/src/llvm-project/clang/lib/AST/ExprClassification.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- ExprClassification.cpp - Expression AST Node Implementation --------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements Expr::classify. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "clang/AST/Expr.h" |
14 | | #include "clang/AST/ASTContext.h" |
15 | | #include "clang/AST/DeclCXX.h" |
16 | | #include "clang/AST/DeclObjC.h" |
17 | | #include "clang/AST/DeclTemplate.h" |
18 | | #include "clang/AST/ExprCXX.h" |
19 | | #include "clang/AST/ExprObjC.h" |
20 | | #include "llvm/Support/ErrorHandling.h" |
21 | | |
22 | | using namespace clang; |
23 | | |
24 | | using Cl = Expr::Classification; |
25 | | |
26 | | static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E); |
27 | | static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D); |
28 | | static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T); |
29 | | static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E); |
30 | | static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E); |
31 | | static Cl::Kinds ClassifyConditional(ASTContext &Ctx, |
32 | | const Expr *trueExpr, |
33 | | const Expr *falseExpr); |
34 | | static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, |
35 | | Cl::Kinds Kind, SourceLocation &Loc); |
36 | | |
37 | 0 | Cl Expr::ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const { |
38 | 0 | assert(!TR->isReferenceType() && "Expressions can't have reference type."); |
39 | | |
40 | 0 | Cl::Kinds kind = ClassifyInternal(Ctx, this); |
41 | | // C99 6.3.2.1: An lvalue is an expression with an object type or an |
42 | | // incomplete type other than void. |
43 | 0 | if (!Ctx.getLangOpts().CPlusPlus) { |
44 | | // Thus, no functions. |
45 | 0 | if (TR->isFunctionType() || TR == Ctx.OverloadTy) |
46 | 0 | kind = Cl::CL_Function; |
47 | | // No void either, but qualified void is OK because it is "other than void". |
48 | | // Void "lvalues" are classified as addressable void values, which are void |
49 | | // expressions whose address can be taken. |
50 | 0 | else if (TR->isVoidType() && !TR.hasQualifiers()) |
51 | 0 | kind = (kind == Cl::CL_LValue ? Cl::CL_AddressableVoid : Cl::CL_Void); |
52 | 0 | } |
53 | | |
54 | | // Enable this assertion for testing. |
55 | 0 | switch (kind) { |
56 | 0 | case Cl::CL_LValue: |
57 | 0 | assert(isLValue()); |
58 | 0 | break; |
59 | 0 | case Cl::CL_XValue: |
60 | 0 | assert(isXValue()); |
61 | 0 | break; |
62 | 0 | case Cl::CL_Function: |
63 | 0 | case Cl::CL_Void: |
64 | 0 | case Cl::CL_AddressableVoid: |
65 | 0 | case Cl::CL_DuplicateVectorComponents: |
66 | 0 | case Cl::CL_MemberFunction: |
67 | 0 | case Cl::CL_SubObjCPropertySetting: |
68 | 0 | case Cl::CL_ClassTemporary: |
69 | 0 | case Cl::CL_ArrayTemporary: |
70 | 0 | case Cl::CL_ObjCMessageRValue: |
71 | 0 | case Cl::CL_PRValue: |
72 | 0 | assert(isPRValue()); |
73 | 0 | break; |
74 | 0 | } |
75 | | |
76 | 0 | Cl::ModifiableType modifiable = Cl::CM_Untested; |
77 | 0 | if (Loc) |
78 | 0 | modifiable = IsModifiable(Ctx, this, kind, *Loc); |
79 | 0 | return Classification(kind, modifiable); |
80 | 0 | } |
81 | | |
82 | | /// Classify an expression which creates a temporary, based on its type. |
83 | 0 | static Cl::Kinds ClassifyTemporary(QualType T) { |
84 | 0 | if (T->isRecordType()) |
85 | 0 | return Cl::CL_ClassTemporary; |
86 | 0 | if (T->isArrayType()) |
87 | 0 | return Cl::CL_ArrayTemporary; |
88 | | |
89 | | // No special classification: these don't behave differently from normal |
90 | | // prvalues. |
91 | 0 | return Cl::CL_PRValue; |
92 | 0 | } |
93 | | |
94 | | static Cl::Kinds ClassifyExprValueKind(const LangOptions &Lang, |
95 | | const Expr *E, |
96 | 0 | ExprValueKind Kind) { |
97 | 0 | switch (Kind) { |
98 | 0 | case VK_PRValue: |
99 | 0 | return Lang.CPlusPlus ? ClassifyTemporary(E->getType()) : Cl::CL_PRValue; |
100 | 0 | case VK_LValue: |
101 | 0 | return Cl::CL_LValue; |
102 | 0 | case VK_XValue: |
103 | 0 | return Cl::CL_XValue; |
104 | 0 | } |
105 | 0 | llvm_unreachable("Invalid value category of implicit cast."); |
106 | 0 | } |
107 | | |
108 | 0 | static Cl::Kinds ClassifyInternal(ASTContext &Ctx, const Expr *E) { |
109 | | // This function takes the first stab at classifying expressions. |
110 | 0 | const LangOptions &Lang = Ctx.getLangOpts(); |
111 | |
|
112 | 0 | switch (E->getStmtClass()) { |
113 | 0 | case Stmt::NoStmtClass: |
114 | 0 | #define ABSTRACT_STMT(Kind) |
115 | 0 | #define STMT(Kind, Base) case Expr::Kind##Class: |
116 | 0 | #define EXPR(Kind, Base) |
117 | 0 | #include "clang/AST/StmtNodes.inc" |
118 | 0 | llvm_unreachable("cannot classify a statement"); |
119 | | |
120 | | // First come the expressions that are always lvalues, unconditionally. |
121 | 0 | case Expr::ObjCIsaExprClass: |
122 | | // C++ [expr.prim.general]p1: A string literal is an lvalue. |
123 | 0 | case Expr::StringLiteralClass: |
124 | | // @encode is equivalent to its string |
125 | 0 | case Expr::ObjCEncodeExprClass: |
126 | | // __func__ and friends are too. |
127 | 0 | case Expr::PredefinedExprClass: |
128 | | // Property references are lvalues |
129 | 0 | case Expr::ObjCSubscriptRefExprClass: |
130 | 0 | case Expr::ObjCPropertyRefExprClass: |
131 | | // C++ [expr.typeid]p1: The result of a typeid expression is an lvalue of... |
132 | 0 | case Expr::CXXTypeidExprClass: |
133 | 0 | case Expr::CXXUuidofExprClass: |
134 | | // Unresolved lookups and uncorrected typos get classified as lvalues. |
135 | | // FIXME: Is this wise? Should they get their own kind? |
136 | 0 | case Expr::UnresolvedLookupExprClass: |
137 | 0 | case Expr::UnresolvedMemberExprClass: |
138 | 0 | case Expr::TypoExprClass: |
139 | 0 | case Expr::DependentCoawaitExprClass: |
140 | 0 | case Expr::CXXDependentScopeMemberExprClass: |
141 | 0 | case Expr::DependentScopeDeclRefExprClass: |
142 | | // ObjC instance variables are lvalues |
143 | | // FIXME: ObjC++0x might have different rules |
144 | 0 | case Expr::ObjCIvarRefExprClass: |
145 | 0 | case Expr::FunctionParmPackExprClass: |
146 | 0 | case Expr::MSPropertyRefExprClass: |
147 | 0 | case Expr::MSPropertySubscriptExprClass: |
148 | 0 | case Expr::OMPArraySectionExprClass: |
149 | 0 | case Expr::OMPArrayShapingExprClass: |
150 | 0 | case Expr::OMPIteratorExprClass: |
151 | 0 | return Cl::CL_LValue; |
152 | | |
153 | | // C99 6.5.2.5p5 says that compound literals are lvalues. |
154 | | // In C++, they're prvalue temporaries, except for file-scope arrays. |
155 | 0 | case Expr::CompoundLiteralExprClass: |
156 | 0 | return !E->isLValue() ? ClassifyTemporary(E->getType()) : Cl::CL_LValue; |
157 | | |
158 | | // Expressions that are prvalues. |
159 | 0 | case Expr::CXXBoolLiteralExprClass: |
160 | 0 | case Expr::CXXPseudoDestructorExprClass: |
161 | 0 | case Expr::UnaryExprOrTypeTraitExprClass: |
162 | 0 | case Expr::CXXNewExprClass: |
163 | 0 | case Expr::CXXNullPtrLiteralExprClass: |
164 | 0 | case Expr::ImaginaryLiteralClass: |
165 | 0 | case Expr::GNUNullExprClass: |
166 | 0 | case Expr::OffsetOfExprClass: |
167 | 0 | case Expr::CXXThrowExprClass: |
168 | 0 | case Expr::ShuffleVectorExprClass: |
169 | 0 | case Expr::ConvertVectorExprClass: |
170 | 0 | case Expr::IntegerLiteralClass: |
171 | 0 | case Expr::FixedPointLiteralClass: |
172 | 0 | case Expr::CharacterLiteralClass: |
173 | 0 | case Expr::AddrLabelExprClass: |
174 | 0 | case Expr::CXXDeleteExprClass: |
175 | 0 | case Expr::ImplicitValueInitExprClass: |
176 | 0 | case Expr::BlockExprClass: |
177 | 0 | case Expr::FloatingLiteralClass: |
178 | 0 | case Expr::CXXNoexceptExprClass: |
179 | 0 | case Expr::CXXScalarValueInitExprClass: |
180 | 0 | case Expr::TypeTraitExprClass: |
181 | 0 | case Expr::ArrayTypeTraitExprClass: |
182 | 0 | case Expr::ExpressionTraitExprClass: |
183 | 0 | case Expr::ObjCSelectorExprClass: |
184 | 0 | case Expr::ObjCProtocolExprClass: |
185 | 0 | case Expr::ObjCStringLiteralClass: |
186 | 0 | case Expr::ObjCBoxedExprClass: |
187 | 0 | case Expr::ObjCArrayLiteralClass: |
188 | 0 | case Expr::ObjCDictionaryLiteralClass: |
189 | 0 | case Expr::ObjCBoolLiteralExprClass: |
190 | 0 | case Expr::ObjCAvailabilityCheckExprClass: |
191 | 0 | case Expr::ParenListExprClass: |
192 | 0 | case Expr::SizeOfPackExprClass: |
193 | 0 | case Expr::SubstNonTypeTemplateParmPackExprClass: |
194 | 0 | case Expr::AsTypeExprClass: |
195 | 0 | case Expr::ObjCIndirectCopyRestoreExprClass: |
196 | 0 | case Expr::AtomicExprClass: |
197 | 0 | case Expr::CXXFoldExprClass: |
198 | 0 | case Expr::ArrayInitLoopExprClass: |
199 | 0 | case Expr::ArrayInitIndexExprClass: |
200 | 0 | case Expr::NoInitExprClass: |
201 | 0 | case Expr::DesignatedInitUpdateExprClass: |
202 | 0 | case Expr::SourceLocExprClass: |
203 | 0 | case Expr::ConceptSpecializationExprClass: |
204 | 0 | case Expr::RequiresExprClass: |
205 | 0 | return Cl::CL_PRValue; |
206 | | |
207 | | // Make HLSL this reference-like |
208 | 0 | case Expr::CXXThisExprClass: |
209 | 0 | return Lang.HLSL ? Cl::CL_LValue : Cl::CL_PRValue; |
210 | | |
211 | 0 | case Expr::ConstantExprClass: |
212 | 0 | return ClassifyInternal(Ctx, cast<ConstantExpr>(E)->getSubExpr()); |
213 | | |
214 | | // Next come the complicated cases. |
215 | 0 | case Expr::SubstNonTypeTemplateParmExprClass: |
216 | 0 | return ClassifyInternal(Ctx, |
217 | 0 | cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement()); |
218 | | |
219 | | // C, C++98 [expr.sub]p1: The result is an lvalue of type "T". |
220 | | // C++11 (DR1213): in the case of an array operand, the result is an lvalue |
221 | | // if that operand is an lvalue and an xvalue otherwise. |
222 | | // Subscripting vector types is more like member access. |
223 | 0 | case Expr::ArraySubscriptExprClass: |
224 | 0 | if (cast<ArraySubscriptExpr>(E)->getBase()->getType()->isVectorType()) |
225 | 0 | return ClassifyInternal(Ctx, cast<ArraySubscriptExpr>(E)->getBase()); |
226 | 0 | if (Lang.CPlusPlus11) { |
227 | | // Step over the array-to-pointer decay if present, but not over the |
228 | | // temporary materialization. |
229 | 0 | auto *Base = cast<ArraySubscriptExpr>(E)->getBase()->IgnoreImpCasts(); |
230 | 0 | if (Base->getType()->isArrayType()) |
231 | 0 | return ClassifyInternal(Ctx, Base); |
232 | 0 | } |
233 | 0 | return Cl::CL_LValue; |
234 | | |
235 | | // Subscripting matrix types behaves like member accesses. |
236 | 0 | case Expr::MatrixSubscriptExprClass: |
237 | 0 | return ClassifyInternal(Ctx, cast<MatrixSubscriptExpr>(E)->getBase()); |
238 | | |
239 | | // C++ [expr.prim.general]p3: The result is an lvalue if the entity is a |
240 | | // function or variable and a prvalue otherwise. |
241 | 0 | case Expr::DeclRefExprClass: |
242 | 0 | if (E->getType() == Ctx.UnknownAnyTy) |
243 | 0 | return isa<FunctionDecl>(cast<DeclRefExpr>(E)->getDecl()) |
244 | 0 | ? Cl::CL_PRValue : Cl::CL_LValue; |
245 | 0 | return ClassifyDecl(Ctx, cast<DeclRefExpr>(E)->getDecl()); |
246 | | |
247 | | // Member access is complex. |
248 | 0 | case Expr::MemberExprClass: |
249 | 0 | return ClassifyMemberExpr(Ctx, cast<MemberExpr>(E)); |
250 | | |
251 | 0 | case Expr::UnaryOperatorClass: |
252 | 0 | switch (cast<UnaryOperator>(E)->getOpcode()) { |
253 | | // C++ [expr.unary.op]p1: The unary * operator performs indirection: |
254 | | // [...] the result is an lvalue referring to the object or function |
255 | | // to which the expression points. |
256 | 0 | case UO_Deref: |
257 | 0 | return Cl::CL_LValue; |
258 | | |
259 | | // GNU extensions, simply look through them. |
260 | 0 | case UO_Extension: |
261 | 0 | return ClassifyInternal(Ctx, cast<UnaryOperator>(E)->getSubExpr()); |
262 | | |
263 | | // Treat _Real and _Imag basically as if they were member |
264 | | // expressions: l-value only if the operand is a true l-value. |
265 | 0 | case UO_Real: |
266 | 0 | case UO_Imag: { |
267 | 0 | const Expr *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); |
268 | 0 | Cl::Kinds K = ClassifyInternal(Ctx, Op); |
269 | 0 | if (K != Cl::CL_LValue) return K; |
270 | | |
271 | 0 | if (isa<ObjCPropertyRefExpr>(Op)) |
272 | 0 | return Cl::CL_SubObjCPropertySetting; |
273 | 0 | return Cl::CL_LValue; |
274 | 0 | } |
275 | | |
276 | | // C++ [expr.pre.incr]p1: The result is the updated operand; it is an |
277 | | // lvalue, [...] |
278 | | // Not so in C. |
279 | 0 | case UO_PreInc: |
280 | 0 | case UO_PreDec: |
281 | 0 | return Lang.CPlusPlus ? Cl::CL_LValue : Cl::CL_PRValue; |
282 | | |
283 | 0 | default: |
284 | 0 | return Cl::CL_PRValue; |
285 | 0 | } |
286 | | |
287 | 0 | case Expr::RecoveryExprClass: |
288 | 0 | case Expr::OpaqueValueExprClass: |
289 | 0 | return ClassifyExprValueKind(Lang, E, E->getValueKind()); |
290 | | |
291 | | // Pseudo-object expressions can produce l-values with reference magic. |
292 | 0 | case Expr::PseudoObjectExprClass: |
293 | 0 | return ClassifyExprValueKind(Lang, E, |
294 | 0 | cast<PseudoObjectExpr>(E)->getValueKind()); |
295 | | |
296 | | // Implicit casts are lvalues if they're lvalue casts. Other than that, we |
297 | | // only specifically record class temporaries. |
298 | 0 | case Expr::ImplicitCastExprClass: |
299 | 0 | return ClassifyExprValueKind(Lang, E, E->getValueKind()); |
300 | | |
301 | | // C++ [expr.prim.general]p4: The presence of parentheses does not affect |
302 | | // whether the expression is an lvalue. |
303 | 0 | case Expr::ParenExprClass: |
304 | 0 | return ClassifyInternal(Ctx, cast<ParenExpr>(E)->getSubExpr()); |
305 | | |
306 | | // C11 6.5.1.1p4: [A generic selection] is an lvalue, a function designator, |
307 | | // or a void expression if its result expression is, respectively, an |
308 | | // lvalue, a function designator, or a void expression. |
309 | 0 | case Expr::GenericSelectionExprClass: |
310 | 0 | if (cast<GenericSelectionExpr>(E)->isResultDependent()) |
311 | 0 | return Cl::CL_PRValue; |
312 | 0 | return ClassifyInternal(Ctx,cast<GenericSelectionExpr>(E)->getResultExpr()); |
313 | | |
314 | 0 | case Expr::BinaryOperatorClass: |
315 | 0 | case Expr::CompoundAssignOperatorClass: |
316 | | // C doesn't have any binary expressions that are lvalues. |
317 | 0 | if (Lang.CPlusPlus) |
318 | 0 | return ClassifyBinaryOp(Ctx, cast<BinaryOperator>(E)); |
319 | 0 | return Cl::CL_PRValue; |
320 | | |
321 | 0 | case Expr::CallExprClass: |
322 | 0 | case Expr::CXXOperatorCallExprClass: |
323 | 0 | case Expr::CXXMemberCallExprClass: |
324 | 0 | case Expr::UserDefinedLiteralClass: |
325 | 0 | case Expr::CUDAKernelCallExprClass: |
326 | 0 | return ClassifyUnnamed(Ctx, cast<CallExpr>(E)->getCallReturnType(Ctx)); |
327 | | |
328 | 0 | case Expr::CXXRewrittenBinaryOperatorClass: |
329 | 0 | return ClassifyInternal( |
330 | 0 | Ctx, cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm()); |
331 | | |
332 | | // __builtin_choose_expr is equivalent to the chosen expression. |
333 | 0 | case Expr::ChooseExprClass: |
334 | 0 | return ClassifyInternal(Ctx, cast<ChooseExpr>(E)->getChosenSubExpr()); |
335 | | |
336 | | // Extended vector element access is an lvalue unless there are duplicates |
337 | | // in the shuffle expression. |
338 | 0 | case Expr::ExtVectorElementExprClass: |
339 | 0 | if (cast<ExtVectorElementExpr>(E)->containsDuplicateElements()) |
340 | 0 | return Cl::CL_DuplicateVectorComponents; |
341 | 0 | if (cast<ExtVectorElementExpr>(E)->isArrow()) |
342 | 0 | return Cl::CL_LValue; |
343 | 0 | return ClassifyInternal(Ctx, cast<ExtVectorElementExpr>(E)->getBase()); |
344 | | |
345 | | // Simply look at the actual default argument. |
346 | 0 | case Expr::CXXDefaultArgExprClass: |
347 | 0 | return ClassifyInternal(Ctx, cast<CXXDefaultArgExpr>(E)->getExpr()); |
348 | | |
349 | | // Same idea for default initializers. |
350 | 0 | case Expr::CXXDefaultInitExprClass: |
351 | 0 | return ClassifyInternal(Ctx, cast<CXXDefaultInitExpr>(E)->getExpr()); |
352 | | |
353 | | // Same idea for temporary binding. |
354 | 0 | case Expr::CXXBindTemporaryExprClass: |
355 | 0 | return ClassifyInternal(Ctx, cast<CXXBindTemporaryExpr>(E)->getSubExpr()); |
356 | | |
357 | | // And the cleanups guard. |
358 | 0 | case Expr::ExprWithCleanupsClass: |
359 | 0 | return ClassifyInternal(Ctx, cast<ExprWithCleanups>(E)->getSubExpr()); |
360 | | |
361 | | // Casts depend completely on the target type. All casts work the same. |
362 | 0 | case Expr::CStyleCastExprClass: |
363 | 0 | case Expr::CXXFunctionalCastExprClass: |
364 | 0 | case Expr::CXXStaticCastExprClass: |
365 | 0 | case Expr::CXXDynamicCastExprClass: |
366 | 0 | case Expr::CXXReinterpretCastExprClass: |
367 | 0 | case Expr::CXXConstCastExprClass: |
368 | 0 | case Expr::CXXAddrspaceCastExprClass: |
369 | 0 | case Expr::ObjCBridgedCastExprClass: |
370 | 0 | case Expr::BuiltinBitCastExprClass: |
371 | | // Only in C++ can casts be interesting at all. |
372 | 0 | if (!Lang.CPlusPlus) return Cl::CL_PRValue; |
373 | 0 | return ClassifyUnnamed(Ctx, cast<ExplicitCastExpr>(E)->getTypeAsWritten()); |
374 | | |
375 | 0 | case Expr::CXXUnresolvedConstructExprClass: |
376 | 0 | return ClassifyUnnamed(Ctx, |
377 | 0 | cast<CXXUnresolvedConstructExpr>(E)->getTypeAsWritten()); |
378 | | |
379 | 0 | case Expr::BinaryConditionalOperatorClass: { |
380 | 0 | if (!Lang.CPlusPlus) return Cl::CL_PRValue; |
381 | 0 | const auto *co = cast<BinaryConditionalOperator>(E); |
382 | 0 | return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr()); |
383 | 0 | } |
384 | | |
385 | 0 | case Expr::ConditionalOperatorClass: { |
386 | | // Once again, only C++ is interesting. |
387 | 0 | if (!Lang.CPlusPlus) return Cl::CL_PRValue; |
388 | 0 | const auto *co = cast<ConditionalOperator>(E); |
389 | 0 | return ClassifyConditional(Ctx, co->getTrueExpr(), co->getFalseExpr()); |
390 | 0 | } |
391 | | |
392 | | // ObjC message sends are effectively function calls, if the target function |
393 | | // is known. |
394 | 0 | case Expr::ObjCMessageExprClass: |
395 | 0 | if (const ObjCMethodDecl *Method = |
396 | 0 | cast<ObjCMessageExpr>(E)->getMethodDecl()) { |
397 | 0 | Cl::Kinds kind = ClassifyUnnamed(Ctx, Method->getReturnType()); |
398 | 0 | return (kind == Cl::CL_PRValue) ? Cl::CL_ObjCMessageRValue : kind; |
399 | 0 | } |
400 | 0 | return Cl::CL_PRValue; |
401 | | |
402 | | // Some C++ expressions are always class temporaries. |
403 | 0 | case Expr::CXXConstructExprClass: |
404 | 0 | case Expr::CXXInheritedCtorInitExprClass: |
405 | 0 | case Expr::CXXTemporaryObjectExprClass: |
406 | 0 | case Expr::LambdaExprClass: |
407 | 0 | case Expr::CXXStdInitializerListExprClass: |
408 | 0 | return Cl::CL_ClassTemporary; |
409 | | |
410 | 0 | case Expr::VAArgExprClass: |
411 | 0 | return ClassifyUnnamed(Ctx, E->getType()); |
412 | | |
413 | 0 | case Expr::DesignatedInitExprClass: |
414 | 0 | return ClassifyInternal(Ctx, cast<DesignatedInitExpr>(E)->getInit()); |
415 | | |
416 | 0 | case Expr::StmtExprClass: { |
417 | 0 | const CompoundStmt *S = cast<StmtExpr>(E)->getSubStmt(); |
418 | 0 | if (const auto *LastExpr = dyn_cast_or_null<Expr>(S->body_back())) |
419 | 0 | return ClassifyUnnamed(Ctx, LastExpr->getType()); |
420 | 0 | return Cl::CL_PRValue; |
421 | 0 | } |
422 | | |
423 | 0 | case Expr::PackExpansionExprClass: |
424 | 0 | return ClassifyInternal(Ctx, cast<PackExpansionExpr>(E)->getPattern()); |
425 | | |
426 | 0 | case Expr::MaterializeTemporaryExprClass: |
427 | 0 | return cast<MaterializeTemporaryExpr>(E)->isBoundToLvalueReference() |
428 | 0 | ? Cl::CL_LValue |
429 | 0 | : Cl::CL_XValue; |
430 | | |
431 | 0 | case Expr::InitListExprClass: |
432 | | // An init list can be an lvalue if it is bound to a reference and |
433 | | // contains only one element. In that case, we look at that element |
434 | | // for an exact classification. Init list creation takes care of the |
435 | | // value kind for us, so we only need to fine-tune. |
436 | 0 | if (E->isPRValue()) |
437 | 0 | return ClassifyExprValueKind(Lang, E, E->getValueKind()); |
438 | 0 | assert(cast<InitListExpr>(E)->getNumInits() == 1 && |
439 | 0 | "Only 1-element init lists can be glvalues."); |
440 | 0 | return ClassifyInternal(Ctx, cast<InitListExpr>(E)->getInit(0)); |
441 | | |
442 | 0 | case Expr::CoawaitExprClass: |
443 | 0 | case Expr::CoyieldExprClass: |
444 | 0 | return ClassifyInternal(Ctx, cast<CoroutineSuspendExpr>(E)->getResumeExpr()); |
445 | 0 | case Expr::SYCLUniqueStableNameExprClass: |
446 | 0 | return Cl::CL_PRValue; |
447 | 0 | break; |
448 | | |
449 | 0 | case Expr::CXXParenListInitExprClass: |
450 | 0 | if (isa<ArrayType>(E->getType())) |
451 | 0 | return Cl::CL_ArrayTemporary; |
452 | 0 | return Cl::CL_ClassTemporary; |
453 | 0 | } |
454 | | |
455 | 0 | llvm_unreachable("unhandled expression kind in classification"); |
456 | 0 | } |
457 | | |
458 | | /// ClassifyDecl - Return the classification of an expression referencing the |
459 | | /// given declaration. |
460 | 0 | static Cl::Kinds ClassifyDecl(ASTContext &Ctx, const Decl *D) { |
461 | | // C++ [expr.prim.general]p6: The result is an lvalue if the entity is a |
462 | | // function, variable, or data member and a prvalue otherwise. |
463 | | // In C, functions are not lvalues. |
464 | | // In addition, NonTypeTemplateParmDecl derives from VarDecl but isn't an |
465 | | // lvalue unless it's a reference type (C++ [temp.param]p6), so we need to |
466 | | // special-case this. |
467 | |
|
468 | 0 | if (const auto *M = dyn_cast<CXXMethodDecl>(D)) { |
469 | 0 | if (M->isImplicitObjectMemberFunction()) |
470 | 0 | return Cl::CL_MemberFunction; |
471 | 0 | if (M->isStatic()) |
472 | 0 | return Cl::CL_LValue; |
473 | 0 | return Cl::CL_PRValue; |
474 | 0 | } |
475 | | |
476 | 0 | bool islvalue; |
477 | 0 | if (const auto *NTTParm = dyn_cast<NonTypeTemplateParmDecl>(D)) |
478 | 0 | islvalue = NTTParm->getType()->isReferenceType() || |
479 | 0 | NTTParm->getType()->isRecordType(); |
480 | 0 | else |
481 | 0 | islvalue = |
482 | 0 | isa<VarDecl, FieldDecl, IndirectFieldDecl, BindingDecl, MSGuidDecl, |
483 | 0 | UnnamedGlobalConstantDecl, TemplateParamObjectDecl>(D) || |
484 | 0 | (Ctx.getLangOpts().CPlusPlus && |
485 | 0 | (isa<FunctionDecl, MSPropertyDecl, FunctionTemplateDecl>(D))); |
486 | |
|
487 | 0 | return islvalue ? Cl::CL_LValue : Cl::CL_PRValue; |
488 | 0 | } |
489 | | |
490 | | /// ClassifyUnnamed - Return the classification of an expression yielding an |
491 | | /// unnamed value of the given type. This applies in particular to function |
492 | | /// calls and casts. |
493 | 0 | static Cl::Kinds ClassifyUnnamed(ASTContext &Ctx, QualType T) { |
494 | | // In C, function calls are always rvalues. |
495 | 0 | if (!Ctx.getLangOpts().CPlusPlus) return Cl::CL_PRValue; |
496 | | |
497 | | // C++ [expr.call]p10: A function call is an lvalue if the result type is an |
498 | | // lvalue reference type or an rvalue reference to function type, an xvalue |
499 | | // if the result type is an rvalue reference to object type, and a prvalue |
500 | | // otherwise. |
501 | 0 | if (T->isLValueReferenceType()) |
502 | 0 | return Cl::CL_LValue; |
503 | 0 | const auto *RV = T->getAs<RValueReferenceType>(); |
504 | 0 | if (!RV) // Could still be a class temporary, though. |
505 | 0 | return ClassifyTemporary(T); |
506 | | |
507 | 0 | return RV->getPointeeType()->isFunctionType() ? Cl::CL_LValue : Cl::CL_XValue; |
508 | 0 | } |
509 | | |
510 | 0 | static Cl::Kinds ClassifyMemberExpr(ASTContext &Ctx, const MemberExpr *E) { |
511 | 0 | if (E->getType() == Ctx.UnknownAnyTy) |
512 | 0 | return (isa<FunctionDecl>(E->getMemberDecl()) |
513 | 0 | ? Cl::CL_PRValue : Cl::CL_LValue); |
514 | | |
515 | | // Handle C first, it's easier. |
516 | 0 | if (!Ctx.getLangOpts().CPlusPlus) { |
517 | | // C99 6.5.2.3p3 |
518 | | // For dot access, the expression is an lvalue if the first part is. For |
519 | | // arrow access, it always is an lvalue. |
520 | 0 | if (E->isArrow()) |
521 | 0 | return Cl::CL_LValue; |
522 | | // ObjC property accesses are not lvalues, but get special treatment. |
523 | 0 | Expr *Base = E->getBase()->IgnoreParens(); |
524 | 0 | if (isa<ObjCPropertyRefExpr>(Base)) |
525 | 0 | return Cl::CL_SubObjCPropertySetting; |
526 | 0 | return ClassifyInternal(Ctx, Base); |
527 | 0 | } |
528 | | |
529 | 0 | NamedDecl *Member = E->getMemberDecl(); |
530 | | // C++ [expr.ref]p3: E1->E2 is converted to the equivalent form (*(E1)).E2. |
531 | | // C++ [expr.ref]p4: If E2 is declared to have type "reference to T", then |
532 | | // E1.E2 is an lvalue. |
533 | 0 | if (const auto *Value = dyn_cast<ValueDecl>(Member)) |
534 | 0 | if (Value->getType()->isReferenceType()) |
535 | 0 | return Cl::CL_LValue; |
536 | | |
537 | | // Otherwise, one of the following rules applies. |
538 | | // -- If E2 is a static member [...] then E1.E2 is an lvalue. |
539 | 0 | if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord()) |
540 | 0 | return Cl::CL_LValue; |
541 | | |
542 | | // -- If E2 is a non-static data member [...]. If E1 is an lvalue, then |
543 | | // E1.E2 is an lvalue; if E1 is an xvalue, then E1.E2 is an xvalue; |
544 | | // otherwise, it is a prvalue. |
545 | 0 | if (isa<FieldDecl>(Member)) { |
546 | | // *E1 is an lvalue |
547 | 0 | if (E->isArrow()) |
548 | 0 | return Cl::CL_LValue; |
549 | 0 | Expr *Base = E->getBase()->IgnoreParenImpCasts(); |
550 | 0 | if (isa<ObjCPropertyRefExpr>(Base)) |
551 | 0 | return Cl::CL_SubObjCPropertySetting; |
552 | 0 | return ClassifyInternal(Ctx, E->getBase()); |
553 | 0 | } |
554 | | |
555 | | // -- If E2 is a [...] member function, [...] |
556 | | // -- If it refers to a static member function [...], then E1.E2 is an |
557 | | // lvalue; [...] |
558 | | // -- Otherwise [...] E1.E2 is a prvalue. |
559 | 0 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) { |
560 | 0 | if (Method->isStatic()) |
561 | 0 | return Cl::CL_LValue; |
562 | 0 | if (Method->isImplicitObjectMemberFunction()) |
563 | 0 | return Cl::CL_MemberFunction; |
564 | 0 | return Cl::CL_PRValue; |
565 | 0 | } |
566 | | |
567 | | // -- If E2 is a member enumerator [...], the expression E1.E2 is a prvalue. |
568 | | // So is everything else we haven't handled yet. |
569 | 0 | return Cl::CL_PRValue; |
570 | 0 | } |
571 | | |
572 | 0 | static Cl::Kinds ClassifyBinaryOp(ASTContext &Ctx, const BinaryOperator *E) { |
573 | 0 | assert(Ctx.getLangOpts().CPlusPlus && |
574 | 0 | "This is only relevant for C++."); |
575 | | // C++ [expr.ass]p1: All [...] return an lvalue referring to the left operand. |
576 | | // Except we override this for writes to ObjC properties. |
577 | 0 | if (E->isAssignmentOp()) |
578 | 0 | return (E->getLHS()->getObjectKind() == OK_ObjCProperty |
579 | 0 | ? Cl::CL_PRValue : Cl::CL_LValue); |
580 | | |
581 | | // C++ [expr.comma]p1: the result is of the same value category as its right |
582 | | // operand, [...]. |
583 | 0 | if (E->getOpcode() == BO_Comma) |
584 | 0 | return ClassifyInternal(Ctx, E->getRHS()); |
585 | | |
586 | | // C++ [expr.mptr.oper]p6: The result of a .* expression whose second operand |
587 | | // is a pointer to a data member is of the same value category as its first |
588 | | // operand. |
589 | 0 | if (E->getOpcode() == BO_PtrMemD) |
590 | 0 | return (E->getType()->isFunctionType() || |
591 | 0 | E->hasPlaceholderType(BuiltinType::BoundMember)) |
592 | 0 | ? Cl::CL_MemberFunction |
593 | 0 | : ClassifyInternal(Ctx, E->getLHS()); |
594 | | |
595 | | // C++ [expr.mptr.oper]p6: The result of an ->* expression is an lvalue if its |
596 | | // second operand is a pointer to data member and a prvalue otherwise. |
597 | 0 | if (E->getOpcode() == BO_PtrMemI) |
598 | 0 | return (E->getType()->isFunctionType() || |
599 | 0 | E->hasPlaceholderType(BuiltinType::BoundMember)) |
600 | 0 | ? Cl::CL_MemberFunction |
601 | 0 | : Cl::CL_LValue; |
602 | | |
603 | | // All other binary operations are prvalues. |
604 | 0 | return Cl::CL_PRValue; |
605 | 0 | } |
606 | | |
607 | | static Cl::Kinds ClassifyConditional(ASTContext &Ctx, const Expr *True, |
608 | 0 | const Expr *False) { |
609 | 0 | assert(Ctx.getLangOpts().CPlusPlus && |
610 | 0 | "This is only relevant for C++."); |
611 | | |
612 | | // C++ [expr.cond]p2 |
613 | | // If either the second or the third operand has type (cv) void, |
614 | | // one of the following shall hold: |
615 | 0 | if (True->getType()->isVoidType() || False->getType()->isVoidType()) { |
616 | | // The second or the third operand (but not both) is a (possibly |
617 | | // parenthesized) throw-expression; the result is of the [...] value |
618 | | // category of the other. |
619 | 0 | bool TrueIsThrow = isa<CXXThrowExpr>(True->IgnoreParenImpCasts()); |
620 | 0 | bool FalseIsThrow = isa<CXXThrowExpr>(False->IgnoreParenImpCasts()); |
621 | 0 | if (const Expr *NonThrow = TrueIsThrow ? (FalseIsThrow ? nullptr : False) |
622 | 0 | : (FalseIsThrow ? True : nullptr)) |
623 | 0 | return ClassifyInternal(Ctx, NonThrow); |
624 | | |
625 | | // [Otherwise] the result [...] is a prvalue. |
626 | 0 | return Cl::CL_PRValue; |
627 | 0 | } |
628 | | |
629 | | // Note that at this point, we have already performed all conversions |
630 | | // according to [expr.cond]p3. |
631 | | // C++ [expr.cond]p4: If the second and third operands are glvalues of the |
632 | | // same value category [...], the result is of that [...] value category. |
633 | | // C++ [expr.cond]p5: Otherwise, the result is a prvalue. |
634 | 0 | Cl::Kinds LCl = ClassifyInternal(Ctx, True), |
635 | 0 | RCl = ClassifyInternal(Ctx, False); |
636 | 0 | return LCl == RCl ? LCl : Cl::CL_PRValue; |
637 | 0 | } |
638 | | |
639 | | static Cl::ModifiableType IsModifiable(ASTContext &Ctx, const Expr *E, |
640 | 0 | Cl::Kinds Kind, SourceLocation &Loc) { |
641 | | // As a general rule, we only care about lvalues. But there are some rvalues |
642 | | // for which we want to generate special results. |
643 | 0 | if (Kind == Cl::CL_PRValue) { |
644 | | // For the sake of better diagnostics, we want to specifically recognize |
645 | | // use of the GCC cast-as-lvalue extension. |
646 | 0 | if (const auto *CE = dyn_cast<ExplicitCastExpr>(E->IgnoreParens())) { |
647 | 0 | if (CE->getSubExpr()->IgnoreParenImpCasts()->isLValue()) { |
648 | 0 | Loc = CE->getExprLoc(); |
649 | 0 | return Cl::CM_LValueCast; |
650 | 0 | } |
651 | 0 | } |
652 | 0 | } |
653 | 0 | if (Kind != Cl::CL_LValue) |
654 | 0 | return Cl::CM_RValue; |
655 | | |
656 | | // This is the lvalue case. |
657 | | // Functions are lvalues in C++, but not modifiable. (C++ [basic.lval]p6) |
658 | 0 | if (Ctx.getLangOpts().CPlusPlus && E->getType()->isFunctionType()) |
659 | 0 | return Cl::CM_Function; |
660 | | |
661 | | // Assignment to a property in ObjC is an implicit setter access. But a |
662 | | // setter might not exist. |
663 | 0 | if (const auto *Expr = dyn_cast<ObjCPropertyRefExpr>(E)) { |
664 | 0 | if (Expr->isImplicitProperty() && |
665 | 0 | Expr->getImplicitPropertySetter() == nullptr) |
666 | 0 | return Cl::CM_NoSetterProperty; |
667 | 0 | } |
668 | | |
669 | 0 | CanQualType CT = Ctx.getCanonicalType(E->getType()); |
670 | | // Const stuff is obviously not modifiable. |
671 | 0 | if (CT.isConstQualified()) |
672 | 0 | return Cl::CM_ConstQualified; |
673 | 0 | if (Ctx.getLangOpts().OpenCL && |
674 | 0 | CT.getQualifiers().getAddressSpace() == LangAS::opencl_constant) |
675 | 0 | return Cl::CM_ConstAddrSpace; |
676 | | |
677 | | // Arrays are not modifiable, only their elements are. |
678 | 0 | if (CT->isArrayType()) |
679 | 0 | return Cl::CM_ArrayType; |
680 | | // Incomplete types are not modifiable. |
681 | 0 | if (CT->isIncompleteType()) |
682 | 0 | return Cl::CM_IncompleteType; |
683 | | |
684 | | // Records with any const fields (recursively) are not modifiable. |
685 | 0 | if (const RecordType *R = CT->getAs<RecordType>()) |
686 | 0 | if (R->hasConstFields()) |
687 | 0 | return Cl::CM_ConstQualifiedField; |
688 | | |
689 | 0 | return Cl::CM_Modifiable; |
690 | 0 | } |
691 | | |
692 | 0 | Expr::LValueClassification Expr::ClassifyLValue(ASTContext &Ctx) const { |
693 | 0 | Classification VC = Classify(Ctx); |
694 | 0 | switch (VC.getKind()) { |
695 | 0 | case Cl::CL_LValue: return LV_Valid; |
696 | 0 | case Cl::CL_XValue: return LV_InvalidExpression; |
697 | 0 | case Cl::CL_Function: return LV_NotObjectType; |
698 | 0 | case Cl::CL_Void: return LV_InvalidExpression; |
699 | 0 | case Cl::CL_AddressableVoid: return LV_IncompleteVoidType; |
700 | 0 | case Cl::CL_DuplicateVectorComponents: return LV_DuplicateVectorComponents; |
701 | 0 | case Cl::CL_MemberFunction: return LV_MemberFunction; |
702 | 0 | case Cl::CL_SubObjCPropertySetting: return LV_SubObjCPropertySetting; |
703 | 0 | case Cl::CL_ClassTemporary: return LV_ClassTemporary; |
704 | 0 | case Cl::CL_ArrayTemporary: return LV_ArrayTemporary; |
705 | 0 | case Cl::CL_ObjCMessageRValue: return LV_InvalidMessageExpression; |
706 | 0 | case Cl::CL_PRValue: return LV_InvalidExpression; |
707 | 0 | } |
708 | 0 | llvm_unreachable("Unhandled kind"); |
709 | 0 | } |
710 | | |
711 | | Expr::isModifiableLvalueResult |
712 | 0 | Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const { |
713 | 0 | SourceLocation dummy; |
714 | 0 | Classification VC = ClassifyModifiable(Ctx, Loc ? *Loc : dummy); |
715 | 0 | switch (VC.getKind()) { |
716 | 0 | case Cl::CL_LValue: break; |
717 | 0 | case Cl::CL_XValue: return MLV_InvalidExpression; |
718 | 0 | case Cl::CL_Function: return MLV_NotObjectType; |
719 | 0 | case Cl::CL_Void: return MLV_InvalidExpression; |
720 | 0 | case Cl::CL_AddressableVoid: return MLV_IncompleteVoidType; |
721 | 0 | case Cl::CL_DuplicateVectorComponents: return MLV_DuplicateVectorComponents; |
722 | 0 | case Cl::CL_MemberFunction: return MLV_MemberFunction; |
723 | 0 | case Cl::CL_SubObjCPropertySetting: return MLV_SubObjCPropertySetting; |
724 | 0 | case Cl::CL_ClassTemporary: return MLV_ClassTemporary; |
725 | 0 | case Cl::CL_ArrayTemporary: return MLV_ArrayTemporary; |
726 | 0 | case Cl::CL_ObjCMessageRValue: return MLV_InvalidMessageExpression; |
727 | 0 | case Cl::CL_PRValue: |
728 | 0 | return VC.getModifiable() == Cl::CM_LValueCast ? |
729 | 0 | MLV_LValueCast : MLV_InvalidExpression; |
730 | 0 | } |
731 | 0 | assert(VC.getKind() == Cl::CL_LValue && "Unhandled kind"); |
732 | 0 | switch (VC.getModifiable()) { |
733 | 0 | case Cl::CM_Untested: llvm_unreachable("Did not test modifiability"); |
734 | 0 | case Cl::CM_Modifiable: return MLV_Valid; |
735 | 0 | case Cl::CM_RValue: llvm_unreachable("CM_RValue and CL_LValue don't match"); |
736 | 0 | case Cl::CM_Function: return MLV_NotObjectType; |
737 | 0 | case Cl::CM_LValueCast: |
738 | 0 | llvm_unreachable("CM_LValueCast and CL_LValue don't match"); |
739 | 0 | case Cl::CM_NoSetterProperty: return MLV_NoSetterProperty; |
740 | 0 | case Cl::CM_ConstQualified: return MLV_ConstQualified; |
741 | 0 | case Cl::CM_ConstQualifiedField: return MLV_ConstQualifiedField; |
742 | 0 | case Cl::CM_ConstAddrSpace: return MLV_ConstAddrSpace; |
743 | 0 | case Cl::CM_ArrayType: return MLV_ArrayType; |
744 | 0 | case Cl::CM_IncompleteType: return MLV_IncompleteType; |
745 | 0 | } |
746 | 0 | llvm_unreachable("Unhandled modifiable type"); |
747 | 0 | } |