(), As); |
12919 | 0 | } |
12920 | 0 | case Type::UnaryTransform: { |
12921 | 0 | const auto *TX = cast<UnaryTransformType>(X), |
12922 | 0 | *TY = cast<UnaryTransformType>(Y); |
12923 | 0 | assert(TX->getUTTKind() == TY->getUTTKind()); |
12924 | 0 | return Ctx.getUnaryTransformType( |
12925 | 0 | Ctx.getCommonSugaredType(TX->getBaseType(), TY->getBaseType()), |
12926 | 0 | Ctx.getCommonSugaredType(TX->getUnderlyingType(), |
12927 | 0 | TY->getUnderlyingType()), |
12928 | 0 | TX->getUTTKind()); |
12929 | 0 | } |
12930 | 0 | case Type::PackExpansion: { |
12931 | 0 | const auto *PX = cast<PackExpansionType>(X), |
12932 | 0 | *PY = cast<PackExpansionType>(Y); |
12933 | 0 | assert(PX->getNumExpansions() == PY->getNumExpansions()); |
12934 | 0 | return Ctx.getPackExpansionType( |
12935 | 0 | Ctx.getCommonSugaredType(PX->getPattern(), PY->getPattern()), |
12936 | 0 | PX->getNumExpansions(), false); |
12937 | 0 | } |
12938 | 0 | case Type::Pipe: { |
12939 | 0 | const auto *PX = cast<PipeType>(X), *PY = cast<PipeType>(Y); |
12940 | 0 | assert(PX->isReadOnly() == PY->isReadOnly()); |
12941 | 0 | auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType |
12942 | 0 | : &ASTContext::getWritePipeType; |
12943 | 0 | return (Ctx.*MP)(getCommonElementType(Ctx, PX, PY)); |
12944 | 0 | } |
12945 | 0 | case Type::TemplateTypeParm: { |
12946 | 0 | const auto *TX = cast<TemplateTypeParmType>(X), |
12947 | 0 | *TY = cast<TemplateTypeParmType>(Y); |
12948 | 0 | assert(TX->getDepth() == TY->getDepth()); |
12949 | 0 | assert(TX->getIndex() == TY->getIndex()); |
12950 | 0 | assert(TX->isParameterPack() == TY->isParameterPack()); |
12951 | 0 | return Ctx.getTemplateTypeParmType( |
12952 | 0 | TX->getDepth(), TX->getIndex(), TX->isParameterPack(), |
12953 | 0 | getCommonDecl(TX->getDecl(), TY->getDecl())); |
12954 | 0 | } |
12955 | 0 | } |
12956 | 0 | llvm_unreachable("Unknown Type Class"); |
12957 | 0 | } |
12958 | | |
12959 | | static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X, |
12960 | | const Type *Y, |
12961 | 0 | SplitQualType Underlying) { |
12962 | 0 | Type::TypeClass TC = X->getTypeClass(); |
12963 | 0 | if (TC != Y->getTypeClass()) |
12964 | 0 | return QualType(); |
12965 | 0 | switch (TC) { |
12966 | 0 | #define UNEXPECTED_TYPE(Class, Kind) \ |
12967 | 0 | case Type::Class: \ |
12968 | 0 | llvm_unreachable("Unexpected " Kind ": " #Class); |
12969 | 0 | #define TYPE(Class, Base) |
12970 | 0 | #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent") |
12971 | 0 | #include "clang/AST/TypeNodes.inc" |
12972 | |
|
12973 | 0 | #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical") |
12974 | 0 | CANONICAL_TYPE(Atomic) |
12975 | 0 | CANONICAL_TYPE(BitInt) |
12976 | 0 | CANONICAL_TYPE(BlockPointer) |
12977 | 0 | CANONICAL_TYPE(Builtin) |
12978 | 0 | CANONICAL_TYPE(Complex) |
12979 | 0 | CANONICAL_TYPE(ConstantArray) |
12980 | 0 | CANONICAL_TYPE(ConstantMatrix) |
12981 | 0 | CANONICAL_TYPE(Enum) |
12982 | 0 | CANONICAL_TYPE(ExtVector) |
12983 | 0 | CANONICAL_TYPE(FunctionNoProto) |
12984 | 0 | CANONICAL_TYPE(FunctionProto) |
12985 | 0 | CANONICAL_TYPE(IncompleteArray) |
12986 | 0 | CANONICAL_TYPE(LValueReference) |
12987 | 0 | CANONICAL_TYPE(MemberPointer) |
12988 | 0 | CANONICAL_TYPE(ObjCInterface) |
12989 | 0 | CANONICAL_TYPE(ObjCObject) |
12990 | 0 | CANONICAL_TYPE(ObjCObjectPointer) |
12991 | 0 | CANONICAL_TYPE(Pipe) |
12992 | 0 | CANONICAL_TYPE(Pointer) |
12993 | 0 | CANONICAL_TYPE(Record) |
12994 | 0 | CANONICAL_TYPE(RValueReference) |
12995 | 0 | CANONICAL_TYPE(VariableArray) |
12996 | 0 | CANONICAL_TYPE(Vector) |
12997 | 0 | #undef CANONICAL_TYPE |
12998 | |
|
12999 | 0 | #undef UNEXPECTED_TYPE |
13000 | |
|
13001 | 0 | case Type::Adjusted: { |
13002 | 0 | const auto *AX = cast<AdjustedType>(X), *AY = cast<AdjustedType>(Y); |
13003 | 0 | QualType OX = AX->getOriginalType(), OY = AY->getOriginalType(); |
13004 | 0 | if (!Ctx.hasSameType(OX, OY)) |
13005 | 0 | return QualType(); |
13006 | | // FIXME: It's inefficient to have to unify the original types. |
13007 | 0 | return Ctx.getAdjustedType(Ctx.getCommonSugaredType(OX, OY), |
13008 | 0 | Ctx.getQualifiedType(Underlying)); |
13009 | 0 | } |
13010 | 0 | case Type::Decayed: { |
13011 | 0 | const auto *DX = cast<DecayedType>(X), *DY = cast<DecayedType>(Y); |
13012 | 0 | QualType OX = DX->getOriginalType(), OY = DY->getOriginalType(); |
13013 | 0 | if (!Ctx.hasSameType(OX, OY)) |
13014 | 0 | return QualType(); |
13015 | | // FIXME: It's inefficient to have to unify the original types. |
13016 | 0 | return Ctx.getDecayedType(Ctx.getCommonSugaredType(OX, OY), |
13017 | 0 | Ctx.getQualifiedType(Underlying)); |
13018 | 0 | } |
13019 | 0 | case Type::Attributed: { |
13020 | 0 | const auto *AX = cast<AttributedType>(X), *AY = cast<AttributedType>(Y); |
13021 | 0 | AttributedType::Kind Kind = AX->getAttrKind(); |
13022 | 0 | if (Kind != AY->getAttrKind()) |
13023 | 0 | return QualType(); |
13024 | 0 | QualType MX = AX->getModifiedType(), MY = AY->getModifiedType(); |
13025 | 0 | if (!Ctx.hasSameType(MX, MY)) |
13026 | 0 | return QualType(); |
13027 | | // FIXME: It's inefficient to have to unify the modified types. |
13028 | 0 | return Ctx.getAttributedType(Kind, Ctx.getCommonSugaredType(MX, MY), |
13029 | 0 | Ctx.getQualifiedType(Underlying)); |
13030 | 0 | } |
13031 | 0 | case Type::BTFTagAttributed: { |
13032 | 0 | const auto *BX = cast<BTFTagAttributedType>(X); |
13033 | 0 | const BTFTypeTagAttr *AX = BX->getAttr(); |
13034 | | // The attribute is not uniqued, so just compare the tag. |
13035 | 0 | if (AX->getBTFTypeTag() != |
13036 | 0 | cast<BTFTagAttributedType>(Y)->getAttr()->getBTFTypeTag()) |
13037 | 0 | return QualType(); |
13038 | 0 | return Ctx.getBTFTagAttributedType(AX, Ctx.getQualifiedType(Underlying)); |
13039 | 0 | } |
13040 | 0 | case Type::Auto: { |
13041 | 0 | const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y); |
13042 | |
|
13043 | 0 | AutoTypeKeyword KW = AX->getKeyword(); |
13044 | 0 | if (KW != AY->getKeyword()) |
13045 | 0 | return QualType(); |
13046 | | |
13047 | 0 | ConceptDecl *CD = ::getCommonDecl(AX->getTypeConstraintConcept(), |
13048 | 0 | AY->getTypeConstraintConcept()); |
13049 | 0 | SmallVector<TemplateArgument, 8> As; |
13050 | 0 | if (CD && |
13051 | 0 | getCommonTemplateArguments(Ctx, As, AX->getTypeConstraintArguments(), |
13052 | 0 | AY->getTypeConstraintArguments())) { |
13053 | 0 | CD = nullptr; // The arguments differ, so make it unconstrained. |
13054 | 0 | As.clear(); |
13055 | 0 | } |
13056 | | |
13057 | | // Both auto types can't be dependent, otherwise they wouldn't have been |
13058 | | // sugar. This implies they can't contain unexpanded packs either. |
13059 | 0 | return Ctx.getAutoType(Ctx.getQualifiedType(Underlying), AX->getKeyword(), |
13060 | 0 | /*IsDependent=*/false, /*IsPack=*/false, CD, As); |
13061 | 0 | } |
13062 | 0 | case Type::Decltype: |
13063 | 0 | return QualType(); |
13064 | 0 | case Type::DeducedTemplateSpecialization: |
13065 | | // FIXME: Try to merge these. |
13066 | 0 | return QualType(); |
13067 | | |
13068 | 0 | case Type::Elaborated: { |
13069 | 0 | const auto *EX = cast<ElaboratedType>(X), *EY = cast<ElaboratedType>(Y); |
13070 | 0 | return Ctx.getElaboratedType( |
13071 | 0 | ::getCommonTypeKeyword(EX, EY), ::getCommonNNS(Ctx, EX, EY), |
13072 | 0 | Ctx.getQualifiedType(Underlying), |
13073 | 0 | ::getCommonDecl(EX->getOwnedTagDecl(), EY->getOwnedTagDecl())); |
13074 | 0 | } |
13075 | 0 | case Type::MacroQualified: { |
13076 | 0 | const auto *MX = cast<MacroQualifiedType>(X), |
13077 | 0 | *MY = cast<MacroQualifiedType>(Y); |
13078 | 0 | const IdentifierInfo *IX = MX->getMacroIdentifier(); |
13079 | 0 | if (IX != MY->getMacroIdentifier()) |
13080 | 0 | return QualType(); |
13081 | 0 | return Ctx.getMacroQualifiedType(Ctx.getQualifiedType(Underlying), IX); |
13082 | 0 | } |
13083 | 0 | case Type::SubstTemplateTypeParm: { |
13084 | 0 | const auto *SX = cast<SubstTemplateTypeParmType>(X), |
13085 | 0 | *SY = cast<SubstTemplateTypeParmType>(Y); |
13086 | 0 | Decl *CD = |
13087 | 0 | ::getCommonDecl(SX->getAssociatedDecl(), SY->getAssociatedDecl()); |
13088 | 0 | if (!CD) |
13089 | 0 | return QualType(); |
13090 | 0 | unsigned Index = SX->getIndex(); |
13091 | 0 | if (Index != SY->getIndex()) |
13092 | 0 | return QualType(); |
13093 | 0 | auto PackIndex = SX->getPackIndex(); |
13094 | 0 | if (PackIndex != SY->getPackIndex()) |
13095 | 0 | return QualType(); |
13096 | 0 | return Ctx.getSubstTemplateTypeParmType(Ctx.getQualifiedType(Underlying), |
13097 | 0 | CD, Index, PackIndex); |
13098 | 0 | } |
13099 | 0 | case Type::ObjCTypeParam: |
13100 | | // FIXME: Try to merge these. |
13101 | 0 | return QualType(); |
13102 | 0 | case Type::Paren: |
13103 | 0 | return Ctx.getParenType(Ctx.getQualifiedType(Underlying)); |
13104 | | |
13105 | 0 | case Type::TemplateSpecialization: { |
13106 | 0 | const auto *TX = cast<TemplateSpecializationType>(X), |
13107 | 0 | *TY = cast<TemplateSpecializationType>(Y); |
13108 | 0 | TemplateName CTN = ::getCommonTemplateName(Ctx, TX->getTemplateName(), |
13109 | 0 | TY->getTemplateName()); |
13110 | 0 | if (!CTN.getAsVoidPointer()) |
13111 | 0 | return QualType(); |
13112 | 0 | SmallVector<TemplateArgument, 8> Args; |
13113 | 0 | if (getCommonTemplateArguments(Ctx, Args, TX->template_arguments(), |
13114 | 0 | TY->template_arguments())) |
13115 | 0 | return QualType(); |
13116 | 0 | return Ctx.getTemplateSpecializationType(CTN, Args, |
13117 | 0 | Ctx.getQualifiedType(Underlying)); |
13118 | 0 | } |
13119 | 0 | case Type::Typedef: { |
13120 | 0 | const auto *TX = cast<TypedefType>(X), *TY = cast<TypedefType>(Y); |
13121 | 0 | const TypedefNameDecl *CD = ::getCommonDecl(TX->getDecl(), TY->getDecl()); |
13122 | 0 | if (!CD) |
13123 | 0 | return QualType(); |
13124 | 0 | return Ctx.getTypedefType(CD, Ctx.getQualifiedType(Underlying)); |
13125 | 0 | } |
13126 | 0 | case Type::TypeOf: { |
13127 | | // The common sugar between two typeof expressions, where one is |
13128 | | // potentially a typeof_unqual and the other is not, we unify to the |
13129 | | // qualified type as that retains the most information along with the type. |
13130 | | // We only return a typeof_unqual type when both types are unqual types. |
13131 | 0 | TypeOfKind Kind = TypeOfKind::Qualified; |
13132 | 0 | if (cast<TypeOfType>(X)->getKind() == cast<TypeOfType>(Y)->getKind() && |
13133 | 0 | cast<TypeOfType>(X)->getKind() == TypeOfKind::Unqualified) |
13134 | 0 | Kind = TypeOfKind::Unqualified; |
13135 | 0 | return Ctx.getTypeOfType(Ctx.getQualifiedType(Underlying), Kind); |
13136 | 0 | } |
13137 | 0 | case Type::TypeOfExpr: |
13138 | 0 | return QualType(); |
13139 | | |
13140 | 0 | case Type::UnaryTransform: { |
13141 | 0 | const auto *UX = cast<UnaryTransformType>(X), |
13142 | 0 | *UY = cast<UnaryTransformType>(Y); |
13143 | 0 | UnaryTransformType::UTTKind KX = UX->getUTTKind(); |
13144 | 0 | if (KX != UY->getUTTKind()) |
13145 | 0 | return QualType(); |
13146 | 0 | QualType BX = UX->getBaseType(), BY = UY->getBaseType(); |
13147 | 0 | if (!Ctx.hasSameType(BX, BY)) |
13148 | 0 | return QualType(); |
13149 | | // FIXME: It's inefficient to have to unify the base types. |
13150 | 0 | return Ctx.getUnaryTransformType(Ctx.getCommonSugaredType(BX, BY), |
13151 | 0 | Ctx.getQualifiedType(Underlying), KX); |
13152 | 0 | } |
13153 | 0 | case Type::Using: { |
13154 | 0 | const auto *UX = cast<UsingType>(X), *UY = cast<UsingType>(Y); |
13155 | 0 | const UsingShadowDecl *CD = |
13156 | 0 | ::getCommonDecl(UX->getFoundDecl(), UY->getFoundDecl()); |
13157 | 0 | if (!CD) |
13158 | 0 | return QualType(); |
13159 | 0 | return Ctx.getUsingType(CD, Ctx.getQualifiedType(Underlying)); |
13160 | 0 | } |
13161 | 0 | } |
13162 | 0 | llvm_unreachable("Unhandled Type Class"); |
13163 | 0 | } |
13164 | | |
13165 | 0 | static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) { |
13166 | 0 | SmallVector<SplitQualType, 8> R; |
13167 | 0 | while (true) { |
13168 | 0 | QTotal.addConsistentQualifiers(T.Quals); |
13169 | 0 | QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); |
13170 | 0 | if (NT == QualType(T.Ty, 0)) |
13171 | 0 | break; |
13172 | 0 | R.push_back(T); |
13173 | 0 | T = NT.split(); |
13174 | 0 | } |
13175 | 0 | return R; |
13176 | 0 | } |
13177 | | |
13178 | | QualType ASTContext::getCommonSugaredType(QualType X, QualType Y, |
13179 | 0 | bool Unqualified) { |
13180 | 0 | assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y)); |
13181 | 0 | if (X == Y) |
13182 | 0 | return X; |
13183 | 0 | if (!Unqualified) { |
13184 | 0 | if (X.isCanonical()) |
13185 | 0 | return X; |
13186 | 0 | if (Y.isCanonical()) |
13187 | 0 | return Y; |
13188 | 0 | } |
13189 | | |
13190 | 0 | SplitQualType SX = X.split(), SY = Y.split(); |
13191 | 0 | Qualifiers QX, QY; |
13192 | | // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys, |
13193 | | // until we reach their underlying "canonical nodes". Note these are not |
13194 | | // necessarily canonical types, as they may still have sugared properties. |
13195 | | // QX and QY will store the sum of all qualifiers in Xs and Ys respectively. |
13196 | 0 | auto Xs = ::unwrapSugar(SX, QX), Ys = ::unwrapSugar(SY, QY); |
13197 | 0 | if (SX.Ty != SY.Ty) { |
13198 | | // The canonical nodes differ. Build a common canonical node out of the two, |
13199 | | // unifying their sugar. This may recurse back here. |
13200 | 0 | SX.Ty = |
13201 | 0 | ::getCommonNonSugarTypeNode(*this, SX.Ty, QX, SY.Ty, QY).getTypePtr(); |
13202 | 0 | } else { |
13203 | | // The canonical nodes were identical: We may have desugared too much. |
13204 | | // Add any common sugar back in. |
13205 | 0 | while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) { |
13206 | 0 | QX -= SX.Quals; |
13207 | 0 | QY -= SY.Quals; |
13208 | 0 | SX = Xs.pop_back_val(); |
13209 | 0 | SY = Ys.pop_back_val(); |
13210 | 0 | } |
13211 | 0 | } |
13212 | 0 | if (Unqualified) |
13213 | 0 | QX = Qualifiers::removeCommonQualifiers(QX, QY); |
13214 | 0 | else |
13215 | 0 | assert(QX == QY); |
13216 | | |
13217 | | // Even though the remaining sugar nodes in Xs and Ys differ, some may be |
13218 | | // related. Walk up these nodes, unifying them and adding the result. |
13219 | 0 | while (!Xs.empty() && !Ys.empty()) { |
13220 | 0 | auto Underlying = SplitQualType( |
13221 | 0 | SX.Ty, Qualifiers::removeCommonQualifiers(SX.Quals, SY.Quals)); |
13222 | 0 | SX = Xs.pop_back_val(); |
13223 | 0 | SY = Ys.pop_back_val(); |
13224 | 0 | SX.Ty = ::getCommonSugarTypeNode(*this, SX.Ty, SY.Ty, Underlying) |
13225 | 0 | .getTypePtrOrNull(); |
13226 | | // Stop at the first pair which is unrelated. |
13227 | 0 | if (!SX.Ty) { |
13228 | 0 | SX.Ty = Underlying.Ty; |
13229 | 0 | break; |
13230 | 0 | } |
13231 | 0 | QX -= Underlying.Quals; |
13232 | 0 | }; |
13233 | | |
13234 | | // Add back the missing accumulated qualifiers, which were stripped off |
13235 | | // with the sugar nodes we could not unify. |
13236 | 0 | QualType R = getQualifiedType(SX.Ty, QX); |
13237 | 0 | assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X)); |
13238 | 0 | return R; |
13239 | 0 | } |
13240 | | |
13241 | 0 | QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { |
13242 | 0 | assert(Ty->isFixedPointType()); |
13243 | | |
13244 | 0 | if (Ty->isSaturatedFixedPointType()) return Ty; |
13245 | | |
13246 | 0 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
13247 | 0 | default: |
13248 | 0 | llvm_unreachable("Not a fixed point type!"); |
13249 | 0 | case BuiltinType::ShortAccum: |
13250 | 0 | return SatShortAccumTy; |
13251 | 0 | case BuiltinType::Accum: |
13252 | 0 | return SatAccumTy; |
13253 | 0 | case BuiltinType::LongAccum: |
13254 | 0 | return SatLongAccumTy; |
13255 | 0 | case BuiltinType::UShortAccum: |
13256 | 0 | return SatUnsignedShortAccumTy; |
13257 | 0 | case BuiltinType::UAccum: |
13258 | 0 | return SatUnsignedAccumTy; |
13259 | 0 | case BuiltinType::ULongAccum: |
13260 | 0 | return SatUnsignedLongAccumTy; |
13261 | 0 | case BuiltinType::ShortFract: |
13262 | 0 | return SatShortFractTy; |
13263 | 0 | case BuiltinType::Fract: |
13264 | 0 | return SatFractTy; |
13265 | 0 | case BuiltinType::LongFract: |
13266 | 0 | return SatLongFractTy; |
13267 | 0 | case BuiltinType::UShortFract: |
13268 | 0 | return SatUnsignedShortFractTy; |
13269 | 0 | case BuiltinType::UFract: |
13270 | 0 | return SatUnsignedFractTy; |
13271 | 0 | case BuiltinType::ULongFract: |
13272 | 0 | return SatUnsignedLongFractTy; |
13273 | 0 | } |
13274 | 0 | } |
13275 | | |
13276 | 0 | LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const { |
13277 | 0 | if (LangOpts.OpenCL) |
13278 | 0 | return getTargetInfo().getOpenCLBuiltinAddressSpace(AS); |
13279 | | |
13280 | 0 | if (LangOpts.CUDA) |
13281 | 0 | return getTargetInfo().getCUDABuiltinAddressSpace(AS); |
13282 | | |
13283 | 0 | return getLangASFromTargetAS(AS); |
13284 | 0 | } |
13285 | | |
13286 | | // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that |
13287 | | // doesn't include ASTContext.h |
13288 | | template |
13289 | | clang::LazyGenerationalUpdatePtr< |
13290 | | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType |
13291 | | clang::LazyGenerationalUpdatePtr< |
13292 | | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( |
13293 | | const clang::ASTContext &Ctx, Decl *Value); |
13294 | | |
13295 | 0 | unsigned char ASTContext::getFixedPointScale(QualType Ty) const { |
13296 | 0 | assert(Ty->isFixedPointType()); |
13297 | | |
13298 | 0 | const TargetInfo &Target = getTargetInfo(); |
13299 | 0 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
13300 | 0 | default: |
13301 | 0 | llvm_unreachable("Not a fixed point type!"); |
13302 | 0 | case BuiltinType::ShortAccum: |
13303 | 0 | case BuiltinType::SatShortAccum: |
13304 | 0 | return Target.getShortAccumScale(); |
13305 | 0 | case BuiltinType::Accum: |
13306 | 0 | case BuiltinType::SatAccum: |
13307 | 0 | return Target.getAccumScale(); |
13308 | 0 | case BuiltinType::LongAccum: |
13309 | 0 | case BuiltinType::SatLongAccum: |
13310 | 0 | return Target.getLongAccumScale(); |
13311 | 0 | case BuiltinType::UShortAccum: |
13312 | 0 | case BuiltinType::SatUShortAccum: |
13313 | 0 | return Target.getUnsignedShortAccumScale(); |
13314 | 0 | case BuiltinType::UAccum: |
13315 | 0 | case BuiltinType::SatUAccum: |
13316 | 0 | return Target.getUnsignedAccumScale(); |
13317 | 0 | case BuiltinType::ULongAccum: |
13318 | 0 | case BuiltinType::SatULongAccum: |
13319 | 0 | return Target.getUnsignedLongAccumScale(); |
13320 | 0 | case BuiltinType::ShortFract: |
13321 | 0 | case BuiltinType::SatShortFract: |
13322 | 0 | return Target.getShortFractScale(); |
13323 | 0 | case BuiltinType::Fract: |
13324 | 0 | case BuiltinType::SatFract: |
13325 | 0 | return Target.getFractScale(); |
13326 | 0 | case BuiltinType::LongFract: |
13327 | 0 | case BuiltinType::SatLongFract: |
13328 | 0 | return Target.getLongFractScale(); |
13329 | 0 | case BuiltinType::UShortFract: |
13330 | 0 | case BuiltinType::SatUShortFract: |
13331 | 0 | return Target.getUnsignedShortFractScale(); |
13332 | 0 | case BuiltinType::UFract: |
13333 | 0 | case BuiltinType::SatUFract: |
13334 | 0 | return Target.getUnsignedFractScale(); |
13335 | 0 | case BuiltinType::ULongFract: |
13336 | 0 | case BuiltinType::SatULongFract: |
13337 | 0 | return Target.getUnsignedLongFractScale(); |
13338 | 0 | } |
13339 | 0 | } |
13340 | | |
13341 | 0 | unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { |
13342 | 0 | assert(Ty->isFixedPointType()); |
13343 | | |
13344 | 0 | const TargetInfo &Target = getTargetInfo(); |
13345 | 0 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
13346 | 0 | default: |
13347 | 0 | llvm_unreachable("Not a fixed point type!"); |
13348 | 0 | case BuiltinType::ShortAccum: |
13349 | 0 | case BuiltinType::SatShortAccum: |
13350 | 0 | return Target.getShortAccumIBits(); |
13351 | 0 | case BuiltinType::Accum: |
13352 | 0 | case BuiltinType::SatAccum: |
13353 | 0 | return Target.getAccumIBits(); |
13354 | 0 | case BuiltinType::LongAccum: |
13355 | 0 | case BuiltinType::SatLongAccum: |
13356 | 0 | return Target.getLongAccumIBits(); |
13357 | 0 | case BuiltinType::UShortAccum: |
13358 | 0 | case BuiltinType::SatUShortAccum: |
13359 | 0 | return Target.getUnsignedShortAccumIBits(); |
13360 | 0 | case BuiltinType::UAccum: |
13361 | 0 | case BuiltinType::SatUAccum: |
13362 | 0 | return Target.getUnsignedAccumIBits(); |
13363 | 0 | case BuiltinType::ULongAccum: |
13364 | 0 | case BuiltinType::SatULongAccum: |
13365 | 0 | return Target.getUnsignedLongAccumIBits(); |
13366 | 0 | case BuiltinType::ShortFract: |
13367 | 0 | case BuiltinType::SatShortFract: |
13368 | 0 | case BuiltinType::Fract: |
13369 | 0 | case BuiltinType::SatFract: |
13370 | 0 | case BuiltinType::LongFract: |
13371 | 0 | case BuiltinType::SatLongFract: |
13372 | 0 | case BuiltinType::UShortFract: |
13373 | 0 | case BuiltinType::SatUShortFract: |
13374 | 0 | case BuiltinType::UFract: |
13375 | 0 | case BuiltinType::SatUFract: |
13376 | 0 | case BuiltinType::ULongFract: |
13377 | 0 | case BuiltinType::SatULongFract: |
13378 | 0 | return 0; |
13379 | 0 | } |
13380 | 0 | } |
13381 | | |
13382 | | llvm::FixedPointSemantics |
13383 | 0 | ASTContext::getFixedPointSemantics(QualType Ty) const { |
13384 | 0 | assert((Ty->isFixedPointType() || Ty->isIntegerType()) && |
13385 | 0 | "Can only get the fixed point semantics for a " |
13386 | 0 | "fixed point or integer type."); |
13387 | 0 | if (Ty->isIntegerType()) |
13388 | 0 | return llvm::FixedPointSemantics::GetIntegerSemantics( |
13389 | 0 | getIntWidth(Ty), Ty->isSignedIntegerType()); |
13390 | | |
13391 | 0 | bool isSigned = Ty->isSignedFixedPointType(); |
13392 | 0 | return llvm::FixedPointSemantics( |
13393 | 0 | static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned, |
13394 | 0 | Ty->isSaturatedFixedPointType(), |
13395 | 0 | !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding()); |
13396 | 0 | } |
13397 | | |
13398 | 0 | llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const { |
13399 | 0 | assert(Ty->isFixedPointType()); |
13400 | 0 | return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty)); |
13401 | 0 | } |
13402 | | |
13403 | 0 | llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const { |
13404 | 0 | assert(Ty->isFixedPointType()); |
13405 | 0 | return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty)); |
13406 | 0 | } |
13407 | | |
13408 | 0 | QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const { |
13409 | 0 | assert(Ty->isUnsignedFixedPointType() && |
13410 | 0 | "Expected unsigned fixed point type"); |
13411 | | |
13412 | 0 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
13413 | 0 | case BuiltinType::UShortAccum: |
13414 | 0 | return ShortAccumTy; |
13415 | 0 | case BuiltinType::UAccum: |
13416 | 0 | return AccumTy; |
13417 | 0 | case BuiltinType::ULongAccum: |
13418 | 0 | return LongAccumTy; |
13419 | 0 | case BuiltinType::SatUShortAccum: |
13420 | 0 | return SatShortAccumTy; |
13421 | 0 | case BuiltinType::SatUAccum: |
13422 | 0 | return SatAccumTy; |
13423 | 0 | case BuiltinType::SatULongAccum: |
13424 | 0 | return SatLongAccumTy; |
13425 | 0 | case BuiltinType::UShortFract: |
13426 | 0 | return ShortFractTy; |
13427 | 0 | case BuiltinType::UFract: |
13428 | 0 | return FractTy; |
13429 | 0 | case BuiltinType::ULongFract: |
13430 | 0 | return LongFractTy; |
13431 | 0 | case BuiltinType::SatUShortFract: |
13432 | 0 | return SatShortFractTy; |
13433 | 0 | case BuiltinType::SatUFract: |
13434 | 0 | return SatFractTy; |
13435 | 0 | case BuiltinType::SatULongFract: |
13436 | 0 | return SatLongFractTy; |
13437 | 0 | default: |
13438 | 0 | llvm_unreachable("Unexpected unsigned fixed point type"); |
13439 | 0 | } |
13440 | 0 | } |
13441 | | |
13442 | | std::vector<std::string> ASTContext::filterFunctionTargetVersionAttrs( |
13443 | 0 | const TargetVersionAttr *TV) const { |
13444 | 0 | assert(TV != nullptr); |
13445 | 0 | llvm::SmallVector<StringRef, 8> Feats; |
13446 | 0 | std::vector<std::string> ResFeats; |
13447 | 0 | TV->getFeatures(Feats); |
13448 | 0 | for (auto &Feature : Feats) |
13449 | 0 | if (Target->validateCpuSupports(Feature.str())) |
13450 | | // Use '?' to mark features that came from TargetVersion. |
13451 | 0 | ResFeats.push_back("?" + Feature.str()); |
13452 | 0 | return ResFeats; |
13453 | 0 | } |
13454 | | |
13455 | | ParsedTargetAttr |
13456 | 0 | ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const { |
13457 | 0 | assert(TD != nullptr); |
13458 | 0 | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(TD->getFeaturesStr()); |
13459 | |
|
13460 | 0 | llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) { |
13461 | 0 | return !Target->isValidFeatureName(StringRef{Feat}.substr(1)); |
13462 | 0 | }); |
13463 | 0 | return ParsedAttr; |
13464 | 0 | } |
13465 | | |
13466 | | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
13467 | 0 | const FunctionDecl *FD) const { |
13468 | 0 | if (FD) |
13469 | 0 | getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD)); |
13470 | 0 | else |
13471 | 0 | Target->initFeatureMap(FeatureMap, getDiagnostics(), |
13472 | 0 | Target->getTargetOpts().CPU, |
13473 | 0 | Target->getTargetOpts().Features); |
13474 | 0 | } |
13475 | | |
13476 | | // Fills in the supplied string map with the set of target features for the |
13477 | | // passed in function. |
13478 | | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
13479 | 0 | GlobalDecl GD) const { |
13480 | 0 | StringRef TargetCPU = Target->getTargetOpts().CPU; |
13481 | 0 | const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
13482 | 0 | if (const auto *TD = FD->getAttr<TargetAttr>()) { |
13483 | 0 | ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); |
13484 | | |
13485 | | // Make a copy of the features as passed on the command line into the |
13486 | | // beginning of the additional features from the function to override. |
13487 | 0 | ParsedAttr.Features.insert( |
13488 | 0 | ParsedAttr.Features.begin(), |
13489 | 0 | Target->getTargetOpts().FeaturesAsWritten.begin(), |
13490 | 0 | Target->getTargetOpts().FeaturesAsWritten.end()); |
13491 | |
|
13492 | 0 | if (ParsedAttr.CPU != "" && Target->isValidCPUName(ParsedAttr.CPU)) |
13493 | 0 | TargetCPU = ParsedAttr.CPU; |
13494 | | |
13495 | | // Now populate the feature map, first with the TargetCPU which is either |
13496 | | // the default or a new one from the target attribute string. Then we'll use |
13497 | | // the passed in features (FeaturesAsWritten) along with the new ones from |
13498 | | // the attribute. |
13499 | 0 | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, |
13500 | 0 | ParsedAttr.Features); |
13501 | 0 | } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { |
13502 | 0 | llvm::SmallVector<StringRef, 32> FeaturesTmp; |
13503 | 0 | Target->getCPUSpecificCPUDispatchFeatures( |
13504 | 0 | SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); |
13505 | 0 | std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); |
13506 | 0 | Features.insert(Features.begin(), |
13507 | 0 | Target->getTargetOpts().FeaturesAsWritten.begin(), |
13508 | 0 | Target->getTargetOpts().FeaturesAsWritten.end()); |
13509 | 0 | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); |
13510 | 0 | } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) { |
13511 | 0 | std::vector<std::string> Features; |
13512 | 0 | StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex()); |
13513 | 0 | if (Target->getTriple().isAArch64()) { |
13514 | | // TargetClones for AArch64 |
13515 | 0 | if (VersionStr != "default") { |
13516 | 0 | SmallVector<StringRef, 1> VersionFeatures; |
13517 | 0 | VersionStr.split(VersionFeatures, "+"); |
13518 | 0 | for (auto &VFeature : VersionFeatures) { |
13519 | 0 | VFeature = VFeature.trim(); |
13520 | | // Use '?' to mark features that came from AArch64 TargetClones. |
13521 | 0 | Features.push_back((StringRef{"?"} + VFeature).str()); |
13522 | 0 | } |
13523 | 0 | } |
13524 | 0 | Features.insert(Features.begin(), |
13525 | 0 | Target->getTargetOpts().FeaturesAsWritten.begin(), |
13526 | 0 | Target->getTargetOpts().FeaturesAsWritten.end()); |
13527 | 0 | } else { |
13528 | 0 | if (VersionStr.starts_with("arch=")) |
13529 | 0 | TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1); |
13530 | 0 | else if (VersionStr != "default") |
13531 | 0 | Features.push_back((StringRef{"+"} + VersionStr).str()); |
13532 | 0 | } |
13533 | 0 | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); |
13534 | 0 | } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) { |
13535 | 0 | std::vector<std::string> Feats = filterFunctionTargetVersionAttrs(TV); |
13536 | 0 | Feats.insert(Feats.begin(), |
13537 | 0 | Target->getTargetOpts().FeaturesAsWritten.begin(), |
13538 | 0 | Target->getTargetOpts().FeaturesAsWritten.end()); |
13539 | 0 | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Feats); |
13540 | 0 | } else { |
13541 | 0 | FeatureMap = Target->getTargetOpts().FeatureMap; |
13542 | 0 | } |
13543 | 0 | } |
13544 | | |
13545 | 0 | OMPTraitInfo &ASTContext::getNewOMPTraitInfo() { |
13546 | 0 | OMPTraitInfoVector.emplace_back(new OMPTraitInfo()); |
13547 | 0 | return *OMPTraitInfoVector.back(); |
13548 | 0 | } |
13549 | | |
13550 | | const StreamingDiagnostic &clang:: |
13551 | | operator<<(const StreamingDiagnostic &DB, |
13552 | 0 | const ASTContext::SectionInfo &Section) { |
13553 | 0 | if (Section.Decl) |
13554 | 0 | return DB << Section.Decl; |
13555 | 0 | return DB << "a prior #pragma section"; |
13556 | 0 | } |
13557 | | |
13558 | 0 | bool ASTContext::mayExternalize(const Decl *D) const { |
13559 | 0 | bool IsInternalVar = |
13560 | 0 | isa<VarDecl>(D) && |
13561 | 0 | basicGVALinkageForVariable(*this, cast<VarDecl>(D)) == GVA_Internal; |
13562 | 0 | bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() && |
13563 | 0 | !D->getAttr<CUDADeviceAttr>()->isImplicit()) || |
13564 | 0 | (D->hasAttr<CUDAConstantAttr>() && |
13565 | 0 | !D->getAttr<CUDAConstantAttr>()->isImplicit()); |
13566 | | // CUDA/HIP: managed variables need to be externalized since it is |
13567 | | // a declaration in IR, therefore cannot have internal linkage. Kernels in |
13568 | | // anonymous name space needs to be externalized to avoid duplicate symbols. |
13569 | 0 | return (IsInternalVar && |
13570 | 0 | (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) || |
13571 | 0 | (D->hasAttr<CUDAGlobalAttr>() && |
13572 | 0 | basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) == |
13573 | 0 | GVA_Internal); |
13574 | 0 | } |
13575 | | |
13576 | 0 | bool ASTContext::shouldExternalize(const Decl *D) const { |
13577 | 0 | return mayExternalize(D) && |
13578 | 0 | (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() || |
13579 | 0 | CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D))); |
13580 | 0 | } |
13581 | | |
13582 | 0 | StringRef ASTContext::getCUIDHash() const { |
13583 | 0 | if (!CUIDHash.empty()) |
13584 | 0 | return CUIDHash; |
13585 | 0 | if (LangOpts.CUID.empty()) |
13586 | 0 | return StringRef(); |
13587 | 0 | CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true); |
13588 | 0 | return CUIDHash; |
13589 | 0 | } |